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STABILITY OF CYLINDRICAL PANEL WITH 
VARIABLE THICKNESS 
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Abstract. A linear buckling analysis based on the small deflection theory is presented 
for the cylindrical panel with sinusoidal changes in the shell thickness. The buckling load 
for simply supported cylindrical panel around the periphery is defined by using the hybrid 
perturbation - Galerkin method. The influence of the thickness variation parameter on the 
critical loads is investigated. 

1. INTRODUCTION 

In recent years, the study on stability of thin structural components with variable 
thickness has attracted attention to many researchers [1-6]. Elishakoff et al [2] studied 
the effect of axisymmetric imperfections in the shape of the axisymmetric buckling mode 
on the buckling of cylindrical shells. Ye Zhiming [3] introduced the nonlinear analysis 
and optimization of shallow shell of variable thickness. Yeh et al [4] treated chaotic 
and bifurcation dynamics for a simply supported rectangular plate of thermo-mechanical 
coupling in large deflection. Mateus et al [5] studied post-buckling behavior of corroded 
steel plates. Nguyen and Tran [6] investigated the stability of thin rectangular plates with 
variable thickness on a basis of the theory of thin plates of small deflections. 

The major objective of this paper is to investigate in detail the buckling of cylindrical 
panel of variable thickness, based on the small deflection theory and shallow shells theory. 
The Hybrid Pertubation-Galerkin method is in use to determine the critical load factor of 
cylindrical panel with variable thickness. The influence of the thickness non-uniformity pa­
rameter to the buckling load is investigated. General asymptotic formulae for the buckling 
load are derived and numerical results are investigated for compressive simply supported 
panels. 

2. GOVERNING DIFFERENTIAL EQUATIONS 

Consider a cylindrical panel with small thickness variation loaded in its middle surface 
by uniform compression N (Fig. 1). As the panel thickness is not uniform in the x 
direction and radius of cylindrical panel is R, the governing differential equations with 
variable coefficients for the panels in general case are obtained as follows: 

Assume that: Ni~' c?j, w0 (i, j = 1, 2) are stretching forces, strains in the middle 
surface, and the radial deflection in the fundamental pre-buckling state; Ni~' Mh, dj, 
W 1 (i, j = 1, 2) are stretching forces, moments, strains in the middle surface, the radial 
deflection in the adjacent buckling state. We have the increments of solutions at buckling: 

Nij = Ni~ - N& , Mij = Mi~ - Mg = Mi~, 
€ij = cij - c?j, W = W 1 

- WO= W 1
, (i, j = 1, 2). (2.1) 
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It is noted that in the buckling state: Mg = 0, w 0 = 0. 
We shall use the basic general equations in term of increments to solve the stability 

problem of cylindrical panel compressed in the direction of long edges. 

Fig. 1. Uniaxially compressed cylindrical 
panel 

Fig. 2. Expression graph of thickness 
variation h(x) when c = 0.1 

In the case of small deflection, the strain - displacement increments relations are of 
the forms [I], [2]: 

8U 
Ex= OX' 

av w 
Cy= 8y - R' 

where U, V are displacements in x and y directions. 

au av 
/xy = 8y +OX' (2.2) 

By taking the· second derivative of these expressions and combining the resulting ex­
pressions, we obtain the compatibility equation: 

a2cx 8 2/xy 8 2cy 1 82W 
8y2 - 8x8y + 8x2 = - R 8x2 · (2.3) 

We use the stability equation in terms of bending and twisting moment increments [7] 
in the case of cylindrical panel: 

8 2Mx 8
2
Mxy 8

2
My [ 8

2
W 0 8 2W (82W 1) · cf~W] 

8x2 - 2 8x8y + 8y2 = - Nx 8x2 - Nx 8x2 +Ny 8y2 + R + 2Nxy8x8y · 
{2.4) 

In deriving the buckling equation of cylindrical panel of variable thickness, we assume 
that there is no abrupt variation in thickness so that the expressions for bending and 
twisting moments increments derived for panels of constant thickness apply with sufficient 
accuracy to this case also. Then: 

(2.5) 
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Eh3(x , y) 
where D(x, y) = 

2
( 2). 1 1-v _ 

We express the relations of strain components in the middle surface of the cylindrical 
panel and the membrane forces increments Nx, Ny, Nxy by the known formulas represent-
ing the Hooke law: · 

_ Nx - vNy 
Ex - Eh(x, y) ' 

Ny - vNx 
Ey = Eh(x, y) ' 

_ 2(1 + v)Nxy 
'Yxy - Eh(x, y) · (2.6) 

The solution of the equations of equilibrium is greatly simplified by the introducing 
the stress function F defined as: 

_ a2F 
N x = ay2' 

Substituting Eq.(2.6) into Eq.(2.3) and taking into account Eq.(2.7), we obtain: 

h2v2v2F-2hah (a3p + a3p) + [2 (ah)2 -ha2h] (a2F -va2F)-
ax ax3 axay2 ax ax2 ax2 ay2 

ah (a
3
F a

3
F ) [ (ah)

2 
a

2
h] (a2

F a
2
F) 

- 2h oy [)y3 + ax2ay + 2 ay - h ay2 ay2 - I/ 8x2 + 

ahah a2F a2h a2F . 3 ( 1 a2w) 
+ 4(l + v) ax oy 8x8y - 2(l + v)h axoy oxay =Eh - R 8x2 . 

