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COMBINED MOTION OF RESERVOIR WITH LIQUID 
FOR ANGULAR MOTIONS OF CARRYING BODY 

Oleg S. Limarchenko 
The Taras Shevchenko Kiev National University, Ukraine 

Abstract. vVe consider peculiarities of the modeling of wave motion of ideal liquid in a 
reservoir, which performs inclined motions . For description of behavior of the system we 
use variational formulation of the problem on the basis of the Hamilton-Ostrogradskiy 
variational principle with preliminary satisfying all kinematic boundary conditions of 
the problem. It is shown that this approach makes it possible to reduce considerably 
the number of unknowns of the problem and reduce it description only to parameters 
of motion of a liquid free surface and parameters of motion of a carrying body. The 
constructed nonlinear discrete model of t he system was applied for investigation of motion 
of a reservoir with liquid on pendulum suspension, on taking into account liquid outflow 
and other problems, which have theoretical and applied m eaning. 

1. INTRODUCTION 

It is known that problems about combined motion of reservoirs with liquid represent 
significant part of investigations in the field of wave motions of liquid, which have great 
theoretical and applied significance. Theoretically this problem is especially complicated 
and important in the case, when liquid partially fills empty of a rigid body. Investigations 
of such types of problems by theoretical and experimental methods are performed during 
several centuries. It is interesting that Relay. Faraday and Ostrogradskiy [2, 14, 16] were 
pioneers in investigation of such problems. Special theoretical and applied interest to 
these problems appeared because of development of rocket engineering. Investigations of 
50-s made it possible to develop linear and nonlinear theories of motion of such systems. 
Mainly the case of given translational motion of carrying body was under investigation. 
However, in the case when carrying body performs angular (inclined) motions the number 
of publications is very small [l, 3, 5, 8, 15, 17, 18], especially in the case when combined 
motion of carrying body and li4uid with a free surface is investigated. In publications 
of N.E. Zhukovskiy [5] was created fundamentals of the theory of motion of rigid bodies 
with empties completely filled by ideal incompressible liquid, which performs irrotational 
motion. Attempts to generalize these results in the case of motion of liquid with a free 
surface result in very awkward and hard for investigation mathematical problems. The 
problem becomes more complicated in the case of nonlinear statement. Importance of 
such problems in applied aspect is caused by the fact that in the case of great relative 
mass of liquid its wave motion can influence considerably on dynamics of transport vehicle 
(carrying body) . 
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In publications of V. V. Roumyantsev, G. S. Narimanov, I. A. 
Lukovskiy, L. V. Dokuchaev [9 , 12, 13] motion equations for nonlinear model of reser­
voirs with ideal liquid with a free surface in the case, when carrying body performs not 
only translational but rotational motion, were obtained. At the same time realization of 
these algorithms on numerical examples until now was not performed. Complexities of 
such numerical realization are conditioned by the property t hat on angular motions of t he 
carrying body it is necessary to introduce into consideration supplementary vector poten­
tial of velocities 0 (i.e., three scalar potentials) along with before introduced one scalar 
potential of velocities cp . Therewith expressions for this vector potential are obtained more 
complicated than for cp . Total volume of calculations increases considerably. 

In the present article we suggest to realize modeling of dynamics of the system 
body- liquid with a free surface on t he basis of the method, which uses the Hamilton­
Ostrigradskiy variational principle with preliminary analytical elimination of all kinematic 
boundary conditions of the problem. Fundamentals of this method were stated in publi­
cations [7, 8]. Main attention is focused on questions of obtaining the model of minimal 
dimensionality and its application to a number of applied problems, in which interaction 
of angular motions of the carrying body and wave motion of liquid is determinative. 

2. OBJECT OF INVESTIGATION AND MATHEMATICAL 
STATEMENT OF THE PROBLEM 

Let us consider a cylindrical reservoir of arbitrary cross-section with absolutely rigid 
walls, which is partially filled by ideal homogeneous liquid subj ected to capillary forces. 

,,,.XI x 2 

Fig. 1. Reference frames 

We introduce conventionally immovable reference frame 01X1X2X3, the reference 
frame Oxyz , fixed with reservoir and the system OY1Y2Y3 with the origin at the point 
0, which axes are correspondingly parallel to axes of the system 01X1X2X3 (Figure 1). 
The point 0 is selected at certain internal point of initially unperturbed free surface of 
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liquid (at the center of unperturbed free surface of liquid , if it exists), and the axis Oz is 
directed towards external normal to unperturbed free surface. Motion of the point 0 in 
the reference frame 0 1X 1X2X3 is given by the radius-vector E(t), and rotational motion of 
the system Oxyz relative to 01X1X2X3 is given by three turn angles a 1, a 2, o:3. Here we 
define the angle 0:1 as turn angle of the system Oxyz relative to the axis OY1, the angle 
0:2 corresponds to rotation of the system relative to new position of the axis OY2, and 
0:3 corresponds to rotation of the system relative to new position of the axis OY3. Let us 
introduce into consideration unit vectors of the reference frame OY1Y2Y3, i. e., {:ii?, ffd, yj?} 
and for the reference frame Oxyz, i.e., {i° , if, zD} = {i1 , i2, i3}. 

Then, it is possible to represent the transition matrix as 

:--0 -;' h . Yi= eij'lj, were en= coso:2coso:3; e12 = -coso:2smo:3; 

e 13 = cos a1; e21 = cos a1 sin a3 + sin a1 sin a2 cos a3; 

e22 = cos a1 cos 0:3 - sin a1 sin a2 sin a3; e23 = - sin a1 cos a2; (1) 

e31 = sin 0:1 sin 0:3 - cos a1 sin a2 cos a3; 

e32 = sin a1 cos 0:3 - cos a1 sin a2 sin a3; e33 = cos a1 cos a2. 

