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NON-LINEAR ANALYSIS OF LAMINATED
COMPOSITE DOUBLY CURVED SHALLOW SHELLS

Dao Huy BicH
Vietnam National University, Hanoi

Abstract. This paper deals with governing equations and approximate analytical solutions
based on some wellknown assumptions to the non-linear buckling and vibration problems
of laminated composite doubly curved shallow shells. Obtained results will be presented by
analytical expressions of the lower critical load, the postbuckling load-deflection curve and
the fundamental frequency of non-linear free vibration of the shell.

1. INTRODUCTION

Linear analysis of laminated composite plates and shells was investigated by many
=zhors. However for non-linear analysis of these structures we are concerned with more
= Zeulties, because the non-linearly partial differential equations governing composite
_=minates of arbitrary geometries and boundary conditions cannot be solved exactly. Ap-
cooximate analytical solution to the large deflection theory of laminated composite plates
222 non-linear bending and buckling analysis of cylindrical composite shells were consid-
=-=3. for example, in [2-6, 8-11,19,22...]. For plates of complicated geometries and shells
1z= cevelops non-linear finite element models of laminated structures, more results were
s=r=ived. especially results of Reddy and the others [1, 7, 12-18, 21...] .

Thze problem of postbuckling behaviour of shell structures under loading and non-
_==zr vibration of shells is of significant practical interest. The present paper is conerned
=272 governing equations and approximate analytical solutions based on some wellknown

2ozniv curved shallow shells. Obtained results will be presented by analytical expression
2 =ne lower critical load, the postbuckling load-deflection curve and the fundamental
==zuency of non-linear free vibration of the shell.

2. GOVERNING EQUATIONS OF LAMINATED DOUBLY CURVED
SHALLOW SHELL

2_1. Strain — displacement relations

“ozsider the strain state of a shallow shell when the deflection of middle surface is
‘= zam=2 with the shell thickness. Using the cartesian coodinates, where axes x; and
wimcide with principal curves of the middle surface, axis x3 = z is in the thickness

&

and according to the Kirchoff — Love’s theory the non-linear strain-displacement
== :7:ozships for a doubly curved shallow shell are given by:

E11 == 6(1) ar ZX1,
o
€92 = €9 + 2X2,

Y12 = €6 + 2Xs,
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where k; = RL’ ko = s are principal curvatures of the shell; R;, Ry are radii of
1 2 :

curvatures; u, v and w are displacements of the middle surface along x;, 2 and z axes
respectively. The strains in the middle surface and the changes of curvatures and twist
are denoted by €9 and x; (i= 1,2, 6) respectively.

Note that strains (2.1) are not independent, they must be relative in the deformation
compatibility equation:

0%7  9%3  0%3 _
3.’1?% 813% 8.’13131'2

2 2 2 2 2 2
<8w) 8%w O%w o%w O0%w (2.2)

8z10xy) ~ Ox2 Ox3 e 8z e 9z
The classical lamination theory in which the transverse shear effects are neglected, is often
used to analyze laminated composite structures.
2.2. Laminate constitutive relations

Consider a shell of total thickness h composed of N orthotropic layers perfectly bonded
together with the principal material coodinates (Xl(k), Xék), X:gk)) of the k-th lamina

oriented at an angle 6 to the shell coodinate z; in the counterlockwise sense and X ék) =2
Stress-strain relation of the k-th lamina in the shell coodinate system (z;, x2, z) are given
as:

{(0}® = [Q]¥ {gy®, (2.3)
where

{0} ~ {011, 022, 012}T,

{e} = {en, €22, m2}%,
Qu Qi Qi

[Zﬂ = le sz QQG )
Qs Q2 Qoo
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T A ) .
_{.} denotes a column vector and [...] denotes a matrix. Q are the transformed stiffnesses,
which are relative with the surface stress reduced stlffnesses Q referred to the principal
* material coodinates of the k-th lamina [see Reddy 18],