(2.7) 

(2.8) 

When the cylindrical panel is under the action of uniform axial compression (Fig. 1), 
substituting Eq. (2.5) in the buckling Eq. (2.4) and observing that the flexural rigidity D 
is no longer a constant but a function of coordinate x, we obtain: 

---'V2\72w+ ·. --+-- + --+v-- + Eh3 - 6Eh2 ah (a3w a3w ) 3Eh2 a2h (a2w a2w) 
12(1-v2) 12(1-v2) ax ax3 8xoy2 12(1 - v2) 8x2 ax2 ay2 

+ 6Eh (ah) 
2 

(a
2w + v a

2w) + 6Eh . (ah). 
2 (a2w + v a

2w) + 
12(1 - v2) ax f)x2 ay2 12(1 - v2) 8y 8y2 8x2 

6Eh
2 

ah (a
3w a3w ) 3Eh

2 
a

2
h (a2w a

2w) + --+-- + - --+v-- + 
12(1 - v2) 8y 8y3 8x28y · 12(1 - v2) 8y2 8y2 8x2 

Eh2 a2h a2w Eh ah ah a2w a2w 1 a2F 
+ 2(1 + v) ax&y oxay + (1 + v) 8x 8y 8x8y = -N~ 8x2 + R 8x2' (

2
·9) 

a2 a2 
with 'V = ax2 + 8y2. 

In Eq. (2.9) Wand F represent the displacement and the stress function, vis Poisson's 
ratio, E is the modulus of elasticity, R is t he radius of cylindrical panel. Eqs.(2.8)-(2.9) 
constitute the governing differential equations for small deflections of cylindrical panel 
with variable thickness. 

In Eqs.(2.8)-(2.9), his the cylindrical panel thickness, which is assumed here varying 
with sine function in x direction : 

h(x) =ho (1- csin p:x) with c?: 0, (2.10) 
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· where ho is the cylindrical panel thickness and c: , p are the non-dimensional parameters 
indicating the magnitude and wave of the thickness variation, respectively. When x = 0 
and x == a, one has h(x) = ho, for the case x = a/2: one has h(x) = h0 (1 - c:) (Fig. 2). 
The thickness parameter c: varies from zero to 0.2 and is positive in order to achieve a 
detrimental effect by a "thinning" of the wall thickness. 

To make the resulting solutions more general in their application, we transform the 
above equations into non-dimensional parameters as follows: 

h 
H= ho' 

a 
r= b' C- ~ .,,- ) 

a 

w 
w= ho' 

F 
J= Do" (2.11) 

The governing differential Eqs.(2.8) - (2.9) can be rewritten into their non-dimensional 
form: 

(2.12) 

{2.13) 

If the cylindrical panel is simply supported around the periphery, then the boundary 
conditions are: 

Out-of plane conditions: 

. Eh3 E [ho(l - c: sin(p7r0]3 

with D (~) = 12(1 - v2) = 12(1 - 1.12) 

c = O·l .,, ' ' 

at 1J = O; 1, 

In -plane boundary displacement conditions [1] have the form: 

(2.14a) 

(2.14b) 

(2.14c) 

(2.15) 
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In -plane boundary stress conditions: 

EPJ 
b28T/2 = 0 at ~ = O; 1, - · 6a) 

82J 
abo~BTJ = 0 at ~ = O; 1 and T/ = O; 1. - ~ b) 

3. HYBRID PERTUBATION - GALERKIN .:. IE 

In view of separation of variables, stress function and deflection f1nrt· 1fr · lledloeen 
satisfying the boundary conditions (2.14a), (2.14b) and (2.14c) as: 

f (~, TJ) = J(O sin(n7rTJ), 

w (~, TJ) = w(~) sin(n7rTJ), 

·:_:-_..;,. - (3.1) 

(3.2) 
M _r 

with w( ~) = L Am sin( m7re) and m, n denotes the numbers of ..... ililii s mid y-
m=l 

direction; m, n are integers (in this paper: m = n = 1). 
The boundary conditions (2.16b) are satisfied in the form: 

1 2 1 2 

18 f(f.,TJ)dn=O 18 J(f. , TJ)dt: = O. 
8~8TJ ., ' 8f.8TJ "' 

