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STABILITY OF CYLINDRICAL PANEL WITH
VARIABLE THICKNESS

NGuyveEN THI HIEN LUONG AND THACH SOM SO HOACH
Department of Civil Engineering, Ho Chi Minh University of Technology

Abstract. A linear buckling analysis based on the small deflection theory is presented
for the cylindrical panel with sinusoidal changes in the shell thickness. The buckling load
for simply supported cylindrical panel around the periphery is defined by using the hybrid
perturbation — Galerkin method. The influence of the thickness variation parameter on the
critical loads is investigated.

1. INTRODUCTION

In recent years, the study on stability of thin structural components with variable
thickness has attracted attention to many researchers [1-6]. Elishakoff et al [2] studied
the effect of axisymmetric imperfections in the shape of the axisymmetric buckling mode
on the buckling of cylindrical shells. Ye Zhiming [3] introduced the nonlinear analysis
and optimization of shallow shell of variable thickness. Yeh et al [4] treated chaotic
and bifurcation dynamics for a simply supported rectangular plate of thermo-mechanical
coupling in large deflection. Mateus et al [5] studied post-buckling behavior of corroded
steel plates. Nguyen and Tran [6] investigated the stability of thin rectangular plates with
variable thickness on a basis of the theory of thin plates of small deflections.

The major objective of this paper is to investigate in detail the buckling of cylindrical
panel of variable thickness, based on the small deflection theory and shallow shells theory.
The Hybrid Pertubation-Galerkin method is in use to determine the critical load factor of
cylindrical panel with variable thickness. The influence of the thickness non-uniformity pa-
rameter to the buckling load is investigated. General asymptotic formulae for the buckling
load are derived and numerical results are investigated for compressive simply supported
panels.

2. GOVERNING DIFFERENTIAL EQUATIONS

Consider a cylindrical panel with small thickness variation loaded in its middle surface
by uniform compression N (Fig. 1). As the panel thickness is not uniform in the z
direction and radius of cylindrical panel is R, the governing differential equations with
variable coefficients for the panels in general case are obtained as follows:

Assume that: N?j, E?j, WO, 5 = 1, 2) are stretching forces, strains in the middle
surface, and the radial deflection in the fundamental pre-buckling state; Nilj, Milj, e}j,
W(i, j = 1, 2) are stretching forces, moments, strains in the middle surface, the radial
deflection in the adjacent buckling state. We have the increments of solutions at buckling:

Ny = Nj = N}, My; = M, — My = M},

gij =g —ep W=W-W=W!  (4,j=1,2). (2.1)
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It is noted that in the buckling state: Mioj =0 =10,

We shall use the basic general equations in term of increments to solve the stability
problem of cylindrical panel compressed in the direction of long edges.

Fig. 1.

Uniaxially compressed cylindrical
panel

Fig. 2. Expression graph of thickness
variation h(z) when ¢ = 0.1

In the case of small deflection, the strain — displacement increments relations are of
the forms [1], [2]:
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where U, V are displacements in z and y directions.

By taking the'second derivative of these expressions and combining the resulting ex-
pressions, we obtain the compatibility equation:

Bex Py Oy 10°W 23)
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We use the stability equation in terms of bending and twisting moment increments [7]
in the case of cylindrical panel:

%M, 2w 2w w1 - PW
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522 . B W [ B2 ALE OB ; R ( Bl R) + Ny 5oy
(2.4)
In deriving the buckling equation of cylindrical panel of variable thickness, we assume
that there is no abrupt variation in thickness so that the expressions for bending and
twisting moments increments derived for panels of constant thickness apply with sufficient
accuracy to this case also. Then:

2

o'w  o?w
Mw——D(iL',y) (W+V6_y2)’

2w 2w
My == Dla) (G +057 )
*wW
My =D(z,y)(1 - V)M,

(2.5)
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Eh3(z, y)
12(1 -

We express the relatlons of strain components in the middle surface of the cylindrical
panel and the membrane forces increments Nz, Ny, Nz, by the known formulas represent-
ing the Hooke law:

where D(z,y) =

Ny —vN, - Ny — vNy _ 2(14v)Nyy
Eh(z,y)' Y~ Eh(zy)’ ™ EBhz,y)
The solution of the equations of equilibrium is greatly simplified by the introducing
the stress function F defined as:
9°F 0’F 0*F
V = — N = T ]\,z — e 2.
2 ay?’ Y fx2 “ dzdy (2.7)

Substituting Eq.(2.6) into Eq.(2.3) and taking into account Eq.(2.7), we obtain:

33 3 2 2 2 2
e e 2h8h(8F+ 6F)+|:2(@) i h] <8F_V8 F)_

£y = (2.6)
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When the cylindrical panel is under the action of uniform axial compression (Fig. 1),
substituting Eq. (2.5) in the buckling Eq. (2.4) and observing that the flexural rigidity D
is no longer a constant but a function of coordinate z, we obtain:

2 3 3 2 g2 2 2
Eh? _EF ey, 6EhR* Oh (6‘ w oW ) 3EhR: . .O°h (6 w 0 W>+

12(1—v?) 12(1—1/2) oz \ 07° +8:1:8y2 12(1 — v2) 82 \ O8z? i Oy?