Expressions for components of angular velocity w in the fixed reference frame will 
be (dot above variables denotes differentiation by time t) 

Wx = W1 = CY1COS0'.2 COS 0'.3 + CY2 sin 0:3; 

Wy = W2 = -CY1 COS 0'.2 sin 0'.3 + a3 COS 0:3; 

Wz = W3 = ci'.1 sina2 + a3. 

(2) 

Thus, the system of parameters Ei and O'.i with taking into account introduced 
angles (1) , (2) completely characterizes motion of reservoirs in conventionally immovable 
reference frame 01X1X2X3. 

For descript ion of motion of limited volume of liquid we introduce the following 
denotations. Let T be the domain occupied by liquid, S be the free surface of liquid, I; be 
the moisten surface of liquid, L be the contour of contact of three media gas-body-liquid. 
Here the absence of index in these denotations indicates that these denotations are used 
for perturbed volume, and the presence of the index "zero" corresponds to unperturbed 
volume of liquid. 

We assume that liquid at initial time instant was vortex-free, then taking into ac­
count its ideality and homogeneity for all following time instants motion of liquid will be 
potential. So, we introduce the function of velocity potential <P(r, t). Then, absolute Va 
and relative Vr velocities of motion of liquid particles will be 

- . vr = \7 <I> - w · r - E' 

(3) 

(4) 

Due to specificity of the considered problem, when the domain of liquid has a part 
of boundary, which is free and beforehand unknown, we introduce into consideration the 

? 

equation of A free surface 

z = ~(x, y, t) or z = ~(r, (), t). (5) 
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Potential of resolving of the equation of a free surface relative to z is predetermined by 
cylindric shape of empty of the rigid body. Here the first equation in ( 5) corresponds to 
the case of rectangular Cartesian coordinate system, and the second one corresponds to 
cylindrical coordinate system. The equation z = 0 defines unperturbed free surface of 
liquid S0 . 

According to publications [5, 13], for solving the mentioned class of problems it is 
convenient to represent the velocity potential <I> as 

<I> = 'Po + { · r + w . o, (6) 

here <p = 'Po+€· r, ris radius-vector of arbitrary point in fixed reference frame. Actually in 
the expression for t he velocity potential (6) the first addend corresponds namely to wave 
motion, the second one corresponds to connection of wave motion of liquid with transla­
tional motion of the reservoir, and the third one corresponds to connection of wave motion 
of liquid with rotational motion of the reservoir. It is seen from the relation (6) , that on in­
vestigation of rotat ional motion of the carrying body three new unknown scalar functions , 
i.e., components of 0 are introduced into consideration, for which in addition boundary 
value problems are formulated in more complicate form that for scalar component of the 
velocity potential <p. 

Mathematical formulation of the problem about motion of the system reservoir -
liquid with a free surface can be reduced to a system of dependencies, which represents 
requirements of kinematic character, dynamic equations and initial conditions. From the 
point of view of general properties of description of mechanical systems on the basis of 
the Hamilton-Ostrogradskiy principle it is necessary to consider kinematic conditions as 
mechanic constraints, which superimpose restrictions on variations of unknowns. Dynam­
ical boundary conditions here are obtained from the Hamilton- Ostrogradskiy principle 
as natural ones. For the investigated mechanical system we should consider kinematical 
requirements about: the condition of continuity of liquid flow in the domain T 

~(/) = o· ~o = o in T 
r ' ' 

(7) 

nonflowing conditions on the boundary of contact body - liquid I: with unit outer normal 
n 

o<po ,..., an ~ ~ -- = 0 on u· - = r · n on ) on I:+ So; (8) 

and nonflowing conditions through a free surface of liquid, obtained with taking into 
account (3), (4) 

0~ + v c [v 'Po + v ( w · o) - { - w x r] at 
O<po ~ ao . ( ~ ;:'\ I s = oz + w · oz - E2 - w x 1·J z on t:;· 

(9) 

Dynamic boundary conditions and equations of motion of the reservoir can be ob­
tained on the basis of the Hamilton- Ostrogradskiy variational principle with the Lagrange 
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1 J [ ~ ~ ( ~)] 2 
1 . 1 .. L =2p Vlp + V W · 0 dT + 2Mr(E) 2 

+ 2f:~sWiWj 
T 

- (Nlr + l'v11)gE 2 +pg( cos a.1 sin a.2 cos a.3 - sin a.1 sin a.3) 

x J rcose(~ +H) dS-pg(sina.1 cosa.3 + cosa.1 sina.2 sina.3) 

So 

x J rsine(~+H)dS-1pgcosa1cosa2 J eds 
~ ~ 

- (M1h1 + Mrhr) (1 - cos a.1 cos a.2) - J J J 1 + (V~) 2 dS 

So 

- J cos e1 j ~ dl + ft . E' + M . x. 
Lo 
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(10) 

In the relation (10) we used the following denotations: p is liquid density, g is free 
falling acceleration, H is filling level, l\;fr and M1 are the mass of reservoir and liquid, h1 
and hr are displacements of mass centers of liquid and reservoir relative t o the plane of 
unperturbed free surface of liquid S0 , J is surface tension on a free surface of liquid, e1 
is contact angle, I1i~s is inertia tensor of t he reservoir, determined relative to the point 0, 
F and M are main vector and main moment of external forces relative to the point 0, 
which act on reservoir (representations potentials of external forces and moments are con­
ventional), x = {a.1, a.2, a.3} is conventional representation of turn angles of the reservoir 
relative to immovable reference frame. 

