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AN ENFORCED ESSENTIAL BOUNDARY CONDITION
BY PENALTY METHOD IN THE ELEMENT-FREE
GALERKIN (EFG) METHODS
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~ Abstract. A meshless approach to the analysis of two-dimensional elasticity problems
by the Element-Free Galerkin (EFG) method is presented. This method is based on
moving least squares approximant (MLS). The unknown function of displacement u (z)
is approximated by moving least square approximants u" (z). These approximants are
constructed by using a weight function, a monomial basis function and a set of non-
constant coefficients. A subdivision similar to finite element method is used to provide
a background mesh for numerical integration. The essential boundary conditions are
enforced by Penalty Method. The results are obtained for a two-dimensional problem
using different EFG weight functions and compared with the results of finite element
method and exact methods.
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1. INTRODUCTION

As for now the finite element method has been a powerful tool for solving partial
differential equations. It has successfully been applied for a large number of engineering
applications, for example solid mechanics, structure mechanics, electro magnetism, geo
mechanics, bio mechanics and so on. But for the last fifteen years a new mesh free method
has been subject to extensive research.

The element free Galerkin (EFG) method is a meshless method for solving partial
differential equations which uses only a set of nodal points and a CAD like description
of the body to formulate the discrete model. It has been used extensively for fracture
problems and has yielded good results when adequate refinement is used near the crack
tip.

In this paper, a meshless approach to the analysis of two-dimensional elasticity prob-
lems by the Element-Free Galerkin (EFG) method is presented. This method is based on
moving least squares approximant (MLS) to construct the approximate function for the
Galerkin weak-form. These approximations are constructed by using a weight function, a
monomial basis function and a set of non-constant coefficients. A subdivision similar to
finite element method is used to provide a background mesh for numerical integration.
The essential boundary conditions are enforced by Penalty Method. In this study, EFG is
applied to elastostatics analysis. Path test, plate with a central circular hole will be com-
puted in this paper. The results are obtained for a two-dimensional problem using different
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EFG weight functions and compared with the results of exact methods. In addition, EFG
method Matlab code also is offered in this paper. This Matlab code can be developed to
meshfree application software or other meshfree method in the further.

2. MLS APPROXIMATIONS FUNCTIONS

MLS functions were developed by Lancaster and Salkauskas to approximate curves
and surfaces. We approximate the displacement field by a discrete sum

T(zx)a(z) Vae Oy (1)

where p(x) is a linearly independent basis of m functions,

u(z) =2 ul(z) =p
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Fig. 1. The approximation function u*(z) and the nodal parameters u; in the MLS approximation

p" (@)=[po(2) (&) ... Pm(x) ] (2)
and a(z) is collection of undetermined parameters of the approximation
ot (z) = [ao(z) a1(z) ... am(z) ], (3

where each term is a function of the position z € Q (see Fig. 1).
The parameters a(xz) are found at any z point by minimizing the following weighted
least squares discrete Lo error norm (Nayroles-1992),

n 2 n 3
il Zw (x —xp) [uh (z1,z) — u;} = Zw (x — zy) [pT (xr)a(x) — u;}z (4)
=1 I=1
where w (z — 1) is a weighting function which is nonzero on the influence domain of the
node z, thus generating a local approximation and sparse matrices. Only the z; nodes
whose influence domains contain the x point will appear in the sum (4). The dimension
of the influence domain of each node and the choice of the weighting function are decisive
parameters for the approximation by MLS [4,1].
Minimizing J in order to the unknown parameters a(z) results in

Az)a(x)=B(@)u or a(z)=A"1(x)B(x)u (5)
with:

A@) = w(x—=z)p (@) p" (z1) (6)
=1
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B(a)=[w(@—mz)p@1) w@—22)p(@2) ... w(@—zm)p(an) ] (7)
Substituting the result (5) for a(z) in the initial approximation (1), this expression
can be written in the usual form

uh (z) =) @ (z)us = @ (2)U (8)
I=1

where the shape function is defined by
& (x) =) pj(2) (A7 (2) B(z)),;, =p" A B, (9)
§=0

here m is the order of the polynomial p(z). To determine the derivatives from the displace-
ment (8), it is necessary to obtain the shape function derivatives. The partial derivatives
of the shape functions are obtained by

