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AN ENFORCED ESSENTIAL BOUNDARY CONDITION 
BV PENALTY METHOD IN THE ELEMENT-FREE 

GALERKIN (EFG) METHODS 
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A bstract . A meshless approach to the analysis of two-dimensional elasticity problems 
by the Element-Free Galerkin (EFG) method is presented. This method is based on 
moving least squares approximant (MLS). The unknown function of displacement u (x) 
is approximated by moving least square approximants uh (x). These approximants are 
constructed by using a weight function , a monomial basis function and a set of non
constant coefficients . A subdivision similar to finite element method is used to provide 
a background mesh for numerical integration. The essential boundary conditions are 
enforced by Penalty Method. The results are obtained for a two-dimensional problem 
using different EFG weight functions and compared with the resul ts of finite element 
method and exact methods . 
Keywords. weight function , penalty method, moving least squares, meshfree. 

1. INTRODUCTION 

As for now the finite element method has been a powerful tool for solving partial 
differential equations. It has successfully been applied for a large number of engineering 
applications, for example solid mechanics, structure mechanics, electro magnetism, geo 
mechanics, bio mechanics and so on. But for t he last fifteen years a new mesh free method 
has been subject to extensive research. 

The element free Galerkin (EFG) method is a meshless method for solving partial 
differential equations which uses only a set of nodal points and a CAD _ like description 
of t he body to formulate the discrete model. It has been used extensively for fracture 
problems and has yielded good results when adequate refinement is used near the crack 
tip. 

In this paper, a meshless approach to the analysis of two-dimensional elasticity prob
lems by the Element-Free Galerkin (EFG) method is presented. This method is based on 
moving least squares approximant (MLS) to construct the approximate funct ion for the 
Galerkin weak-form . These approximations are constructed by using a weight function, a 
monomial basis function and a set of non-constant coefficients. A subdivision similar to 
finite element method is used to provide a background mesh for numerical integration. 
The essential boundary conditions are enforced by Penalty Method. In this study, EFG is 
applied to elastostatics analysis. Path test , plate with a central circular hole will be com
puted in this paper. The results are obtained for a two-dimensional problem using different 
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EFG weight functions and compared with the results of exact methods. In addition, EFG 
method Matlab code also is offered in this paper. This Matlab code can be developed to 
meshfree application software or other meshfree method in the further. 

2. MLS APPROXIMATIONS FUNCTIONS 

MLS functions were developed by Lancaster and Salkauskas to approximate curves 
and surfaces. We approximate the displacement field by a discrete sum 

u(x) ~ uh(x) =PT (x)a(x) \Ix E flx (1) 

where p(x) is a linearly independent basis of m functions, 
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Fig. 1. The approximation function uk(x) and the nodal parameters Ui in the MLS approximation 

PT ( x) = [ Po ( x) pi( x) . . . Pm ( x) ] (2) 
and a( x) is collection of undetermined parameters of the approximation 

a T ( x) = [ ao ( x) a 1 ( x) . . . am ( x) ] , (3) 

where each term is a function of the position x ED (see Fig. 1). 
The parameters a( x) are found at any x µoint by minimizing the following weighted 

least squares discrete L2 error norm (Nayroles-1992), 
n 2 n 

]= Lw(x-x1) [uh(x1,x)-u1] = Lw(x-x1) [PT(x1)a(x)-u1 ]
2 

(4) 
l =l l=l 

where w ( x - x I) is a weighting function which is nonzero on the influence domain of the 
node x 1 , thus generating a local approximation and sparse matrices. Only the xr nodes 
whose influence domains contain the x point will appear in the sum ( 4). The dimension 
of the influence domain of each node and the choice of the weighting function are decisive 
parameters for the approximation by MLS [4, l]. 

with: 

Minimizing Jin order to the unknown parameters a(x) results in 

A ( x) a ( x) = B ( x) u or a ( x) = A :-- 1 
( x) B ( x) u 

n 

A(x) = Lw(x - x1)p(x1)PT (x1) 
l =l 

(5) 