The equations (7)-(9) relative to the variational principle 

(11) 

represent totality of kinematic constraints, which should be eliminated before solving the 
variational problem for efficient use of variat ional methods. 

3. CONSTRUCTION OF DECOMPOSITIONS OF DESIRED 
VARIABLES, WHICH HOLD ALL KINEMATIC CONSTRAINTS OF 

THE PROBLEM 

For efficient use of the Hamilton-Ostrogradskiy variational in principle it is necessary 
to construct representation of unknowns of the problem about motion of reservoir with 
iiquid with a free surface, which in advance hold kinematic boundary conditions (7)-(9). 
According to publications [6, 8, 11] we accept the following form to search solution of the 
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problem about motion of liquid, which partially fills movable reservoir 

(12) 
n 

(13) 

(14) 

Here 1/Jn(x, y) is a complete orthogonal system of functions in the domain So, which 
can be found from the solution of the Neumann boundary value problem with the param­
eter xn: 

(15) 

Here Lo is a contour of contact of the unperturbed free surface of liquid S 0 with 
reservoir walls L;. We note that the equation in the boundary value problem (15) is the 
consequence of the condition (7), while the boundary condition is the consequence of the 
relation (8). The vector-function D0 represents the Stokes-Zhukovskiy potential, which is 
obtained as the solution of the Neumann problem for the Laplace equation 

An 8Do ~ ~ S " 
L...l.HO = O; an = r x n on 0 + L.J. 

This Neumann boundary problem was investigated in details in publications [1, 9, 13, 15], 
wherethe algorithms of solving for different shapes of empties were constructed. 

The adduced representation of variables (12)-(14) in virtue of selection of the func­
tion 1/Jk holds identically the continuity equation (7) and nonflowing conditions (8). De­
compositions (12)-(14) of variables ~'<po and Do coincides by form with solution of the 
problem about motion of bounded volume of liquid in movable reservoir obtaine within 
the framework of linear statement. So, actually according to the present approach we pro­
pose to search solution of nonlinear problem about combined motion of a reservoir with 
liquid in the form of decompositions by eigenfunctions of the linear problem. 

The most complicated part in construction of independent (from the point of view of 
analytical mechanics) decompositions of variables~, <po and Do is satisfying the kinematical 
boundary condition on a free surface of liquid (9). The problem of elimination of kinematic 
boundary condition on a free surface of liquid is typical for investigation of problems of 
dynamics of bodies with liquid and represents a component part of practically all existing 
methods used for solving problems of this class, especially methods based on use of velocity 
potential in analytical form. Such problem may be solved on the basis of the Fourier 
method [13], the Galerkin method [7, 8] and variational method [9, 18, 19] with application 
fundamentals of nonlinear mechanics. Here the problem about elimination of kinematic 
boundary condition on a free surface may be solved both independently of investigation of 
dynamical problem [7, 8, 13 , 19] and as a component part of its solving in the case when 
kinematical boundary condition is natural for variational statement of the problem [9, 
19] (use the variational statement of the problem based on the Bateman principle). Most 
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efficiently this problem is solved in the case when coordinate functions are orthogonal and 
hold kinematical boundary conditions on moisten boundary. This fact indicates once more 
on expedience of usage of normal modes (obtained on the basis of solving of correspondent 
linear problems) as coordinate functions. 

Let us consider the technique of elimination of kinematic boundary condition on a 
free surface, which is based on the application of the Galerkin method coupled with prin­
ciples of nonlinear mechanics. In order to eliminate approximately kinematical boundary 
condition on a free surface of liquid it is necessary to select a set of basic parameters of 
the system, by which independent parameters will be further expressed. As it follows from 
theorem, vortex-free motion of ideal incompressible liquid is completely defined by motion 
of its boundaries, the number of degrees of freedom of the whole volume of liquid with a 
free surface is equal to the number of degrees of freedom of namely free surface. Hence, it 
is expedient to select the variable ~ as the basic parameter of the system, which charac­
terizes motion of liquid with a free surface, while variables cp and n will be considered as 
dependent ones. Selection of independent parameters with application of decompositions 
(12)-(14) is realized in the following way: the system of amplitude parameters of decom­
position of perturbations of a free surface into series by normal modes of liquid with a 
free surface is considered as independent, while parameters of decomposition into series of 
the scalar cp and vector n components of velocity potential bi and ih correspondingly are 
considered as dependent on parameters ai. Here the system of amplitude parameters ai 

together with parameters of motion of carrying body exhaustively characterizes kinematics 
of liquid with a free surface. 

For determination of definite form of dependency of bi and ih on ak we make use 
of the kinematical boundary condition on a free surface (9). Taking into account that 
kinematical boundary condition must hold for arbitrary laws of motion of reservoir, the 
condition (9) disintegrates into the following four conditions on a free surface S, i.e., for 
z=~ 

(16) 

(17) 

Further we denote by Ok components of the vector component of velocity potential 
0, L(i)(f, g) are differential operators (i = 0, 1, 2, 3). Thus, kinematical boundary condition 
from the point of view of mechanical parameters ai represents one nonholonomic (16) and 
three holonomic (17) mechanical constraints. 