&1, = (pTA'Br)  =p A" By +P,7; (A_l)’gC Br +prA'By, (10)

K

where

By (7) = . (& —mr)p(@y)s

dx
AT (g) = —AT AL AT (1)
n
Az = Zw@ (z —azp)p (z7) T (x1).
=}

It should be noted that EFG shape functions do not satisfy the Kronecker delta
criterion: @7 (x) # d;;. Therefore they are not interpolants and the name approximation
is used. So u” (x7) # uy, the nodal parameters u; are not the nodal values of u” (x). The
approximation to the displacement at the I** node depends on the nodal parameter u; as
well as the nodal parameters u; through wu, corresponding to all other nodes within the
domain of influence of node I. This property makes the imposition of essential boundary
conditions more complicated than with finite elements [6]. We will use Penalty method to
enforce the essential boundary conditions.

Fig. 2. Shape of the support domain Fig. 8. Shape of the weight function
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3. CHOICE OF SUPPORT DOMAIN AND WEIGHT FUNCTION

There is no difference if circular or rectangular support domains are used in the EFG
method [1, 2, 4]. The following implementations is made with circular. The weight function
plays an important role for the EFG method (see Figs. 2, 3). A proper constructed weight
function will give unique solutions when we determine the coefficient vector a. Weight
functions need to have the following properties:

- Compact support, i.e. zero outside the support domain.

- Adopt positive values for all points in the support domain

- Have its maximum value at the current point and decrease when moving outwards.

There are many kinds of functions satisfying these properties, but the one used in
this paper is a quartic spline function [3, 4, 6]

2 1
3 4Tj2» -+ 47"? when 7r; < 3
A 4 4 . il
wi(r) = 37 4r; + 47“]2- — gr; when - <r; <1 (12)
0 when r; =1
with:
! dmaxcj 7

where dmax is a scaling parameter which is typically 2 + 4 [4] for a static analysis. The
distance c; is determined by searching enough neighbor nodes for A to be regular. Referring
to (6), it can easily be seen that the matrix A will be singular if a given node has only one
neighbor in its domain of influence. In one dimension with a linear basis, the distance c;
at a node is the maximum distance to the nearest neighbor, insuring that each node will
have at least two neighbors in its domain of influence.

4. WEAK FORM FOR SOLID MECHANICS

The partial differential equation that controls solid mechanics for 2-D can be stated
as:

Rfo+b=0. (14)

This equation applies for all points iii the problem domain ). For the essential
boundary, S,, we have a prescribed displacement

u = . (15)
For the natural boundary, S, we have a prescribed force given by the traction vector

t=58.n, (16)
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where n is the normal vector to the boundary and S, is the stress tensor. The matrices in
the formulation are given by

R:

n o o
Ny Oyz  Oyy

R: operator working on the stress; o: stress matrix; b: forces working on the body; u :
displacement vector for a point; n: normal vector to a boundary point; S,: stress tensor.

This is the strong form of the problem. In general we can not solve this equation
analytically. This is why we need numerical methods like the finite element method. In
order to solve the problem we need the regularity of the function u. There are several
methods for doing this, the one used in this report is a variational principle. We construct
the lagrangian function L in solid mechanics

L=T-I+W, (18)

where T is the kinetic energy, II is the elastic energy and W is the work done by the
external forces. The components of the function L are calculated as

(17)

€& g g

T= %/puTudQ (19)
Q
1 [ r
= 5/5 odf) (20)
Q
W = / u” bdS) + / u’'tdS, (21)
Q Sy

5. PENALTY METHOD

The penalty method is another alternative to impose essential boundary conditions,
which was first proposed by [2]. A detailed illustration is given by Zhu for the case of
2D linear elastostatics. Consider the same problem. This will lead to a modified Lagrange
function (3]