(6) 
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B (x) = [ w (x - x1) p (x1) w (x - x2) p (x2) ... w (x - Xn) p (xn) J (7) 

Substituting the result ( 5) for a( x) in the initial approximation ( 1), this expression 
can be written in the usual form 

n 

uh (x) = L <I>I(x)u1 = <I> (.x) U 
f=l 

where the shape function is defined by 
m 

<I>1 (x ) = LPj (x) (A-1 (x) B (x))jf = pT A- 1 B1 , 
j=O 

(8) 

(9) 

here m is t he order of the polynomial p( x). To determine the derivatives from the displace
ment (8), it is necessary to obtain the shape function derivatives. The partial derivatives 
of the shape functions are obtained by 

<I> I,x = (PT A- 1 B1) ,x = p:xA-1 B1 + P:X (A-1
) ,x B1 + PTA-1 B1,x (10) 

where 

dw 
B1x(x)=-d (x -x1)p(x1); , x 

n 

A,x = L W,x (x - XJ )p (x1) PT (x1). 
f = l 

(11) 

It should be noted that EFG shape functions do not satisfy the Kronecker delta 
criterion: <I> I ( x) -::J bij. Therefore they are not interpolants and the name approximation 
is used. So uh ( x 1) -::J u1, the nodal parameters u1 are not t he nodal values of uh (x r). The 
approximation to th~ displacement at the 1th node depends on the nodal parameter u1 as 
well as the nodal parameters u1 through U n corresponding to all other nodes within the 
domain of influencE of node I . This property makes the imposition of essential boundary 
conditions more co)nplicated than with finite elements [6]. We will use Penalty method to 
enforce the essentinl boundary conditions. · 
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Fig. 2. Shape of the support domain Fig. 3. Shape of the weight function 
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3. CHOICE OF SUPPORT DOMAIN AND WEIGHT FUNCTION 

There is no difference if circular or rectangular support domains are used in the EFG 
method [1, 2, 4]. The following implementations is made with circular. The weight function 
plays an important role for the EFG method (see Figs. 2, 3). A proper constructed weight 
function will give unique solutions when we determine the coefficient vector a. Weight 
functions need to have the following properties: 

- Compact support, i.e. zero outside the support domain. 
- Adopt positive values for all points in the support domain 
- Have its maximum value at the current point and decrease when moving outwards. 
There are many kinds of functions satisfying these properties, but the one used in 

this paper is a quartic spline function [3, 4, 6] 

Wj(r) = 

with: 

2 2 3 - - 4r + 4r - when 3 J J 

4 2 4 3 
- - 4r + 4r · - -r when 3 J J 3 J 

0 when 

llx - Xjll 
rj = -d---, 

maxCj 

1 
r· < -

J - 2 

1 
- < r < 1 2 - J -

(12) 

r > 1 J -

(13) 

where dmax is a scaling parameter which is typically 2 -;- 4 [4] for a static analysis. The 
distance Cj is determined by searching enough neighbor nodes for A to be regular. Referring 
to ( 6), it can easily be seen that the matrix A will be singular if a given node has only one 
neighbor in its domain of influence. In one dimension with a linear basis, the distance Cj 

at a node is the maximum distance to the nearest neighbor, insuring that each node will 
have at least two neighbors in its domain of influence. 

4. WEAK FORM FOR SOLID MECHANICS 

The partial differential equation that controls solid mechanics for 2-D can be stated 
as: 

RT a+ b = 0. (14) 

This equation applies for all points in the problem domain n. For the essential 
boundary, Su , we have a prescribed displacement 

u = u. (15) 

For the natural boundary, St, we have a prescribed force given by the traction vector 

l = S(J"n, (16) 
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where n is the normal vector to the boundary and Sa is the stress tensor. The matrices in 
the formulation are given by 

R= 
[ 

(J xx l [ bx ] 
(J = (J yy ; b = by ; 

<Jxy (17) 

[ ~: ] ; Sa = [ <Jxx <Jxy ] 
<Jyx <Jyy 

u= 

R: operator working on the stress; <J: stress matrix; b: forces working on the body; u : 
displacement vector for a point ; n: normal vector to a boundary point ; Sa: stress tensor. 