Let us give additional comments about potential of decomposit ion of the condition 
(9) into four conditions (16), (17), since obtaining four new conditions from one scalar 
condition looks unusual. On the one hand, as it was mentioned above, from the requirement 
of realization of the condition for arbitrary laws of reservoir motion (the property that the 
forrn of kinematic condition for liquid should not depend on the law of motion of both 
liquid and reservoir follows from definition of kinematical constraint) it follows that by 
considering in turn nonzero components w, as well as the case when w = 0 we obtain 
four conditions for realization of the mentioned property of kinematical constraint. We 
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can obtain the same result if we take into account that variations of variables, which 
characterize motion of liquid, and variables, which characterize motion of reservoir. are 
independent. Then if we vary kinematical boundary condition on a free surface, then with 
taking into account independence of of variations it disintegrates into several relations. 
Similar technique was used in publications of A.I. Lourie [10]. On the other hand, as it 
was shown above, in the considered case motion of liquid is completely defined by motion 
of its boundaries. Therefore, variables <p and Dk depend only on one variable~· However, 
one relation (9) enables determination of only one dependence, therefore, three other 
dependencies may be selected arbitrary. It is expedient to select them from considerations 
of maximal simplification of the form of these dependencies. Namely the conditions (17) 
represent the form, which provides disintegration of conditions for Dk as independent ones. 

Further procedure of determination of dependence of parameters bi and iii, on ampli­
tude parameters ai is done on the basis of the Galer kin method. To this end we substitute 
decompositions (12)- (14) into differential operators £(i)(f, g), multiply by the system of 
functions ?/Jk and integrate over the domain So. 

J L(i) (~, ~ok) ls?/JkdS = 0 i = 0, 1, 2, 3 (18) 
H k = 1, 2, .... 

So 

Here immediate determination of values of differential operators £(i) on unknown free 
surface of liquid S, i.e., for z = ~ is realized by means of projection of the given operator 
onto the surface S0 with application of perturbation technique. Moreover, we shall look 
for dependence of values bi and ifj on ak as 

bi= b?) + b~2 ) + bp) + b~4 ); iii, = ~l) + ~Z) + ~3)' (19) 

where numerical indexes in brackets correspond to orders of smallness of values 
relative to ai. As the result by separate equating terms of the same order of smallness we 
can transform the desired dependencies to more convenient view 

(20) 
n,m n,mJ n,m,l,k 

(21) 
j j ,k j ,k ,l 

The coefficients, which enter the relations (20), (21), represent quadratures of func­
tions ?/Ji and 00 computed over the domain So or of certain expressions, which contains 
these quadratures. We note that dependencies of the coefficients bi and i]p on ai and aj are 
obtained in analytical form accurate to values, which guarantee obtaining motion equa­
tions accurate to the third order of smallness inclusively for arbitrary number of amplitude 
parameters. This makes it possible to suppose that accurate to the third order of smallness 
kinematical boundary condition will hold for arbitrary values of ai and, since we found 
dependencies of coefficients of decomposition into series of values <p and n by coefficients 
of decomposition of~' then in that way within the framework of accepted restrictions on 
order of ent~ring values we ascertained approximate dependencies of functions <p and n 
on~· 
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Thus, on the basis of use of decompositions of desirable variables by solution of the 
correspondent eigenvalue linear problem and preliminary satisfying kinematical boundary 
condition on a free surface of liquid according to stated technique we construct decompo­
sitions of desirable variables, which hold identically requirements of flow continuity in the 
domain T (7), kinematical boundary conditions on rigid boundary of the domain T (8) and 
accurate to values of the third order the kinematical boundary condition on a free surface 
of liquid (9). We note that according to technique of the present paper we can satisfy 
kinematical boundary condition on a free surface of liquid with arbitrary given accuracy. 

Taking into account a fact of satisfying kinematical constraints the Lagrange func­
tion (10) now corresponds to a free system, and the system of parameters ai, ai, Ei is the 
system of independent variables, which completely characterizes behavior of the mechan­
ical system body - liquid with a free surface. 

4. NONLINEAR DISCRETE MODEL OF DYNAMICS OF COMBINED 
MOTION OF A BODY WITH LIQUID WITH A FREE SURFACE 

Let us substitute decompositions (12)-(14) into the Lagrange function (10). Since 
spatial variables are separated and the form of their entering into these decompositions is 
defined uniquely, we can do integration by spatial variables in all integrals over domains T , 

Sand L. Here determination of integrals over surface Sand contour Lis elementary, while 
integration over movable domain should be realize according to the following algorithm. 
Since the considered domain is cylindrical , then for arbitrary integrand 

i; 

J FdT = J J FrdrdBdz . 
r So - H 

Determination of integrals with variable upper limit~ is done on the basis on perturbation 
methods according to the formula 

bH b 

j J(z) dz= j f(z) dz+ ~f(b) + 1e J'(b) + ~e J"(b) + 2
1

4 ~4 J"'(b) + .. . , (22) 

a a 

i; 

which is obtained from decomposition of the function F(~) = J f( z ) dz into Taylor series 
- H 

in a vicinity of~= 0 with assumption of smallness of the value ~· 
After integration over spatial variables (we omit intermediate derivations) accurate 

to values of fourth order we obtain the transformed Lagrange function, which corresponds 
to discrete model of the considered system 

3 

+ 1p L WpWs (1f:s + A;s + L aiE;si + ~ aiajE;sij) 
p ,s= l i i ,J 
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+ ~P twp( L,aiE;; + I:,aiajE;;ij + 2=aiajE;0k) 
p-1 i i ,J i,; ,k 

(23) 
- (Mr+ M1)9Ez +pg( cos 0:1sin0:2 cos 0:3-sin 0:1sin0:3) 

x ( L aio:i + Hlc) - pg(sin 0:1 cos 0:3 +cos a1sin0:2 sin u3) 
i 

x ( L,aio:f + Hzs) - ~pgcoso:1 coso:2 L,a7Ni - acose1 
i i 

We note that in the relation (23) we used the assumption about smallness of angles 
of inclination of the reservoir, and, therefore, angular velocities too. 

