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Abstract. The paper further develops the edge-based smoothed finite element method 
(ES-FEM) for analysis of Reissner - Mindlin plates using triangular meshes . The bending 
and shearing stiffness matrices are obtained using strain smoothing technique over the 
smoothing domains associated with edges of elements. Transverse shear locking can be 
avoided with help of the discrete shear gap (DSG) method. The numerical examples show 
that the present ES-FEM-DSG method obtains ve.ry accurate results compared to the 
exact solution and other existing elements. 

1. INTRODUCTION 

In the practical applications, lower-order plate finite elements are the most preferred 
due to its simplicity and efficiency. However, using the Reissner-Mindlin plate theory, 
these elements often suffer from one intrinsic difficulty: shear locking phenomenon in 
the limitation of thin plates. In order to eliminate shear locking, early methods tried to 
avoid shear locking by using reduced integration or a selective reduced integration [1]. For 
example, based on a four node quadrilateral element, a single Gauss point is utilized to 
compute shear strain energy while a 2x2 Gauss point scheme is used for the bending energy. 
Unfortunately, reduced integration often causes the instability due to rank deficiency of and 
results in zero-energy modes [1]. Various improvements of formulations as well as numerical 
techniques have been developed such as mixed formulation/hybr id elements [2] , Enhanced 
Assumed Strain (EAS) method [3] or Assumed Natural Strain (ANS) method [4, 5]. An 
alternative to the ANS method to avoid shear locking is the Discrete-Shear-Gap (DSG) 
method [6]. The DSG method is in a way similar to the ANS method since it modifies the 
course of certain ' strains within the element , but the difference in the aspect of the lack 
of collocation points that permits the DSG method independent of the order and form of 
the element. 

Recently, Liu et al. have incorporated a strain smoothing technique [7] with the FEM to 
formulate a cell/element-based smoothed finite element method (SFEM or CS-FEM) [8,9]. 
CS-FEM is based on the smoothing domains located inside the elements and proposed to 
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solve 2D solid mechanics problems [8, 9, 10, 11, 12]. The essence and the evaluation of the 
shape functions for the SFEM has been further investigated in [13]. CS-FEM has then been 
extended to plate and shell structures [14, 15, 16] and fracture mechanics problems [17]. 
A node-based smoothed finite element method (NS-FEM) [18] was recently formulated to 
produce upper bound solutions in the strain energy and also eliminates volumetric locking 
naturally. However, the NS-FEM was found overly soft temporally instable, and can not 
applied directly to dynamic problems. To overcome such a temporal instability, Liu et 
al [19] have lately proposed an edge-based smoothed finite element method (ES-FEM) 
to significantly improve the accuracy and convergence rate of the standard finite element 
formulat ion for static, free and forced vibration analyses of solids using triangular elements. 
It has been demonstrated that the ES-FEM using triangular meshes is always stable, 
efficient, and even more accurate than the standard FEM using quadrilateral elements ( Q4) 
without any additional degrees of freedom. The ES-FEM was then developed for analysis of 
static and eigenvalue of two-dimensional piezoelectric structures [20] and dynamic analyses 
of plates [21]. 

This paper further develops the ES-FEM triangular element for static analysis of 
Reissner-Mindlin plates. The bending and shearing stiffness matrices are obtained using 
strain smoothing technique over the smoothing domains associated with edges of elements. 
Transverse shear locking can be avoided with help of the discrete shear gap (DSG) method. 
The numerical examples show that the present ES-FEM-DSG method obtains very accu­
rate results compared to the exact solution and other existing elements. 

2. GOVERNING EQUATIONS AND WEAK FORM 

Let n be the region in R2 occupied by the middle plane of the plate. w and {3 = 
(/3x, /3y)T denote the transverse displacement and the rotations in the x-z and y-z planes , 
cf. Figure 1, respectively. Assuming that the material is homogeneous and isotropic with 
Young's modulus E and Poisson ratio v , the governing differential equations of Reissner­
Mindlin plate are of the form, 

divDbK:({3) + >.t!'(f3) = 0 inn (1) 

- >.tdiv(!') = p in n 
w = 1]j ' {3 = ~ on r = an 

(2) 

(3) 

where tis the plate thickness, p = p(x, y) is the transverse loading per unit area, >. = 2cl!v), 
k = 5/6 is the shear correction factor and Db is the tensor of bending module, K: and I' 
are the bending and shear strains, respectively, defined by 

/'\: = [ :~Y l = [ ~~ + /3x ] 8y ' I' EB!!. - /3 
8f3x _ ~ fJy Y 
8y !Jx 

(4) 

The Eqs. (1) - (3) correspond to the minimization of the total potential function 

II= ~ { K:TDbK:dO + ~ { f'TDsf'dO - { wpdO 
2 Jn 2 Jn Jn (5) 
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z ' .... 