This is the strong form of the problem. In general we can not solve t his equation 
analytically. This is why we need numerical methods like the finite clement method. In 
order to solve the problem we need the regularity of the function u. There are several 
methods for doing this, the one used in this report is a v::triational principle. We construct 
the lagrangian function L in solid mechanics 

..S=T-II+W, (18) 

where T is the kinetic energy, II is the elastic energy and W is the work done by the 
external forces. The components of the function L are calculated as 

T = ~ j pv7 udn (19) 

n 

II = ~ J ET <JdD (20) 

n 

W = J uTbdD + J uTtdSt (21) 

D St 

5. PENALTY METHOD 

The penalty method is another alternative to impose essential boundary conditions, 
which was first proposed by [2]. A detailed illustration is given by Zhu for the case of 
2D linear elastostatics. Consider the same problem. This will lead to a modified Lagrange 
function [3] - al T L = L + 2, (u - u) (u - u) dSu, (22) 

where a= [ a 1 a2 ak J is a diagonal matrix of penalty factors, with k = 2 for 2D 
cases and k = 3 for 3D cases. The penalty factor ai can be function of coordinates and 
they can be different from each other. This report prefers the following simple method for 
determining the penalty facter: 

a = 102 
- 1013 x max (diagonal elements in the stiffness matrix). 

It has also been suggested to use a = 102 - 108 x Young's modulus matrix 
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Taking 8L = 0, we have the following algebraic equat ions 

(K-aKU)U=J-r, 

KIJ = J Bf DBJdD; 

rl 

fr= J <f?TbdD + J <f?TtdSt ; 

rl Si 

K'/J = J NrSNJdSu; ft = j NrSudSu. 

Su Su 

S = [ Sx 0 J ; Si = { 1. .if Ui E Su . 
0 Sy 0 if Ui </.- Su, i = 1, 2 

General algorithm for EFG with Gauss integration is following. 

PRE PROCESSING 
, Generate nodes 
, Generate integration points and cells 
, Set vmial)les rn1d constants 

MAIN PROGRAM 
for i = 1 .· ti ll integration points 

for/ = 1 .· all nodes 
if J E suppori dorm1in for i 

,.. Cci lculate sl1ape function 
end if 

end for 
, Calculate lornl system matrices K,G,q and F 
, Assemble to global system matrices 

end for 
, Solve equations svstem 

POST PROCESSING 
for i = 1 . number of output points 

, Determine nodes inside support clornain to I. 
, Calculate real d isplacement 
, Compute stn1 ins nnd stresses for 1. 

end for 

6. NUMERICAL EXAMPLE 
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(23) 

(24) 

The global error indicator , the L2-norm error in displacement, is defined by [5] 

{,~, { ( uj"m - uj"cr )' + ( v';um - vj"""') '}} '/' 
L2= ~~~~~~~~~~~~~~~~~~~~ 

{,~, { (urd)' + (v;xadn r (25) 
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The L2-norm error is a better measure of the overall performance of a numerical 
model than the conventional relative error for a single point. In this work, we will use the 
global L2-norm error as a measure of the overall performance of the numerical method. 

Consider a plate with a central circular hole subjected to a unidirectional tensile 
load in the x direction as shown in Fig. 4. Due to symmetry, only the upper right quadrant 
of the plate is modelled (see, Fig. 5). Symmetry conditions are imposed on the left and 
bottom edges. The inner boundary is traction free. Plane strain conditions arc assumed 

q 

with: 

- The material constants: E = 2.1011 N/m2 

- The unidirectional tensile load: q = 1 N/m 
- The demension of the plate: L x L = 10 x 10 m; d = 2 m 
- v = 0.3 

y 

y 

q 

x 
q 

1. l ~I 
Fig. 4. A 2D solid with a central hole subjected Fig. 5. One quarter model of plate 
to a unidirectional tensile load 