6Eh  (Oh\? (W & W 6Eh (8K (*W | W
T R-») (55) ( o2 oy ) T2 (a_y) (a_y'f § W) s
6Eh? Oh (O°W  O°*W 3ER? 08°%h (O°W o*w
12(1—2) 6y ( a7t 8w23y) STy ( 52 TV a2 ) W
ER? 06%h 8*W " Eh %@BQW bt 0@_}_16_25
2(14+v) 0z0y 0zdy (1 + v) Oz Oy Ozdy S e
(92 82
with V =55 8_y2
In Eq. (2.9) W and F represent the displacement and the stress function, v is Poisson’s
ratio, F is the modulus of elasticity, R is the radius of cylindrical panel. Egs.(2.8)-(2.9)
constitute the governing differential equations for small deflections of cylindrical panel
with variable thickness.

In Eqgs.(2.8)-(2.9), h is the cylindrical panel thickness, which is assumed here varying
with sine function in x direction :

h(z) = ho (1 — esin p—zf) with € > 0, (2.10)

(2.9)
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where hg is the cylindrical panel thickness and €, p are the non-dimensional parameters
indicating the magnitude and wave of the thickness variation, respectively. When z = 0
and z = a, one has h(z) = ho, for the case z = a/2: one has h(z) = ho(1 — ¢) (Fig. 2).
The thickness parameter € varies from zero to 0.2 and is positive in order to achieve a
detrimental effect by a “thinning” of the wall thickness.

To make the resulting solutions more general in their application, we transform the
above equations into non-dimensional parameters as follows:

BT e
’ 77_ b) w= f_ DO‘ (2'11)

The governing differential Eqgs.(2.8) - (2.9) can be rewritten into their non-dimensional
form:

o*f otf gif dH (83f O f
2 2 4 2
P (854 5% sworm i an4) e ke (asS B aean2)+

P _ 200\ PH (P 0% _ 1202 H%r? 0w
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0*w &*w &*w dH [ 0w Bw
3 2 4 H2 2
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dH\2 (8w  ,8%w JPH (Pw  ,0%w\
+6H<d5) (795_2+”" a_n5>+3H d£2<a£2+ 377)_
12(1 = )% (.5 032w> 2( b? 62f>
AW C Ini i L gy SR Ay i
e RS (e (2.13)

If the cylindrical pE;nel is simply supported around the periphery, then the boundary
conditions are:
Out-of plane conditions:

=0l gl £ =01 "YVand. . m =01, (2.14a)
M, = ()[ 82“’]—0 at £=0;1 (2.14b)
A 2652 b28?72 - T .
2w &
M,=-D (g) [bzan = 612’2] =0 at =01, (2.14c)
. _ ER® _ Elhy(1 — esin(prg)]®
With D)= Tof 05 = T  19i—12) _»i

In -plane boundary -displacement conditions [1] have the form:

Dob [ 8%f 0% f hob
v(é,n)=/[E(;z (a28£2—ub26n2)+wR ]dn=0 at £=0;1. (2.15)




60 Nguyen Thi Hien Luong and Thach Som So Hoach

In -plane boundary stress conditions:

o =
b20n2 g O 2.16a)
i 5
abdgdn at £=0;1 and n=0;1 2.16b)

3. HYBRID PERTUBATION - GALERKIN METHOD

In view of separation of variables, stress function and deflection functidifiesm be chosen
satisfying the boundary conditions (2.14a), (2.14b) and (2.14c) as

f (&) = f(€) sin(nmn), e (3)

w (¢,n) = W(E) sin(nmn), : (32)

with wW(§) = Z Ap, sin(mn€) and m, n denotes the numbers of wawe -&8 and y-

m=1
direction; m, n are integers (in this paper: m =n = 1).
The boundary conditions (2.16b) are satisfied in the form:

=

1
[ 6% (&) O2f(&m) ., _
“oeon 1" [Sgae=0
The boundary conditions (2.15) and (2.16a) can be rewriten into the s
*f() _ Fley =15
_857— =0 and f(f) =0 at f— 0, 1 (3.3)