0 0 

The boundary conditions (2.15) and (2.16a) can be rewriten intotlm~ 

8z~f.) = o and f(f.) = o at E = O; 1. (3.3) 

Equations (2.12) and (2.13) are thus transformed into ordinary differemillleq 'inns: 

(3.4) 

H3w4 + 6H2 dH w"' + [-6r2 N2 H2 dH] w' + 
d~ dE 

[ (
dH )

2 
2d

2
H . 2 2 3 r2b2N~]-" + 6H de + 3H de2 - 2r N H + Do w + {3.5) 

+ r 4 N 4 H 3
- 6vr2N 2H - -3vr2N 2H 2-- w- --/ =0 

[ (
dH) 

2 
d2 HJ fjl --

· d~ dE2 Rho ' 

with N = n7r. 
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In order to solve the compatibility equation (3.4) for J, the pertubation procedure will 
be employed here. To this end, 7 is expressed in term of the thickness variation parameter 
c: as: 

7(€) =Jo(€)+ c:fi (e). (3.6) 

Substituting (3.6) into (3.4) and keeping (2.10) in mind, after collecting the like terms c:: 

J~ - 2N2r 2 J; + N 4r4 Jo+ 12(1 - 112 )w
11 

r 2£_ + c:[f{ ~ 2N2r 2 K + N 4r4Ji­
. Rho 

2 II Ill 2 2 b2 II . 4 
- P Jo sin(Ne) + 2PJ0 cos(Pe) - 36(1- 11 )r Rho w sin(Pe) - 2J0 sin(N€)+ (3.7) 

+ 4N2r 2 J~ sin( Pe) - 2N2r 2 J~P cos( Ne) - P 2 N 2 vr2 Jo sin( Pe) - 2N4r4 lo sin( P€)] = 0, 

with P = p1r. 
From equation (3.7), we obtain: 

2 II 2 b2 
L(fo) = -12(1 - 11 )w r Rho, (3.8) 

211 Ill 22b2 II 4 
L(fi) = P fo sin(Ne) - 2Pf0 cos(Pe) + 36(1- 11 )r Rho w sin(Pe) + 210 sin(Ne)-

- 4N2r 2 f~ sin( Pe) + 2N2r 2 J~P cos( Ne) + P 2 N 211r2 Jo sin( Pe) + 2N4r 4 lo sin(P{), 
(3.9) 

where the operator L( •) is defined as: 

L(f) = f4 - 2N2r2 /' + N4r4 f. (3.10) 

Equations (3.8) - (3.10) and the boundary condition (3.3) can be solved analytic8.lly with 
the aid of the computerized symbolic algebra Matlab for Jo and fi: 

In case: m = n = p = 1, we haye: 

Jo= 7r4 (r~1: l)2 sin(7re), {3.11) 

127r2r 2(1 - 112)b2A1 
where a10 = Rho and 

au ( ) e7rr{ . [ 7rr( 5 2 4 
Ji = - 27r4(r2 + 4)2 cos 27r€ - 27r4r4(r2 + 4)2(e7rr + 1)2 e 7rr ai2 + r a12 + 

+ 27rr3a 11 + 87rr3a12 + 8r2au + 16r2a12 + l67rra12 + 87rrau + 16an + 32a12)+ 

4 2 2 ] 1 [ + 2r a12 + 8r au+ 16r al2 + 16au + 32a12 + 27r4r 4(r2 + 4)2 16au+ 32a12+ 

2 4 6 2 4 ] e-1""~ ( 211T(S 2 
+ 8r au + 2r ai2 + 1 r ai2 + r au - 27r4r 4 (r2 + 4)2(e"'" + l)2 e r au + 

+ 2r4a12 + 16a11+32a12+16r2a12) - e11T(27rr3an + wr5a12 + 81rrau + lfurra12+ 

+ 87rr3a12 - 8r2au - 2r4a12 - 16an - 32a12 - 16r2a12)] + 

(r2a12 + 4a12 + 2a11 ){e;rr{ {r2a12 + 4a12' 2au)errr{e-:n-{ 
+ 27r3r3(r2 + 4)(e7iT + 1) - 2ri3r3(r2 + -1)(errr + 1) ' 

(3.12) 
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where: 
4 2 2 2a10 

a 11 = -a10(r + 4r - vr + 4), a12 = r 2 + 
1

. 

Applying the Bubnov - Galerk:in prooodure to the equilibrium equation (3..5), we arrive 
at: 

(3.13) 

where r5w = sin(m7r~) sin(mr77). 
Substituting (3.6) with /i into Eq.(3.13), making some algebraic JDNMt ••ion leads 

to an eigenvalue problem and the buckling load due to the thickness tw•e• can be 
determined. 