The analytical solution for the stresses of an infinite plate [6] is of the form 

ax = [ 1 - ;: ( ~ cos 28 + cos 48) + ~ ;: cos 48 J q 

ay = [- a
2 

(~cos 28 - cos48) - ~ a
4 

cos48] q 
r 2 2 2 r4 

a xy = [- ;: ( ~ sin 28 + sin 48) + ~ ;: sin 48] q 

Ur = 4~ { r ( k ; 
1 

+cos 28) + :
2 

[1 + (1 + k) cos 28] - ;: cos 28} 

ue = 4~ [ ( 1 - k) ~ - r - ;: ] sin 28 

E 
G = 2 (1 + v)' k = 3- 4v for az = 0 

x 

(26) 

(27) 

(28) 

where (r, 8) are the polar coordinates and 8 is measured counterclockwise from the positive 
x axis. The analytical results are employed as the reference results for comparison [6]. 
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The arrangement of nodes and quadrature cells is shown in Figure 6. In each quad
rature cell , 4 x 4 Gauss points are used. The solutions are obtained using a quadratic basic 
function with cubic spline weight funct ion. 

Table 1. Comparison stress ax at (0, r) 

Influence Stresses O'x at (O,r) Stresses O'x at (O,r) of Error 
radius ri of exact solution EFG solution (%) 

1.0 3.0 2.7342 8.8590 
1.1 3.0 3.0843 2.8094 
1.2 3.0 3.0572 1.9062 
1.3 3.0 3.0465 1.5507 
1.4 3.0 3.0388 1.2932 
1.5 3.0 3.0268 0.8950 
1.6 3.0 3.0225 0.7505 
1.7 3.0 3.0438 1.4604 
1.8 3.0 3.0826 2. 7543 
1.9 3.0 3.1114 3.7135 
2.0 3.0 3.1205 4.0154 
2.1 3.0 3.1243 4.1421 

Fig. 6. Nodal arrangement Fig. 'l. Mesh used for integration 

Fig . 8. Quadrature cells and Gauss points 

Fig. 10 presents the distribution of normal stress ux along x = 0 of the 7 x 10-node 
model with dimension of the influence domain ri = 1.2 and ri = 1.6. 
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Fig. 9. Comparison between the exact and 
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Fig. 10. Comparison between the exact and 
EFG solution for O'x at x = 0 with influence 
radius r i = (1.2 , 1.6) 

Figure 11 presents the distribution of normal stress er x along x = 0 of the 7 x 10-node 
model with number of nodes 7 x 10 and 12 x 14. 

Fig. 12 shows the deformed meshless model, using spline weight function and linear 
basis. 

Fig. 13 and 14 show the contour plots of cr.r stress distribution from the EFG method 

Comrors::in between IM e>JCi a"'d EFG sc Ltion !or a( at\:·) 

' 9 Q q. Ct. o. o. o. 351 ~ E~aci 

7110 
12-, '.! 

' • Q Q q. ca. 0. o. o. 

c5 • 9 0 G Q Q,. 0. 0. o. o. 
~ •900 Q " 0. o. 0• %, ' 0. o. 

9000QQ~o. 0. O• o. . 5 A> 99900 •c.a. 0. 0.. O• 
'~~ 0• 

l')k.-t; -,·,.. 

~~: 
O+ O• 

"':> -r,.. ~ >- "" 
o. 0• 

°' Oo °" O+ O• 
0• 

~ Oo O+ 0• 0• 
05 °" 0• 0• O• 

1 1 5 2.: 3 3.5 45 g: 0. °" 
Postion y (m) o+ °" O+ 0• 0• 0• O• 

Fig. 11. Comparison between the exact and Fig. 12. Displacement of nodes with EFG 
EFG solution for at with number of nodes method 
(7 x 10, 12 x 14) 

.The figure shows that , as the number of the node increases, the results obtained are 
·closer to the analytical solution 

Our numerical examination of the relationship between the density of field nodes and 
background mesh for 2D stress analysis problem indicates that: the ratio of the integration 
points to the field nodes is around 3 to 9. Accuracy of the stress field can be improved 
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EFG Cix 

1 5 1.5 

Fig. 13. EFG stress field ax Fig . 14. Analytical stress field 

efficiently by increasing the density of the field nodes, together with sufficient density of 
the background mesh. 