Q1 = Q108" 0 + 2 (Q12 + 2Qss) sin” O cos? 6 + Qo sin 6,
Q12 = (Q11 + Q22 — 4Qsg) sin” B cos® § + Q12 (sin® @ + cos? ) ,
Qg = Q115 0 + 2 (Q12 + 2Qss) sin 0 cos? 8 + Qs cos? 8,
Q16 = (Q11 — Q12 — 2Qs6) sinf cos® § + (Q12 — Q22 + 2Qes) sin® § cos b, (2.4)
Q26 = (Q11 — Q12 — 2Qes6) sin® B cos @ + (Q12 — Qa2 + 2Qes) sin 6 cos® 6,
i Qo = (Q11 + Q22 — 2Q12 — 4Qes) sin® 8 cos? 0 + Qs (sin4 6 + cos* 0) .

)., can be expressed in terms of engineering constants of a lamina

Ly L o v12E>
4 e = =——22_ - 2.
Qu (T Q22 1= viovar’ Q12 am,, e Qe6 = G2, (2.5)

where B; is the modulus in the X; direction, G2 is the shear modulus in the (X3, X3)
plane, y; are the associated ratios.
Using the lamina constitutive equations the stress resultants

hyy hyy
Ni = / 011 (1 = Rig) dz " Np= / 092 (1 + E) dz,
_h/2 _h/2
h'/2 h/z
z
Wi = ZVdz, Ngi= Z ) dz,
12 / 012 (1 + R2> 21 / 021 (1 + Rl) z
Py —hy
h’/2 h/2
z
M = b » z
1 / o11 (1 B Rg) zdz, My / 020 (1 4 Rl) zdz,
_11/2 _h/2
by by
o
Mo = / 012 (1 -+ R_2> zdz, Moy = / 0921 (1 + Rl) 2dz,
Py Py

sz be ex;;:essed in terms of the membrane strains € and curvature changes x;. For
5 : 2 o
<oaow shells we can omit the terms — in the definition of the stress resultants and

wesome constant radii of the shell curvatures, the lamina equations can be simplified:

Nig = N9y = Ng, Mz = Moy = M,
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{ {N} } n l: [A] [B] :| { {go} } (2 6)
{M} (B] [D] ko )i '
where .
An A A B;y Bia Bis Dy Dyy Dss
[A] = | Aip A Ay |, [Bl=| Bz By By |, [Dl=| Dia Dy Dy
As Aocs Ass B¢ Bz Bes Dis Dag Degg

0 o T a
{Eo}:{ €1, &9, 58 } ) {X} ={ X1, X2 X6 } )
i
{(Ny={ Ny, Ny No} , {(My={My, M, Ms}",
{N} are called the force resultants and {M} are called the moment resultants. The laminate
stiffness coeflicients A;;, B;j, D;; are defined by:

Zk41

N
—(k iy
(A5, Dy = / ng) (1, 2, 2%) dz, (4,5 =1,2,6).
=1
k

Note that in a multilayered symmetrically laminated material the coupling stiffnesses
B;; are equal to zero and the extensional A5, A2s and bending stiffnesses Dy, Dog are
negligible compared to the other stiffnesses. This means that the constitutive equations
are identical to those for a specially orthotropic material. It leads to idea to express these
relations to ones for orthotropic elastic material:

N1 = A€ + Ajoeg, No = Ajgef + Agej, Ng = Ageeg, (2.7)
and conversely 1 N b " Pl
€1 = I (M1 —viNy), e5= B (N2 —w5N1), €g= 51\76’ (2.8)
1 2
where Aq1Agg — A? Aj1Agy — A2 :
B2 12 ;292 NS for T gl 31211 12 G* = Aes,
A12 A12 l/f 1/5
204 el el nin 2.9
1 A22 2 All’ EI ES ( )
and A%w &%w
=D Dioxs = —D1 | —5 + poo—r
M, 11x1 + Di2x2 1 (839% + po 8x§> y
A%w Ow
My =D D ==Dy | —5 — 2.1
2 12X1 + D2ox2 2 ((%% %#1 B:c%) ) (2.10)
0w
where Dy = D11, D= Dj, Dg = Des,
D D
12 -1z M K2 (2.11)