Fig. 1. Three-node triangular element and definition of the rotations 

Assumed that the bounded domain n is discretized into ne finite elements, n ~ nh = 
ne 
L ne. The finite element solution uh = [w f3x (Jy]T of a displacement model for Reissner-
e=l 
Mindlin plate is expressed as follows 

np [ N1 
· uh= I:: o 

i=l 0 
(6) 

where np is total the number of element nodes, the Ni's are the bilinear shape interpolation 
functions associated to node I, the q1 = [w I Bx1 By1 V are the nodal degrees of freedom 
of the variables uh = [w f3x (Jy]T associated to node I. Then, the discrete curvature and 
shear fields are 

(7) 

where 

0 N1,x l [ N 
-N1,y 0 ' Bf= Ni,x 

N N i,y - I ,x I ,y 

(8) 

By substituting Eqs. (6) - (8) into Eq. (5) and minimization, we obtain a linear system of 
equations for the vector of nodal unknowns q, 

Kq=g (9) 

with the global stiffness matrix given by 

K =in (BbfDbBbdn +in (B 8 fD 8 B 8 dD (10) 
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and the load vector by 

(11) 

where 

[ ~ ~ 1 ~" ] , D' ~ At [ ~ ~ l (12) 

As already mentioned in the introduction, for a low-order element such as three triangular 
element , shear locking often occurs when the thickness of plates reduces to zero. Therefore, 
there are various techniques for eliminating locking found in the literatures [l]. 

In this paper, we introduce a simple triangular plate element that combines two fol­
lowing important issues: 1) The edge-based smoothed finite element method (ES-FEM) 
that was found to be one of the "most" accurate models using triangular elements, 2) 
A Discrete Shear Gap (DSG) concept for shear-locking-free triangular Reissner-Mindlin 
plate-bending finite element (DSG3). 

For reference, the edge-based smoothed finite element method (ES-FEM) with discrete 
shear gap (DSG) technique using triangular elements is also termed as ES-DSG3 for short. 

3. AN ES-FEM WITH DISCRETE SHEAR TECHNIQUE 

We start the approximation uh = [w f3x (3y]T of three-node triangular element. The 
finite Reissner-Mindlin plate-bending element approximation is simply interpolated using 
the linear basis functions for both deflection and rotations without any additional vari­
ables. Hence, the bending strains are constant and unchanged from the standard finite 
elements while the transverse shear strains contain linear interpolated functions. Applying 
the discrete shear gaps (DSG) [6], the shear strains'"'·/ become constant and aim to avoid 
shear locking problem. 

In the ES-FEM, we do not use the compatible strain fields as in the standard FEM 
but strains "smoothed" over local smoothing domains, and naturally the integration for 
the stiffness matrix is no longer based on elements, but these smoothing domains. These 
local smoothing domains are constructed based on edges of the elements such that n ;=::j 

N e 
nh = L o(k) and o(i) n O(k) # 0 for i # j' in which is the total number of edges of all 

k= l . 
elements in the entire problem domain. For triangular elements, the smoothing domain 
D(k) associated with the edge k is created by connecting two end-nodes of the edge to 
centroids of adjacent elements as shown in Figure 2. 

Introducing smoothing curvature, shear strain over the smoothing domain n(k), one 
has 

Kk = r Kh(x)<I>(x)dD, ik = r l'h(x)<I>(x)dD (13) 
loJk) loJk) 

where <I> is a smoothing function that generally satisfies the following properties [7] 

<I> 2: 0 and { <I>(x)dD = 1 (14) lr1h 
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For simplicity, <]) is assumed to be a step function defined by 

.. - { 1/ A(k),x E D(k) 
<P(x) - 0, x tf- D(k) (15) 

where A (k) is the area of the smoothing domain and is computed by 

(16) 

where N: is the number of elements containing the edge k (N: = 1 for the boundary edges 
and N: = 2 for inner edges as shown in Figure 2) and Ai is the area of the ith element 
around the edge k. Substituting Eq. (15) into Eq. (13), the average strains at edge k can 