The solution by the EFG method seems accurc.tte enougli. and converges to the 
analytical solution when the number of nodes approaches infinity. 

7. CONCLUSION AND DISCUSSION 

An element free Galer kin method was implemented in Matlab for linear statics prob
lem. The solution by this method seems accurate enough and converge to the analytical 
solution when the number of nodes approaches infinity. 

The main advantage of the penalty method is that it leads to a positive definited 
and banded stiffness matrix. The stiffness matrix also has a smaller dimension than those 
using Lagrangian multipliers, that improves computational efficiency. Numerical examples 
have demonstrated the performance of the penalty method. 

The EFG method is flexible with respect to the construction of the shape functions. 
Therefore, it is possible to improve the accuracy of the method by the choice of weight 
functions, by the selection of the support of EFG nodes (given by the weight function 
definition). The support radius of approximately 3.9 of node spacings was discovered to 
yield good results for all the problems studied. 

REFERENCES 

[1] T. Belystchko, Y. Krongauz and D. Ogan and M. Fleming and P. Krysl , Meshlcss meth
ods: An overview and recent developments, International Journal for Numerical Methods in 
Engineering, 1996. 

[2] T. Belytschko, Y. Y. Lu and G. Gu, Element free Galerkin method, International Journal 
for Numerical Methods in Engineering 37 (1994) 229-256. 

[3] G. R. Liu , Y. T. Gu, Y. L. Wu, A Meshfree Weak-Strong-form (MWS) Method, International 
Workshop on MeshFree Methods , 2003. 

[4] G. R. Liu, Mesh.free Methods, Moving beyond the Finite Element Method, CRC Press: Boca 
Raton, 2003. 

[5] H.-J. Chung, T. Belytschko, An Error Estimate In The EFG Method. Computational Me
chanics 21 (1998) 91-100 Springer-Verlag. 



132 Nguyen Hoai Son 

[6] J. Dolbow, T. Belytschko, Numerical Integration of The Galerkin Weak Form in Meshfree 
Methods, Computational Mechanics 23 (1999) 219-230 (Springer-Verlag). 

Received June 16, 2009 

MQT HI~U Ll}C HOA DIEU KI~N BIEN CHiNH BANG HAM PRAT 
TRONG PHVdNG PHAP PHAN TV Tl} DO GALERKIN 

M()t xtip xi kh6ng lu6i trong phan tich bai toan dan hli hai chi~u bilng phuong phap 
ph§.n tU: tv do Galerkin dli<!C gi6i thi~u. Phuong phap nay dva tren xtip Xl blnh phliclng 
t6i thi~u d()ng. Ham chuy~n vi u(x) du'<;1c xtip xi theo MLS thanh uh (x). Xtip xi nay du<;Jc 
xay dvng bilng vi~c xlr dlfng cac ham trQng s6 du6i d:;i,ng ham da thU'c eel sd. Vi~c chia 
nhO gi6ng nhu phuong phap ph§.n tU' hU'u h:;i,n dong vai tro lu6i n~n d~ thvc hi~n cac tich 
phan s6. Tuy nhien cac di~u ki~n bien chinh phai du<;Jc hi~u lvc h6a bilng phuong phap 
ham ph:;i,t. K~t qua thu du<;Jc trong phan tich EFG cho bai toan hai chi~u v6i ham tr9ng 
s6 khac nhau du'<;1c so sanh v6i cac k~t qua clla phliclng phap ph§.n tl'.r hU'u h:;i,n va phliclng 
phap chinh xac. 