The Lagrange equations of the second kind may be obtained from the transformed 
Lagrange function of a free system. 

The system of motion equations in parameters ai, Ei, o:i is supplemented by the 
generalized dissipative forces , calculated on the basis of results of the book [3]. Here in 
the equations values Ei are considered finite, ai and ai are kept accurate to values of the 
third order inclusively. The system consists of N + 6 equations of the second order, where 
N is the number of taken into account normal modes of liquid. This system of equations 
can be considered as discrete model of the system body - liquid with a free surface. 

Significant peculiarity of the constructed algorithm consists in the property that 
the accepted approach in contrast to other methods makes it possible to obtain nonlinear 
discrete model of mechanical system of minimal dimension, i.e. , its dimension coincides 
with the number of degrees of freedom of mechanical system, if we understand as the 
number of degrees of freedom for liquid with a free surface the number of taken into 
account normal modes. We recall that all these normal modes according to definition do 
not violate constraints, superimposed on the system, and there independency is provided 
by linear independence of the system of functions , which describes forms of motion of a 
free surface of liquid. 
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In the generalized form the system motion equations can be represented as 

N N+3 N+6 

LPrnan + L Prnfn-N + L PrnCxn-N-3 =qr, r = 1, N + 6, (24) 
n = l n=N+l n=N+4 

where Prn is a quadratic matrix, qr is a vector of N + 6 dimension, whose elements depend 
on t , ai, ai, Ei, ti, ai , ai (explicit dependence of the matrix Prn on t is observed only in the 
case of liquid outflow from reservoir). The essential peculiarity of the resolving system of 
ordinary differential equations is reflected in motion equations (24), namely, this system 
is linear relative to the second derivatives of unknown values. This enables potential of 
organization of computational process , for which on every step of numerical integration 
the system (24) is transformed numerically to the Cauchy form and later by means of the 
Runge-Kutta method integration in time is done. Here on the stage of transformation of 
the system to normal Cauchy form order of derivatives is reduced by means of introduction 
of the generalized velocities ai as new equitable variables along with amplitude parameters 
ai. However , it is necessary to note that in spite of dimension doubling further it is sufficient 
to make calculations with matrixes of N + 6 dimension, but not with 2(N + 6) , which is 
predetermined by special form of the resolving matrix. 

In the general case the system of resolving equations (24) must have infinite dimen­
sion. However , there are several physical premises, which enable restriction of consideration 
of a finite number of normal modes of liquid oscillation. As results of experimental works 
show in majority of practically significant cases only several first normal modes of oscil­
lations are disturbed considerably. This is caused by the property that higher harmonics 
in real time are strongly damped due to manifestation of viscosity. Simultaneously these 
amplitudes are considerably bounded because of specific selective action of capillary forces 
[8]. Certain theoretical results about fundamental potential of reduction of the resolving 
system of ordinary differential equation were obtained in publications [8, 9, 12, 13] . Results 
of experimental publications can serve also as strong background for a number of simpli­
fications of mathematical model of the system body - liquid, which are in their turn are 
not fundamental for reflection of basic properties of mechanical model of the investigated 
problem. 

Let us introduce in the system conventional partition of normal modes of liquid in 
classes according to degrees of their influence on occurring processes. We include into the 
first group normal modes of liquid, which predominantly effect on formation of mechanical 
processes in the system. Their amplitudes are kept in resolving equations accurate to values 
of the third order of smallness. We relate those normal modes, which first of all introduce 
qualitative but not quantitative changes to the second group. In most cases these are 
axisymmetric normal modes , which further predetermine dissymmetry of wave profiles on 
a free surface of liquid and manifestation of different internal nonlinear constraints. It is 
expedient to keep their amplitudes accurate to values of the second order of smallness. We 
include into the third group normal modes, which must provide sufficient steepness of wave 
profiles on a free surface of liquid, i.e., higher harmonics of spectrum. Such inclusion of 
higher harmonics is especially significant on investigation of transient modes of motion of 
bodies with liquid. It is sufficient to study amplitudes of such modes accurate to values of 
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the first order of smallness. The described conventional separation of oscillation modes on 
classes should be done in every definite case on the basis of analysis of physical properties 
of the system body - liquid and character of excitation of its motion. However, in most cases 
such separation can be done only by frequencies of normal modes (distribution according to 
increase of frequencies). For bodies, which have no axis symmetry, it is necessary to include 
into the number of modes studied in nonlinear statement normal modes for every of main 
directions of cross-section of the reservoir independently of relation of their frequencies. 

The realized on the basis of experimental and some theoretical publication separa­
tion of normal modes into classes makes it possible to limit our consideration by finite 
number of normal nodes (bases function), reduce the number of subject to determination 
quadratures and simplify considerably computation of multiple sums. The accepted re­
strictions and assumptions in construction of the model reflect real physical properties of 
the systems, which are manifested in practical problems of motion of bodies with liquid in 
the domain of manifestation of nonlinear effects. Neglect or coarse considering of damp­
ing makes it possible to consider the present model acceptable first of all for analysis of 
fast processes and for processes, which occur during several (5-8) periods of oscillations 
by the first normal mode, when mostly inertial forces are manifested, while influence of 
dissipation for low-viscous liquids can be either neglected or considered integrally. 