NQZ_D:, )u'l‘—D22a Dl "—D21
D3 =2Dg + Dipp = 2Dk + Dapy.
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2.3. Equations of motion of laminated shallow shell

The equations of motion of a laminated doubly curved shallow shell are

8N1 6N6 _ 82u 83w
Bm; | Brp 082 om0
ONg ONs 8%v Pw
8 22 = ooy ~ hiaa,
oxy Oxo ot? Oz 012
82M1 82M6 82M2 0 ow ow
2 k1 N- ko IN- — | Ny— + Ng— i
527 |\ Briony TTea Uik Bl ( S 68w2> Hurikn 4(@:12)
0 ow ow Aw B3 &3
Sk SNk A= SR o =
+ 32 ( e Nang) Joge TN <8m18t2 ¥ (9:1:28152)
_J o*tw . dtw i
*\oz20e2 " Ba202) ~ P
where J; are the mass inertia terms defined as
N Zk+1
& =N / p®Zidz  (i=0,1,2), (2.13)
=

p®) is the material mass density of the k-th layer, ¢ is the transverse load.

A combination of boundary conditions may be assumed to exist at the edges of the
shell. The shell panel considered in the following analysis is simply supported and dis-
placements of its end cross sections are not restrained. Morever for dynamical analysis it
is necessary to give initial conditions.

3. SOLUTION TO THE PROBLEM

For analytical analysis of the mentioned problem we introduce some well-known as-
sumptions:

- The transverse load ¢ is uniform

- The mass density of k-th layer is constant, such that for a multilayered symmetrically

laminated material
N Zle41

T= Z / p(k)zdz =0.

B0 )

- If the dynamical process can be considered without propagation of elastic waves,
inertia terms in two first equations (2.12) can be neglected {see Volmir 20], then motion
equations are simplified

ON; ONg i

il A im0 Vi 3.1
Or; Oxy o e (5.1}
oNy , ONy _ e

oz O0zo
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82M1 82M6 82M2 0 ow ow
2 kiNi + koNo + — | V.
ox? 010z + gz’ o TR R 0z ( Yoz, N68x2> +
0 ow ow 0w 0*w 0w
2 (N2 4 N = oo — J. - .
* 6:82 ( 8!1:1 23 2) Jo 3t2 2 (6112%8# i 8z§8t2) 9 (3 3)
Equations (3.1), (3.2) are satisfied by introducing the stress function ¢ in the form:
2 2 2
P @ 0
= = —_— = — N = h == . s
N1 = hon 53’ Ny = hogo a3 | 012 s (3.4)
By using (2.8) and (3.4) the compatibility equation (2.2) becomes
1 3% . 1 ' v 0% - T o4y b
E; 3:1:4 Gl T 0z30z2 ' E} 025
8w \? 0%wdw 0%w 0w
= - -k -k ! 3.
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According to relation (2.10) and (3.4) the motion equation (3.3) is reduced to
0w 0*w 0w 2% 8%
D 2D D -k k -
! oz} i 36:1;%3:1:% * 23x§' ( ' 922 4 28;1:%)
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where D3 = 2Dy + Dips = 2Dk + Doy .