4. DETERMINATION OF THE BUCKLING LOAD 

In this paper, the expression for buckling loads are determined only when r = a/b = 
1, v = 0.3 and m = n = p = 1, using a single term displacement series obtained in 
(3.1),(3.2). 

Equation (3.13) is given as the following: 

where Ai is the amplitude of deflection of the cylindrical panel (Ai #II); -
Consider the following normalization: --

N CI" 

>. = N cr 
0 

(4.1) 

(4.2) 

where>. is the non-dimensional buckling load factor due to the tlWl -•;••, N0 is 
the buckling load of the cylindrical panel with constant thickness and....- is• buckling 
load of the cylindrical panel with variable thickness. 

Substituting c: = 0 into Eq. (4.1), the buckling load of the ,po+.a paoel with 
constant thickness (h = ho) can be determined as: 

N0 = 0.0253E~~b
2 

+ 3.6153E~­ (4.3) 

When c: # 0 , from Eq. (4.1), the buckling load of the cylindrical pm& with variable 
thickness h = h(x) is given: 
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Eh b2 Eh3 
( Eh,<iJ2 Eh3

) 
N cr = 0.0253 R~ + 3.6153 b2 o - 0.0145R2 + 7.5951 b2 ° c. (4.4) 

Substituting Eq.(4.3) and (4.4) into Eq. (4.2), the non-dimensional buckling load 
factor due to the thickness variation is obtained as .follows : 

,\ = l- ( 0.0145b
4 + 7.5951h6R

2
) c. 

0.0253b4 + 3.6153h6R2 

5. NUMERICAL ANALYSIS, COMPARISON AND DISCUSSION 

(4.5) 

In Eq.(4.3), if R ---> oo then the cylindrical panel will be the square plate, we obtain 
the same as the Timoshenko formula for a square plate with constant thickness in the 
form [1] (r = a/b = 1, v = 0.3): 

N,cr = 7r2 D (~ ~) 2 = 7r2 D (l 1)2 = 47r2 Eh5 = 3.6153£~ 
0 b2 b + a b2 + 12b2(1 - v2) 6l · 

In this case, from Eq. (4.5), the non-dimensional buckling load factor due to the 
thickness variation of the square plate is given: 

>-=1-2.lc. (5.1) 

The effect of thickness variation parameter c on the buckling load factor A is studied. 
The following figures are presented for cylindrical panel with r = a/b = 1 and v=0.3. .· 

Buckling of the perfect cylindrical panel with variable thickness: from Eq. (4.5), the 
relationship between A and c is shown in Fig. 3, the relationship between A and R is 
shown in Fig. 4, the relationship between A and c, R is shown in Fig. 5. 

Ef'fed of thidcneH varietkm parameter I! on the bucdt\Q kfad faaor '-
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Fig. 5. Relation between ,\ and c-; R ( }!___ = 30, 
b ho 

The results obtained show that the effect of thickness variar:c:·_ . _. _ _ -::: ::.e-ci _ is 
positive. Even if the amplitude of the thickness variation is as smaE ::-~ : : ~ :::.~ '.y.:ckling 
load factor of cylindrical panel is reduced about 42% from its counte:-;'>::-_-:: : : : :-_~ : ~..::-e with 
constant thickness, when ~ = 2 and ;

0 
= 30 (Fig. 4 and Fig. 5). 

6. CONCLUSION 

In this paper, the coupled linearized governing stability equations'.·:·: ~ ~.-~~:-~'. c c.1 panel 
with variable thickness have been firstly introduced. Based on these e<~·.: :.::: :~ ::-. detailed 
study of the stability of the perfect cylindrical panel with thickness -.-:_:--:.~ ::. ~ 2.~ong the 
x-axes with sine functions has been presented. The formulae for the :L : ~:..:.: ::. ~ :oad have 
been derived using the hybrid perturbation - Galerkin method. 

From the obtained results, one can conclude that the variable th:c~~=--~s :·:c.:-i cause a 
reduction of the load carrying capacity of cylindrical panel structures. :::-_:: :;.,) :ills effect 
should be taken into account in the design of cylindrical panel struw..ir~. 

This work was done under the support of Natural Science Counci~ c0'. \-'.-=:::.am. 
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.... "' ,,., , ........ ' ~ 

PHAN TICH ON DJNH PANEL TRlJ CO CHIEU DAY THAY DOI 

Bai bao phan tich C:n d!nh c-0.a panel tn,i c6 chieu day thay d6i theo qui lu~t hlnh sin 
d\fa tren ly thuyet panel trl,l c6 d(> vong nho. L\fc t&i h~n c-0.a panel tr\! tl!a dcm quanh 
bien dU'(;rc xac dinh bang phuang phap lai Nhieu lo~- Galerkin. Anh hoong ct\a chieu 
day thay d6i tai l\fC tai h~n duqc khao sat. 