5. MODELLING OF BEHAVIOR OF THE 
SYSTEM RESERVOIR - LIQUID 

On investigation of inclined motion of reservoir with liquid with a free surface three 
classes of problems were considered, namely, motion of the system on pendulum support; 
motion of the system under the presence of outflowing and mode of abrupt switching of 
thrust of main engine of rocket with liquid fuel. We investigated characteristics of wave 
motion of liquid, field of pressure, parameters of motion of the reservoir , characteristics 
of force and moment interaction of liquid with reservoir walls. In all cases we accept the 
following parameters of the mathematical model, namely, we consider 12 normal modes 
of liquid oscillation, three first of which were studied according to the theory of the third 
order, three consequent ones were studied by the theory of second order, and the rest ones 
were studied within the linear theory. 

For investigation of character of influence of rotational motion of reservoir on wave 
motion of liquid in reservoir we considered four problems about motion of the system 
body - liquid, which origins after initial perturbation of a free surface of liquid by the 
first normal mode a 1 (0) = 0.3R. Here we consider the following variants, namely, reservoir 
performs translation motion l = oo; lengths of pendulum support is l = 5R; l = R; l = 0. 

Figure 2 shows law of variation in time of inclination angle of the reservoir (curves 
in figure are enumerated according to the mentioned variants). We ascertained that os­
cillations of a free surface of liquid by the first normal mode and angular oscillations of 
the reservoir occur in antiphase, in the process of oscillations nonlinear character of devel­
oped processes is manifested considerably, which results in nonharmonic law of variation 
in time of rotation angle of the reservoir as early as in vicinity of the third period of the 
system oscillations. In the case lo = -0.2R (curve 5) the reservoir performs aperiodic 
motion, which shows unstable character of the system motion for such a way of pendulum 
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suspension of the reservoir. We notice non-monotonic character of the dependence of the 
value of maximum deviation of the reservoir from vertical position on length of pendulum 
support. This indicates significance of account of resonant properties of component parts 
of the oscillatory system, namely, liquid with a free surface and reservoir with liquid filling 
on pendulum support. 

a 

0.1 

-o.os r­

~ 0.1 ~ -

-0.15 ]~--~-
0 1 2 3 4 t,c 

Fig. 2. Variation of inclination angle of the reservoir 

On analysis of numerical results we succeeded to discover interesting regularity in 
character of manifestation of nonlinear constraints in the system depending on length of 
pendulum support of the reservoir. It was ascertained that for initial stage of the system 
motion transversal translational motion of the reservoir promote greater manifestation of 
nonlinear constraints in the system reservoir - liquid with a free surface than inclination 
motion, for which mainly only the first antisymmetric normal mode of oscillation of liquid 
with a free surface is disturbed. 

On investigation of dynamics of the system reservoir - liquid there is potential of 
internal resonance between oscillations of a free surface of liquid and oscillations of phys­
ical pendulum with internal degrees of freedom, namely, the system reservoir with fixed 
point - liquid with a free surface. For certain relations between pendulum support length 
and levels of reservoir filling internal resonance between oscillations of liquid with a free 
surface and the reservoir with liquid as physical pendulum. We note that the considered 
internal resonance is observed for small enough levels of filling and small lengths of pen­
dulum support. For example, the first resonance is manifested for l = 0.72H. In a vicinity 
of such lengths of support exchange of energy between quasirigid motion of the system 
and wave motion of liquid becomes more complicated. 

On the basis of the given method we investigated numerically problems about devel­
opment of transient processes in the system body - liquid for impulse moment disturbance 
of motion. We consider the case when reservoir with liquid is suspended as physical pen­
dulum with center of support , which coincides with the center of unperturbed free surface 
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of liquid (l = 0). For numerical examples it was accepted R = Ho = 1 m ; Mr = 0.25M1 ; 
height of reservoir wall is H5 = 2R; thickness of lateral walls is 0.015 m; thickness of bot­
tom and cover of the reservoir is 0.006 m (these parameters were used for determination 
of components of inertia tensor of the reservoir). At start time constant moment acts on 
the reservoir in the form of tracking transversal force F = 10 applied at the point, which 
is for 0.2R lower the suspension center. Force action stops after passing time T = 1.5 s. 

0.3 
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-o.6 L-~- I 
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Fig. 3. Variation of turn angle of the reservoir 

MR I 
2.0 -

1 

1.5 r 

-0.5 

-0.1 L 

0 1 

r-1 

2 3 4 t,c 

Fig. 4. Variation of main moment of forces 

Laws of variation in time of t urn angle of the reservoir a relative to the axis Oy 
(curve 1) and angular velocity ci: (curve 2) are shown in Fig. 3. Results of numerical analysis 
test ify the presence of strong interaction of angular motion of a free surface of liquid, which 
is especially manifested on boost path of system motion. The presence of separate splashes 
in variation of angular velocity is caused by character of liquid entraining into the process 
of motion. For the purpose determination of character of force interaction of the reservoir 
with liquid we consider law of variation in time of the main moment MR of forces relative 
to suspension center of the reservoir (Figure 4). As it is seen from Fig. 4, in the process 
of liquid entraining in wave motion the value l\IIR can strongly vary in comparison with 
rotational motion of liquid coupled with the reservoir. Thus, on time interval before 0.35 s, 
which approximately corresponds to a quarter of period of oscillations for t he first normal 
mode, MR grows rapidly, after which variation of inclination angle of the reservoir and 
wave motion of liquid results in liquid motion in opposite direction (wave motion on a free 
surface of liquid) , which, in its turn, results in considerable decrease of of MR and ci: on 
the interval 0.35 - 0.36 s. Further, for time instant 0.74 s (approximately half period of 
oscillation of the first normal mode) new intense variation of waves on a free surface of 
liquid , that further predetermines increase of the value MR until time instant 1.2 s. Similar 
interaction of motion of a free surface of liquid and angular motion the reservoir , caused by 
variation of direction of motion of wave on a free surface, which corresponds to every of the 
considered normal mode ofliquid, is observed for consequent time instants too. However, on 
the stage of inertial motion such interaction becomes weaken gradually, which is evidence 
of installation of concordance, balance of wave motions of liquid and quasirigid angular 