LzL—{—%/(u—ﬂ)T (u—u)dS,, (22)
Su

where a = [ a1 Qg ... ] is a diagonal matrix of penalty factors, with & = 2 for 2D
cases and k£ = 3 for 3D cases. The penalty factor «; can be function of coordinates and
they can be different from each other. This report prefers the following simple method for
determining the penalty facter:

a = 10% — 10" x max (diagonal elements in the stiffness matrix).
It has also been suggested to use a = 102 — 103x Young’s modulus matrix
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Taking 6L = 0, we have the following algebraic equations
(K—aK*)U =f-f* (23)
where
Kry= /B,TDBJdQ; fr= /(I)deQ+/<I>TtdSt;
Q Q St

= /NISNJdSu; fi= /N,Sadsu.
5 8,

- S, 0 ) L 1 if u; €8,
S_|:0 Sy}’ Sl_{olif’uiﬁsu,i=1,2

General algorithm for EFG with Gauss integration is following.

PRE PROCESSING
~ (Generate nodes
~ enerate integration points and cells
~ Setvariables and constants
MAIN PROGRAM
for i =1 all integration points
forj=1all nodes
if | = support domain for |
~ Calculate shape function
end if

end for
~  Calculate local system matrices K.G.qand F
~ Assemble to global system matrices
end for
~ Solve equaticns system
POST PROCESSING
for =1 number of output points :
» Determine nodes inside support domain to |
» Calculate real displacement
~ Compute strains and stresses for i
end for

6. NUMERICAL EXAMPLE

The global error indicator, the La-norm error in displacement, is defined by [5]

1/2
N ; 9 ; 2 /
num __,exact num __ ,exac
]2 <u,j u§ ) + (v] Vs )

Ly= (25)

{é { (“?”“‘*)2 + (vgoset) 2} } W
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The Ls-norm error is a better measure of the overall performance of a numerical
model than the conventional relative error for a single point. In this work, we will use the
global Lo-norm error as a measure of the overall performance of the numerical method.

Consider a plate with a central circular hole subjected to a unidirectional tensile
load in the z direction as shown in Fig. 4. Due to symmetry, only the upper right quadrant
of the plate is modelled (see, Fig. 5). Symmetry conditions are imposed on the left and
bottom edges. The inner boundary is traction free. Plane strain conditions are assumed

- The material constants: E = 2.101! N/m?

- The unidirectional tensile load: ¢ =1 N/m

- The demension of the plate: L x L =10x 10 m; d = 2 m

=y =10.3
1
- = y
q: —> 4 st
=y s
= > . o
<& e 2 q
- X
L - o

: A
Fig. 4. A 2D solid with a central hole subjected  Fig. 5. One quarter model of plate
to a unidirectional tensile load

The analytical solution for the stresses of an infinite platc [6] is of the form

@ {3
o= |1-— 5(20829-{-(30340 +—*COS49 q
r

2 1 p 4
Wy == [_g_ (5 cos 260 — cos 40> = d4 cos 49} (26)

2
P
2 4
~ (1 3
Oy = [—% (5 sin 260 + Siﬂ49> + 5% Si1149:| q

1 kE—1 a,2 (L4
TR A e ') c0s 2] — — cos 26
i " 1G {T( 5 +00920>+ . 1+ (1+k)cos26] cos }

3 :
1 a? a4 (27)
e {(1—/4)7—7*——5} sin 26
with:
S . k=3—-4v for 0,=0 (28)
2(1+w)’ N o

where (7, ) are the polar coordinates and 6 is measured counterclockwise from the positive
x axis. The analytical results are employed as the reference results for comparison [6].
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The arrangement of nodes and quadrature cells is shown in Figure 6. In each quad-
rature cell, 4 x 4 Gauss points are used. The solutions are obtained using a quadratic basic
function with cubic spline weight function.