Finally, the problem consists of two non-linear partial differential equations (3.5) and
(3.6) governing composite laminated shallow shell. The boundary simply supported con-
dition can be satisfied if the deflection is chosen as

w = f(¢)sin B e T2 (37}
a b’
where a and b are the lengths of in-plane edges of the shallow shell, f(t) is the maximum
deflection.
Substituting (3.7) into the right side of the equation (3.5) yields

1 8% (1 21/_;) &y 1 8%

E284+ e 522672 | Ef ozt

4
0 ol 2rx; 2w xo 2 o (k1 k2 T T2
= 50252 (cos 0 + cos 5 ) + f°m <62 + — ) sin 5 Sin—=

Taking into account no-restrained displacements of end cross shell sections a solution
to this equation can be received

T 2
1 B s TLo T 7r:z:2’
b a b

@ = Acos i (3.8)
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where

_Ejf?*a? BZE;ng . f (k1a? + k2b?) (3.9)
32 b2’ 32 a% (10 1 v | 1a%\’ ‘
==+ =—2—=+ ——
Eja® G+ "Ef E®

Substitution of (3.7) and (3.8) into equation (3.6) gives

2D3 D
Wt (244 2p0 4 T2 sin2hsin B2+

a2 | Bt b
)
s 27rm2 2 I Lo
k1 B(b>c 5 +C(b> smasmb}-i—
277:151 2 T )
+ ko |A +C( ) sin — sin — | —
a b
f 2 ] T 27ra:2 TL1 T
b2 4A co . ! 1905 1n—smT + 4B co 5 sstm—b——
r L] TLo\2 s 121 1 d2f Ly . TWIo
2C (cos " cos 5 ) ] + {JO+J27r <a2 + ol ir sin . sin 5 q=0.

Applying the Bubnov — Galerkin’s method

//Wsm——sm —b-dxldasz =0

and taking into account (3.9) results

S & f 1%~ 9Ds D3 (kra? + k2b2)2 :

o 4 [\ 5% | geeeie
|:JO + J27r <(),2 =t b )} dt2 + m (0,4 + a2b2 + b4 ) + b4 5 ( 1 2 ) ng R a4
B T\er e E

_2|Eih | Eiky . k1a® + kob? 2y mt (E L Ei s 16¢
3| a? b? b - 1 _ o4 22 at 16 \ b* ot e
E: " ANG* B} E;

1 1
Denote m = Jy + Jor?2 (52— + —) .
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equation (3.10) is rewritten as

dzf 2 3 6q
dt2 +mif —mofé+msf° — 2 =0 (3.11)

In particular case for laminated plates k;=ko=0, equation gets form

d? " 16q
dtf +mif+msf’— — =0, (3.12)
" D29 L D)5
where m} = 7* (? - 202 + —bT)

4. NON-LINEAR BUCKLING ANALYSIS

Suppose that the shell is acted on by static transverse load, from (3.11) we can get
relation between maximum deflection and transverse load

1!'2

T — (m1f —maf? +maf), (4.1)

it is the elastic equilibrium curve for the shell.
Particularly for a plate
2

16 (mif+ m3f3) (4.2)
An interesting characteristics of composite laminated shell is its behavior under transverse
load. Most often the critical buckling loads are determined through an eigenvalue analysis.
The critical buckling loads can also be determined from geometric non-linear analysis,
where the critical buckling loads are taken to be the so-called limit loads. Taking

g =

dg w2

W 7= (mq1 — 2maof + 3m3f2)

we have
ma F /m3 — 3mimg

fig=

3ma
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with condition m2 3mims > 0.
Critical buckling loads are determined by

72
e 16 (m1fr — maff +msfi), (4.3)
5 T2
¢? = 16 — (m1fa —mafi + mafs). (4.4)
We can show that q( ) is maximum and and q( is minimum. Consequently, because
of
d2q 7l.2 5
d—f_f y = E (—2m2 +6'rn3f1) = —2\/m2 —3mimg <0
d2q w2
and 7 A = (—2my + 6mgf2) = 21/m3 — 3myms > 0.