Combined motion of reservoir with liquid for angular motions of carrying body 117 

motion of the system on the whole. On active stage, which according to its character 
represents transient process, system have no time to pass into such concordance. 

a,c 1 I 
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-0.2 r- -+ ~ ' ' I .. - 1 ' 

J - · 2 
-0.3 ~ 

-0.9 l . - 3 

0 2 3 4 5 t,c 
0 2 3 4 5 t,c 

Fig. 5. Variation of turn angle Fig. 6. Variation of angular velocity 
of the turn angle 

Since considerable group of problems is connected with liquid outflow, we consid­
ered an example of inclined oscillations of the reservoir on pendulum support under the 
presence of weak outflow H = Ho+ D.Ht. Here l = 0.5R, Ho = R, D.H = -0.1 s - 1 , 

Mr = O.lM1, H5 = l.5R, thikness of tank walls was accepted as before. a1(0) = 0.3R. 
Laws of variation in time of turn angle and its angular velocity are represented in Fig. 5 
anci Fig. 6 correspondingly (dash line describes the case without outflow). Results of mod­
eling show that influence of outflow in the case of inclined oscillations of the reservoir is 
more significant than in the case of translational motion of the carrying body, however, 
qualitative regularity of the process remains the same. 

The accepted model does not take into account action of reactive forces of the 
outflowing liquid. For more complete considering of all factors, which accompany liquid 
outflow from the moving reservoir, we take into account in motion equations reactive 
forces, which results in appearance of additional terms in motion equations. Let us denote 
these additions to the right-hand parts of motion equations by D.qi. Then 

M1 D.H [. ] 
D.qN+l = - Mr+ Mi H Ex - (l + H)wy ; 

M1 D.H [. ] 
D.qN+2 = - Mr+ Mi -H Ey + (l + H)wx ; 

M1 D.H 
D.qN+3 = - Mr+ M1 H Ez; 

M1 D.H {. . fJw2 . 8w1 
D.qN+3+r = H(Jps E 2 l Ex-;:;-:-(l + H) - Ey-;:;-:-(l + H) 

P res+ psi UCXr uCXr 

(
8w1 8w2 ) [( n2 1 2( 2)]} - fJ&rw1+ fJ&rw2 l+h1 + 4R l+o , p , s , r=l,2 , 3, 
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here o is ratio of radiuses of internal cylinder to the external one in the case of coaxial 
cylindrical empty. 

As it is seen from figures, account of reactive forces considerably influences variation 
of parameters of system motion. Here well-known physical experiment, namely, on liquid 
outflow from oscillation reservoir on pendulum support amplitude of quasirigid oscillations 
increases, was confirmed. 

Let us consider the problem about transient motion of a rocket during main engine 
thrust shutting off. Subsequent motion of a rocket occurs only under action of thrust of 
engines of orientation control (steering engines). If we denote thrust of the main engine by 
Fo , and thrust of engines of orientation control by Fp, then during main engine shutting 
of variation of longitudinal thrust occurs from Fo + Fp to Fp in rather small time interval. 
For example, in real practice variation of thrust occurs during 1-2 s approximately by 
linear law for magnitudes Fo = 4go(Mr + M1), Fp = O.lgo(Mr + M1). Here in some cases 
intense variation of engines thrust , which is named as thrust cutoff, results in abrupt 
turn of flying object or situations, when energy resources of executing modules of motion 
stabilization were insufficient for providing prescribed motion. Finally this results in failure 
or inaccurate realization of object functions. Experimental data makes it possible to state 
that on thrust cutoff the main mechanism, which lead to violation of desirable orientation 
of rocket , is formation of antisymmetric splash of liquid, which is accompanied by intense 
moment response of liquid. 

Starting from results of the publication [20], we can suppose that in the considered 
case with main engine thrust cutoff for variation of overload during 1-2 s we can neglect 
effects of liquid compressibility. Moreover, it is necessary note that on transition from the 
initial state (g = 4.lgo) to terminal one (g = O.lg0 ) effects, connected with capillary forces 
in tanks with great lateral direction (2-4 m) will be manifested negligibly. 

For problem statement it is important to specify initial state of liquid, which precede 
thrust cutoff. It is known that in the mode of stationary motion of the system rocket -
liquid - stabilization module under the presence of thrust in the form of tracking force 
small antisymmetric oscillations of liquid free surface take place. Further we assume that 
initial elevation of a free surface by antisymmetric normal mode is approximately equal to 
ai (0) = O. lR. typical situation, which precedes thrust cutoff, is shown in Fig. 7. Position of 
mass center of liquid (point C) creates certain eccentricity of mass in the system. Therefore, 
it is necessary to expect that tracking force according to its character of action will be 
equivalent to aggregate action of longitudinal force and certain moment, which depends 
on eccentricity of mass of the system. In Fig. 7 we show also law of variation of tracking 
force F(t) in time. 