~ 

d"1 
(~AB./) 

B ---- -~ 

0 :..-of ........ U.l.\Hl I 

....... r.dgc k(CD) 

~J(ines: CH.HD. DO.OC) 

cf (4-node domlin CHDa) 

Fig. 2. Division of domain into triangular element and smoothing domains [2 (k) 

connected to edge k of triangular elements. 

be expressed in the following form 

(17) 

where N~ is the number of nodes belonging to elements directly connected to edge k 
(N~ = 3 for boundary edges and N~ = 4 for inner edges as shown in Figure 2) and B~ , 
B j are the average gradient matrices through the smoothing domain D(k) and given by 

(18) 
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where B~ (of 3x3 constant matrix) is obtained from the three-node standard finite element, 

( 

0 b- c 
- b 1 
Bi = -A O 0 2 

e 0 d-a 

0 0 c 
d- a 0 0 
b- c 0 - d 

0 0 -b 
-d 0 0 
c 0 a 

while Bf (of 2x3 constant matrix) is derived from the discrete shear gap technique 

Bf = _1_ ( b - c Ae o 
2Ae d - a 0 Ae 

c ac/2 bc/2 -b -bd/2 -bc/2 ) 
- d -ad/2 -bd/2 a ad/2 ac/2 

(19) 

(20) 

with a = x2 - X1, b = Y2 -Yi, c = y3 - YI , d = X3 - x1 and Ae is the area of the triangular 
element. 
The global stiffness matrix of the ES-DSG3 element is assembled by the following form 

Ne 

K= I::K(kl (21) 
k=l 

where :i((k) is the edge stiffness matrix given by 

I((k) = r J3bTDbJ3bdD + r J3sTnsJ3sdn = J3bTDbJ3b A(k) + J3sTnsJ3s A(k) (22) 
Jo.< kl Jo ck) 

It is seen from Eq. (22) that the stiffness matrix is analytically computed from the inte­
grated constant matrices. Note that the rank of the ES-DSG3 element is similar to that 
of the DSG3 element and the stability of the ES-DSG3 element is also ensured. 

4. NUMERICAL RESULTS 

In this section, benchmark problems are examined for the present method. For comparison. 
several published elements mentioned in this paper are denoted as follows: 

• MIN3 - Tessler's anisoparametric Reissner/Mindlin plate 3-node triangular el­
ement [4]. 

• MITC4 - The mixed interpolation of tensorial components for four-node plate 
element [5]. 

• DSG3 - The Discrete Shear Gap triangular element [6]. 
• ES-DSG3 - The edge-based smoothed discrete shear gap triangular element 

that is presented in this paper. More details for dynamics analyses using the 
ES-DSG3 can be found in [21]. 

In addition, other published models appeared in the context of the paper are also corre­
spondingly cited if they are not yet abbreviated above. 

4.1. Patch test 

First we investigate the element behavior with the patch test. This is a numerical 
technique to prove that the proposed method will or will not converge. A plate with 
four triangular elements is shown in Figure 3. The boundary deflection is assumed to be 
w = ~(1 + x + 2y + x2 + xy + y2 ). The results given in Table 1 enjoy that all the MIN3, 
DSG3 and ES-DSG3 elements pass the patch test with machine precision. 
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4(0.2;0.12) 3(0.44;0. l 2) 

1 (0.2;0) 2(0.44;0) 

Fig. 3. Patch test of elements 

Table 1. Patch test 

Element Ws Bxs Bys mxs mys mxyS 

MIN3 0.6422 1.1300 -0.6400 -0.01111 -0.01111 -0 .00333 
DSG3 0.6422 1.1300 -0.6400 -0.01111 -0 .01111 -0.00333 

ES-DSG3 0.6422 1.1300 -0.6400 -0.01111 -0.01111 -0.00333 
Exact 0.6422 1.1300 -0 .6400 -0.01111 -0.01111 -0.00333 

4.2. Square plates 

Various square plate models subjected to a uniform load are described in Figure 4. The 
geometry and material parameters are given as length L = 10, thickness t = 0.1, Young's 
modulus E=l092000, Poisson's ratio v = 0.3 and p = 1. The plates with the symmetry 
and uniform mesh N x N (N =2, 4, 8, 16, 32) are modeled as in the lower left corner of 
Figure 4. 