Table 1. Comparison stress o, at (0,7)

Influence | Stresses o, at (0,r) | Stresses o, at (0,7) of | Error

radius r; | of exact solution EFG solution (%)
1.0 3.0 2.7342 .| 8.8590
1.1 3.0 3.0843 2.8094
1.2 3.0 3.0572 1.9062
1.3 3.0 3.0465 1.5507
1.4 3.0 3.0388 1.2932
1.5 3.0 3.0268 0.8950
1.6 3.0 3.0225 0.7505
1.7 30 3.0438 1.4604
1.8 3.0 3.0826 2.7543
1.9 3.0 3.1114 3.713H
2.0 | 3.0 3.1205 4.0154
21 3.0 3.1243 4.1421
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Fig. 7. Mesh used for integration

Fig. 8. Quadrature cells and Gauss points

Fig. 10 presents the distribution of normal stress o, along = = 0 of the 7 x 10-node
model with dimension of the influence domain r; = 1.2 and r; = 1.6.



130 Nguyen Hoai Son
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Fig. 9. Comparison between the exact and Fig. 10. Comparison between the exact and
EFG solution for o, with influence radius EFG solution for o, at z = 0 with influence
ry=1+2.1 radius r; = (1.2, 1.6)

Figure 11 presents the distribution of normal stress o, along 2 = 0 of the 7 x 10-node
model with number of nodes 7 x 10 and 12 x 14.

Fig. 12 shows the deformed meshless model, using spline weight function and linear
basis.

Fig. 13 and 14 show the contour plots of g, stress distribution from the EFG method

Comparson between the exact and EFG scistion for g at x=2
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Fig. 11. Comparison between the exact and Fig. 12. Displacement of nodes with EFG
EFG solution for at with number of nodes method

(7 x 10,12 x 14)

The figure shows that, as the number of the node increases, the results obtained are
‘closer to the analytical solution d

Our numerical examination of the relationship between the density of field nodes and
background mesh for 2D stress analysis problem indicates that: the ratio of the integration
points to the field nodes is around 3 to 9. Accuracy of the stress field can be improved
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EEG &, Exactly c,

Fig. 13. EFG stress field o, Fig. 14. Analytical stress field

efficiently by increasing the density of the field nodes, together with sufficient density of
the background mesh.

The solution by the EFG method seems accurate enough and converges to the
analytical solution when the number of nodes approaches infinity.

7. CONCLUSION AND DISCUSSION

An element free Galerkin method was implemented in Matlab for linear statics prob-
lem. The solution by this method seems accurate enough and converge to the analytical
solution when the number of nodes approaches infinity.

The main advantage of the penalty method is that it leads to a positive definited
and banded stiffness matrix. The stiffness matrix also has a smaller dimension than those
using Lagrangian multipliers, that improves computational efficiency. Numerical examples
have demonstrated the performance of the penalty method.

The EFG method is flexible with respect to the construction of the shape functions.
Therefore, it is possible to improve the accuracy of the method by the choice of weight
functions, by the selection of the support of EFG nodes (given by the weight function
definition). The support radius of approximately 3.9 of node spacings was discovered to
vield good results for all the problems studied.
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MOT HIEU LUC HOA PIEU KIEN BIEN CHINH BANG HAM PHAT
TRONG PHUONG PHAP PHAN TU TU DO GALERKIN

Mot xap xi khong 1udi trong phan tich bai toan dan héi hai chiéu bang phuong phap
phan tit ty do Galerkin dugc gidi thieu. Phuong phap nady dya trén xap xi binh phuong
t6i thiéu dong. Ham chuyén vi u(z) duge xap xi theo MLS thanh " {z). Xap xi nay dugc
xay duyng bang viéc xit dung cidc ham trong s6 dudi dang ham da thitc co s8. Viéc chia
nhé giéng nhu phuong phap phan tit hitu han déng vai tro luéi nén dé thyc hién céc tich
phan s6. Tuy nhién cac diéu kién bién chinh phai duge hiéu Iyc héa biang phuong phap
ham phat. Két qua thu duge trong phan tich EFG cho bai todan hai chiéu v6i ham trong
s6 khac nhau dude so sanh véi cac két qua cia phuong phap phan ti hitu han va phuong
phéap chinh xac.