The described situation was modeled on the basis of the developed algorithm. Here 
we accept the following numerical values of systems parameters, namely, Mr = 0.25.Mi ; 
H = R; H0 = 4R; R = 1.5; inertia tensor was determined for previously accepted values 
of walls thicknesses, we consider motion at weightlessness condition and for initial state of 
liquid we assume that a 1 (0) = a3 (0) = O.lR. Results of numerical modeling of excitation 
of a free surface of liquid are shown in Fig. 8. Numeration of curves corresponds to position 
of a free surface at different time instants 1 - 0 s; 2 - 0.2 s; 3 - 0.4 s; 4 - 0.6 s. 
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Fig. 7. Variation of tracking force Fig. 8. Excitation of free surface 

We can see from figure that tendency of increase of antisymmetric initial perturba­
tions of liquid is manifested and for time instant 0.6 s maximal splash of liquid forms with 
free surface of liquid lowering in reservoir center and raise near tank walls. Such phenom­
enon is called liquid "depression". As it is seen shape of a free surface for 0.6 s confirms 
significance of taking into account higher antisymmetric normal modes (we include into 
the model three first antisymmetric normal modes for every of main directions of motion). 
For time instant 0.6 s amplitudes of waves on a free surface reach about 0.5R and further 
for time instant t ~ 0. 7 certain effects of loss of stability of numerical procedures are 
manifested. 

For determination of influence of initial perturbations of liquid on future develop­
ment of in-tank processes for thrust cutoff we considered examples of pure axisymmctric 
initial perturbation of liquid and development of waves for different variants of antisym­
metric and axisymmetric excitations of a free surface. 

Results of numerical modeling show that in the axisymmetric case intense devel­
opment of axisymmetric oscillations occur, caused by the mechanism of development of 
parametric oscillations, when energy in the system conserves, while potential energy de­
crease in virtue of variation of longitudinal thrust. Here oscillations of a free surface develop 
stably for time interval, which exceeds 4 s. At the same time wave processes are developed 
in different way under the presence of antisymmetric initial perturbations. Here the value 
of initial antisymmetric elevations of a free surface on the whole influence negligibly on 
qualitative picture of development of processes during thrust cutoff, while in quantitative 
sense dependence of development of processes on initial elevations is determinative. We 
ascertained that on thrust cutoff wave processes on a free surface of liquid develop more 
intense than for constant thrust because of parametric mechanism. At the same time mo­
ment response of liquid for constant trust is greater than in the system with thrust cutoff, 
that is caused by the property that intensity of decrease of longitudinal overload is higher 
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than increase of wave generation for thrust cutoff. It was ascertained also that uncon­
trollable motion of the system for constant thrust will be unstable. Magnitude of initial 
antisymmetric elevation of liquid influences slightly on development of processes, while 
namely fact of presence of antisymmetric elevation install specific motion of liquid, which 
corresponds to antisymmetric depression and abrupt change of system orientation. 

Results of numerical modeling are evidence of the property that mechanism of force 
oscillations caused by initial mass eccentricity in the system will be determinative, while 
parametric mechanism is secondary. It is significant to note that on the whole influence of 
values of initial antisymmetric excitations on development of processes is insignificant, only 
their presence is decisive. The obtained results qualitatively and in some case quantitatively 
are agreed with experimental data. 

6. CONCLUSION 

On the basis of use of variational principles of mechanics and analytical elimina­
tion of all kinematical constraints we developed the method for construction of finite­
dimensional model of the system reservoir - liquid with a free surface, which is grounded 
on principles of modal decomposition. We obtain the system of minimal dimension for 
arbitrary number of normal modes (the number of unkr..owns is equal to the number of 
degrees of freedom). 

Peculiarities of development of dynamical processes for angular motion of the car­
rying body were studied, including the case of pendulum support of the system, which 
model certain modes of motion for bench-test. On investigation of the initial stage of 
development of transient process in the system reservoir - liquid it was ascertained that 
transverse translation excitations of t he reservoir provide greater perturbations of non­
linear constraints in the system that inclined motions, for which antisymmetric modes 
(including higher ones) are excited greater. We investigate the problem about behavior of 
the structure with liquid for main engine thrust cutoff. It was shown that thrust cutoff 
results in increase of both symmetric and antisymmetric perturbations of a free surface, 
including because of increase of higher normal modes. We investigated also variation in 
time of parameters of liquid motion, reservoir motion and their mutual interaction. 
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CHUYEN DQNG KEP CUA THUNG CHUA CHAT LONG 
vA cAc CHUYEN DQNG c6c CUA v6 THUNG 

Chung ta xem xet cac d~c tntng cua cac mo hlnh v@ chuy~n d<)ng song ch§.t long 
ly tucmg trong m<)t thung chU:a, thvc hi~n chuy@n d<)ng nghieng. D§ mo t a tr9'ng thai cua 
M sU' di,mg cong thU:c bifo phan cua bai toan dva tren nguyen t5-c bi@n phan Hamilton­
Ostrogradskiy co ban thOa man t§.t ca cac di@u ki~n bien d<)ng h9c cua bai toan. Cach 
ti@p c~n nay lam cho M co th@ tam giam dang k§ s6 111c;1ng iin s6 cua bai toan va rut g9n 
M chi con cac tham s6 cua chuy~n dOng cua mOt b@ m~t ch§.t long tv do va cac th6ng s6 
chuy@n d<)ng cua thung chU:a. Mo hlnh phi tuyfo rCJi I'9'C da du<;lc xay dl,fng cho M du<;lc 
ap d\lng d§ nghien cU:u chuy~n d<)ng cua thung chU:a ch§.t long tren M th6ng giam s6c con 
15-c, c6 k@ dfo kh6i 111<;1ng ch§.t long vao va ra va cac v§.n d@ c6 y nghia ly thuy@t va U:ng 
di,mg khac. 