Now, we assess the performance of ES-DSG3 element compared with several other 
elements such as MIN3, MITC4 and DSG3 elements. Figure 5 shows the convergence of 
the normalized deflection and the normalized moment at the center of the simply supported 
plate against the mesh density N. It is seen that the ES-DSG3 element achieves higher 
accuracy than the DSG3 and MIN3 elements. For the convergence of the central deflection, 
the MITC4 element is the most effective due to using the bilinear function approximations. 
For the convergence of moment with fine meshes, the ES-DSG3 element is slightly more 
accurate than the MITC4 element. 

For a clamped plate, the convergence of the normalized deflection and the normalized 
moment at the center is shown in Figure 6. It is clear that the present element is free 
of shear locking in the limit of the thin plate. In addition, the ES-DSG3 achieves the 
higher accuracy than the DSG3 and MIN3 elements. For very coarse meshes, the four­
node MITC4 plate element is more accurate than the ES-DSG3 element. However, the 
ES-DSG3 element is slightly more accurate than the MITC4 element for finer meshes. 
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Fig. 4. Square plate model subjected to a uniformly distributed load p: (a) simply 
supported condition; (b) full clamped condition 
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plate subjected to uniform load 
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Fig. 6. Normalized deflection and moment at center of fully clamped square plate 
subjected to uniform load 
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4.3. Morley's skew rhombic plate 

A rhombic plate with skew angle 30° simply supported soft( w = 0) on all edges and 
subjected to a uniform load p = 1. Problem model and initial mesh with 4 x 4 elements 
are illustrated in Figure 7a. Data is given as follows: L = 10, t = 0.1, E = 10.92, v = 
0.3. This benchmark problem which was originally mentioned by Morley [22] occurs the 
high singularity at two obtuse corners of the plate, see Figure 8. It is clear seen from 
Figure 9 that the ES-DSG3 element shows remarkably excellent performance compared 
to the MIN3, DSG3, MITC4. elements and a large number of other published elements 
reported in [23]. 

L 

/~'\ _,.... /\\ / 

! . ", / ·., l \ / I . ·, I .\ .. / 
r' \( ' . ·. Y 

x 

L 
(a) (b) 

Fig. 7. A simply supported skew plate subjected to a uniform load 
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Fig. 8. A distribution of von Mises and level lines for skew plate using ES-DSG3 element 
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Fig. 9. Normalized deflection and moment at center of fully clamped square plate 
subjected to uniform load 

5. CONCLUSION 

This paper shows the numerical performances of the ES-FEM (ES-DSG3 element) for 
Reissner-Mindlin plates . The element formulations only uses triangul11r meshes and are 
simply obtained based on the bending and shear strains smoothed over the smoothing 
domain associated with the edges of the triangles. The ES-DSG3 uses only three DOFs at 
each vertex node without additional degrees of freedom and no more requirement of high 
computational cost. , 

The ES-DSG3 element eliminates well shear locking phenomena and more accurate 
than the DSG3 , MIN3 triangular elements when the same sets of nodes are used. The 
results of the ES-DSG3 element are also in a good agreement with analytical solution and 
show remarkably excellent performance compared to results of several other published 
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triangular-quadrilateral elements in the literature. It has been observed that ES-DSG3 
element performs excellently the skew plate with strong singularity at the obtuse corners. 
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PHUONG PHAP PHAN TU HUU HAN TRON DVA TREN CANH CHO 
BAI TOAN REISSNER - MINDLIN 

Bai bao nay phat tri~n mo ta phudng phap philn tl't hU:u h0-n trdn dva tren C0-nh cho 
bai toan u6n t§.m Reissner-Mindlin. Cac ma tr~n dQ cU:ng u6n va ciit d0-t du<;Jc dung ky 
thuM trdn h6a bifo d0-ng qua mi~n trdn du<;Jc k~t h<;Jp voi C0-nh cua philn tl't. Hi~n tlt<;Jng 
"shear locking" c6 th~ khac phvc ding phu<Jng phap rCii r0-c 11,lch tru<;Jt (DSG) . Cac vi dv s6 
cho th§.y phu<Jng phap ES-FEM-DSG d0-t du<;Jc k~t qua r§.t chfnh xac so voi nghil,lm giai 
tich va nhii'lu phfin tl't da du<;Jc c6ng b6. 