The typical graphs of load-deflection curves of a laminated composite shell and a
laminated composite plate are presented in Fig.1.

q Plate

Shell
i (K

Ok R L J

0 f, f, f
Fig. 1. Load-deflection curves

If m% — 3mim3 = 0 the load-deflection curve of a laminated composite shell has only

dq
an inflexion point at fy = 3m73 because E =0 and
d2q 2 mo
— -2 6mg—— ) =0.
P f2 ( 2mg + 6mafo) = 16 ( mo + 6mg 3ms 0

5. NON-LINEAR DYNAMICAL ANALYSIS

Consider non-linear free vibration of a laminated composite shell by putting ¢ = 0 in

the equation (3.11)
2

‘itf +myf —maf? +maf=0. (5.1)
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For linear vibration

dzf ’f 4
dt2 +myf =0, or d—t2-+w =0,
where

D1 2D3 Dg (klaz + k2b2)2
o Nl b2 b‘1 il at
(—~2 ,)a2b2+—
% m1 G* E Er

Jo + Jom2 ( b2)

w? is the fundamental frequency of linear vibration of the shell.
Equation (5.1) can be rewritten

@l 2 | 2 3y _
Wﬂuo(f—ﬂf +Kf°%) =0, {5:3)

where

* Lo * 1. S 2
g Ell"l i Ezkg 416 : kia* + kob
3 Cl.2 bZ b‘ + 1 2b2+—
g=1_ G* E? E?
™ Dy %D, D kra? + kqb?)* ’
A o e —
a a?b b b_ ( 1 L 22 a*
¢ BT TE
(Es E1
e 08 6 B ot
my i (Dl 2D3 ) kla +k262)
s
at (12132

i\ 2,2, &
( T -~ E: ) a“b® + E_f
For seeking amplitude-frequency characterlstlcs of non-linear vibration we substitute
f = Acoswit,
into (5.3) to give
X = A(wf — w?) coswt — wFNA? cos® wt + Kuwi A% cos® wt = 0.
Integrating over a quarter of vibration period

m
2w
/ X coswtdt = 0,
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leads to
M a2 2 2‘-"0 2 3T 9,3
4wA (w§ — w?) — A Q4+ T6w T
Because of A # 0, w # 0 we have
e =t e -38—{2 oA+ 3%(-(4)3142 =0,
or
w? = (1 . —QA + A2) (5.4)

w
Denote v? = ok frequency of non-linear vibration of the shell. Equation (5.4) can
be rewritten 4

8 3K

v —1—3—QA+——A2 (5.5)
For a plate
D1 2D3 D
(B )
k1 =ky=0, wi= , =0,
- o
Jo + Jomr ( b2)
E; | Ef
Dy 16<b4+¥>
o PR D, Y
"\@ T T
and sk
et 3 A2, (5.6)

It is clear that frequency of non-linear vibration depends on amplitude of vibration. Typ-
ical graphs of frequency-amplitude of non-linear vibration of a laminated composite shell
(?7) and plate (5.6) are illustrated in Fig. 2.
We can see that for non-linear vibration of a shell
2 6402

e

e | [ K

1682

with amplitude A = OKn
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Shell
A
Plat
1t i) (S e
9Kn |
|
|
|
|
:
0 1= 267412[2 1 VZ

Fig. 2. Graphs of frequency vibration-amplitute

6. CONCLUSION

Governing equations for a laminated composite doubly curved shallow shell are derived.
Some wellknown assumptions proposed allow to solve non-linear buckling and vibration

problems by analytically approximate method. The advantage of this approach is to obtain
analytical expressions of non-linear buckling critical loads, elastic equilibrium curves and
frequency of the non-linear free vibration of laminate composite doubly curved shell and
plate.
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PHAN TIiCH PHI TUYEN VO THOAI COMPOSITE LGP
CcO HAI DO CONG

béo dé cip dén viéc thiét 1ap cdc phwong trinh co bdn va nghiém gii tich gan ding

dwra trén mot vai gid thiét quen biét clia bai todn 6n dinh phi tuyén va dao dong phi tuyén
clia v ngoai composite 16p cé hai d6 cong. Céc k&t qua dwogc trinh bay dudi dang céc
biéu thirc gidi tich ctia hrc téi han dudi, dwong cong lwe -dd vong sau téi han va tan s6

co

ban clia dao dong tir do phi tuyén cta vé composite 16p.