Equations (2.12) and (2.13) are thus transformed into ordinary differential equations:

¢ dH\? d*H
T gy 2 2(—) _orneg? - g H | o2yl
f gf [ d ae? 7 dEf
dH\? d?H 12(1 - 2)H3 2 _«
ANAE2 L opp2 N2 [ 221 vrPN2HZ | f=— w 3.4
+|:rNH+1/rN<d€> d{}f Rho w, (34)
g dH _m dH £l
34 2 2 72 72
Hu-i—GHdE [6NHd£] 8-
dH\? od2H 22 r262NO% | .
{6H( zg) +3H @ N2H3 4+ Do W + (3.5)
; dH d’H v
4 ardrr3 2 Ar2 - 2in72pp2 = IS R S
+{r]\H 6rNH(d€) 31/rNHd£2}w Rhof ;

with N = nr.
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In order to solve the compatibility equation (3.4) for £, the pertubation procedure will
be employed here. To this end, f is expressed in term of the thickness variation parameter
€ as:

F&) = fol&) +efi(8). (3.6)
Substituting (3.6) into (3.4) and keeping (2.10) in mind, after collecting the like terms &:
2 3
fo = 2N%r2fg + N¥rtfo + 120 —v?)@ 7 Ebh“ +elff - 2N%2f] + N4t f—

n

— P2f, sin(N¢) + 2P, cos(P¢) — 36(1 — )r2}§—;w sin(P¢) — 2§ sin(N &)+ (3;7)
0
+ 4N?r2 fy sin(PE) — 2N%r2 £y P cos(NE) — P2N2ur? fy sin(P€) — 2N*r fosin(P¢)] = 0,

with P = pr.
From equation (3.7), we obtain:
2 142 2 b
L(fo) = —-12(1 = 2)w'r B (3.8)
2

L(f1) = P*fy sin(N§) — 2P cos(Pg) +36(1 — v*)r? = —— sin(P§) + 2f3 sin(N¢)—

— AN%2f) sin(P€) + 2N?r? fy P cos(N€) + P2 N2ur? fo sin(P¢) + 2N*r* fo sin(P¢),
(3.9)

where the operator L(e) is defined as:
L(f) = f* = 2N?2f" 4+ N*rtf. (3.10)

Equations (3.8) — (3.10) and the boundary condition (3.3) can be solved analytically with
the aid of the computerized symbolic algebra Matlab for fy and fi:
In case: m =n =p =1, we have:

a ;
Jo= ﬂTlil)—Wsm(W&)’ (3-11)
1272r2(1 — v2)b2 A,
where a9 = — and
f . __all__ cos(27‘r€) _ €7l'7’§ _ [e"’(ﬂ-rsa 4 27'4(1 1L
LT T ori(r2 +4)? 2mird(r2 + 4)2(e™ + 1)2 . .

+ 2nr3a11 + 8nrdays + 8r2a1; + 16r2a1o + 167rals + 87ras; + 16a;; + 32a19)+

1
+ 2r4a12 + 8r2a11 + 16T2a12 + 16a11 + 32a19] + m [16a11+ 32a12+

e~ ™€
2mira(r2 + 4)2(e1r +1)2 [
+ 2rta;o + 16431 + 32a32 + 16r2a12) — ™ (2nray; + 71 5a12 + 87ray; + 167rant
+ 87r3a12 — 8r2ay; — 2r4a12 — 16a;; — 32a;2 — 16r2a12)] + '

(T‘ a1z +4a1s + - u“)fe (r (112+4012—~‘)a“ rEC wr
=1 : (3.12)
273r3(r2 4+ 4)(e™ + 1) 2m3r3(r2 + 4)(e™ + 1)

+ 8r2ay1 + 2rtais + 16r%a10 + r4a11]

(81' a +
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where:
20,10

r2+1°
Applying the Bubnov — Galerkin procedure to the equilibrium equation (3.5), we arrive
at

LT
/ / {H3'u7(2'4) ¥ 6H2%€Iiﬁm - [—6r2N2H2d—f£] T +
0

aj] = —am('r4 + 41'2 — l/’l‘2 + 4), al2 =

3
0
dH\? SOHIMNEEI . pieNY )
+|:6H(E> +3HE—2TNH +T w
dH\? d2H b2
4 nrd 173 2 nr2 2A12 172 —
+[T'NH —6V'I‘NH(E) —3ur°N°H d&z]w_Rhﬂf }610‘{#:0, (3:13)

where dw = sin(mn§) sin(nmy).

Substituting (3.6) with f; into Eq.(3.13), making some algebraic manipulation leads
to an eigenvalue problem and the buckling load due to the thickness vexistaom can be
determined.

4. DETERMINATION OF THE BUCKLING LOAD

In this paper, the expression for buckling loads are determined only when r = a/b =
1, v = 0.3 and m = n = p = 1, using a single term displacement series obtained in
(8:1):(B:2)

Equation (3.13) is given as the following:

273 72N 73 13472 (%€
e e T s 1
100 52ERZ T 1006% 00"~ 660¢) — 75500

| m=e @

where A; is the amplitude of deflection of the cylindrical panel (A 7@ -
Consider the following normalization: >

Ner

— j.\",(gj.'. )

(4.2)

where X is the non-dimensional buckling load factor due to the thickmess waristion, N§" is
the buckling load of the cylindrical panel with constant thickness and N*™ &= the buckling
load of the cylindrical panel with variable thickness.

Substituting € = 0 into Eq. (4.1), the buckling load of the cylmdrical panel with
constant thickness (h = hg) can be determined as:
Ehgb? Eh3

3.6153——- 4.3
72 + 3.6153 52 (4.3)

When € # 0, from Eq. (4.1), the buckling load of the cylindrical panel with variable

thickness h = h(z) is given:

N =0.0253
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Ehab? 3
g‘;b +3. 6153—h - (o 0145

N% = 04253 + 7591 ——

3
E}i;glﬁ b’; ) €. (4.4)

Substituting Eq.(4.3) and (4.4) into Eq. (4:2), the non-dimensional buckling load
factor due to the thickness variation is obtained as follows :

' .01456* + 7. h2R?
)‘:1_<0010 + 7.5951 OR) (45)

0.0253b% + 3.6153h2R?
5. NUMERICAL ANALYSIS, COMPARISON AND DISCUSSION

In Eq.(4.3), if R — oo then the cylindrical panel will be the square plate, we obtain
the same as the Timoshenko formula for a square plate with constant thickness in the
formi[l](z="0fb =1, ¥ =03):

3
3.6153%.

Ner — 72D A b\? Yt 4m?Eh3
i b ' 1262(1 ~ u2) b?

e = 1
b2 a 2 1+17*=

In this case, from Eq. (4.5), the non-dimensional buckling load factor due to the
thickness variation of the square plate is given:

A=1-21e. (5.1)

The effect of thickness variation parameter € on the buckling load factor X is studied.
The following figures are presented for cylindrical panel with » = a/b =1 and v=0.3. .

Buckling of the perfect cylindrical panel with variable thickness: from Eq. (4.5), the
relationship between A and ¢ is shown in Fig. 3, the relationship between A and R is
shown in Fig. 4, the relationship between X and ¢, R is shown in Fig. 5.

Efectol iation p ‘conthe load factor 4 Buckling load of the cylindrical panel with thickness vari:
- 1.06 e e p— .
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3‘0.75 .‘v. 1
3 of - i
0.85 :
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3 oA .15 2 o
Thickness variation parameter ¢ :

o
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Buckfing load facton.
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Fig. 3. Relation between A and Fig. 4. Relation between A and — ,( = 30)
2

R b
5(?_ ’-’1;—30)
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015 25 oatoRb
Thickness variation parameter ¢ 0@

Fig. 5. Relation between \ and ¢; % (li — 0

4]
The results obtained show that the effect of thickness variation cocizs when = is
positive. Even if the amplitude of the thickness variation is as small 2= 0.2 5= Huckling
load factor of cylindrical panel is reduced about 42% from its counterpa== o7 z&= case with

constant thickness, when % = 2 and ,—% = 30 (Fig. 4 and Fig. 5).
6. CONCLUSION

In this paper, the coupled linearized governing stability equations for cxlinasica! panel
with variable thickness have been firstly introduced. Based on these eguzzinns = detailed
study of the stability of the perfect cylindrical panel with thickness warsizng along the
x-axes with sine functions has been presented. The formulae for the tuciiing load have
been derived using the hybrid perturbation — Galerkin method.

From the obtained results, one can conclude that the variable thickzmsss czn cause a
reduction of the load carrying capacity of cylindrical panel structures. znd so this effect
should be taken into account in the design of cylindrical panel structures.

This work was done under the support of Natural Science Council of Vieznam.
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PHAN TICH ON DINH PANEL TRU CO CHIEU DAY THAY DOI

Bai béo phan tich 6n dinh cla panel tru c¢6 chidu day thay d6i theo qui luat hinh sin
dwa trén ly thuyét panel tru c6 d6 vong nhdé. Luwc téi han cla panel tru twa don quanh
bién dwoc xac dinh bing phwong phap lai Nhidu loan- Galerkin. Anh hwéng cla chitu
day thay déi t6i luc téi han duoc khéo sét.





