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Abstract. In this paper, the problem of actuator saturation control of a benchmark struc-
ture using hedge-algebras-based fuzzy controller (HAC) is presented. In HAC, linguis-
tic values of linguistic terms are obtained through semantically quantifying mappings
(SQMs) based on few fuzziness parameters of each linguistic variable without using any
fuzzy set and inherent order relationships between linguistic values of each linguistic vari-
able are always ensured. Hence, the design of a HAC leads to determining parameters of
SQMs, which are fuzziness measures of primary terms and linguistic hedges occurring
in a fuzzy model. As a case study, a HAC is designed to actuator saturation control of a
benchmark structure with active bracing system (ABS) subjected to earthquake excitation.
Control performance of the controller is also discussed in order to shown advantages of
the proposed method.

Keywords: Structural active control, actuator saturation, hedge algebras, hedge-algebras-
based fuzzy controller, earthquake excitation.

1. INTRODUCTION

The reduction of response quantities such as velocities, deflections, and forces in-
duced by environmental dynamic loadings (i.e., wind and earthquake) is very necessary
in order to increase the strength and safety of structures. The reduction of undesired vi-
bration of structures has become an attractive subject of research, and many structural
control methods have been implemented in practice [1].

Fuzzy set theory introduced by Zadeh in 1965 has been widely applied in many
real situations because it is a useful mathematical tool to model uncertain and vague
data. Many researches on vibration control of structures using fuzzy controllers have
been reported. Pourzeynali et al. [2] designed and optimized different parameters of an
active tuned mass damper control scheme to get the best results in the reduction of build-
ing responses under earthquake excitations using genetic algorithms and fuzzy logic. In
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the study conducted by Guclu and Yazici [3], fuzzy and proportional-derivative (PD)
controllers have been designed for active control of a real building against earthquake.
Marinaki et al. [4] proposed and tested the particle swarm optimization (PSO) for the
calculation of the free parameters in active control of smart piezoelastic beams using
fuzzy controller. Wanga et al. [5] presented a problem of active compensation control
of friction-induced self-excited vibration of a mass on a moving belt system using adap-
tive fuzzy systems. Das et al. [6] presented a fuzzy-logic control algorithm, based on
the fuzzification of the MR damper characteristics, for the semiactive control of building
frames under seismic excitation. Uz et al. [7] proposed an optimal design strategy based
on genetic algorithms (GA) using fuzzy controller for active control of a structure with
nonlinear hysteretic control devices.

Although a fuzzy controller is flexible and easy to use, its semantic order of lin-
guistic values is not closely guaranteed and its fuzzification and defuzzification methods
are quite complicated [1].

Hedge algebras (HAs) theory, first introduced in 1990, see [8–15] and the refer-
ences therein, showed that linguistic values can formulate an algebraic structure. It is
a complete hedge algebra structure with the main property of which, semantic order
of linguistic values, is always guaranteed. It is even a rich enough algebraic structure,
and therefore, it can describe completely reasoning processes. HAs can be considered as
a mathematical order-based structure of terms-domains, the ordering relation of which
is induced by the meaning of linguistic terms in these domains. It is shown that each
terms-domain has its own order relation called semantically ordering one induced by the
meaning of the terms. Many interesting semantic properties of terms can be formulated
using this relation, and some of these can be taken to form an axiom system of HAs.
Application of hedge-algebras-based fuzzy controller (HAC) in structural active fuzzy
control with remarkable results in [1,16–19] provided a new approach to study problems
of vibration control of structures. However, the actuator saturation, a very important
problem in the field of structural control because any actuation mechanisms are subject
to inherent physical limitations, was still not considered in [1, 16–19].

In this paper, the problem of actuator saturation control of a benchmark struc-
ture with active bracing system (ABS) subjected to earthquake excitation using hedge-
algebras-based fuzzy controller (HAC) is presented to show advantages of the proposed
controller.

2. PROBLEM UNDER CONSIDERATION

In this section, a benchmark three-storey shear-beam building model subjected to
earthquake excitation ẍ0 shown in Fig. 1 studied by Du et al. in 2011 [20] with actuator
saturation is considered for controller design.

The motion equation of the structure system with actuator saturation is expressed as

[M]{ẍ}+ [C]{ẋ}+ [K]{x} = sat(u)− {δ}ẍ0 , (1)

where {x} = [x1 x2 x3]T, {δ} = [m1 m2 m3]T.
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The n× n (n = 3) matrices [M], [C] and [K] represent the structural mass, damping
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The goal of the designed controller is to reduce dynamic responses in the first floor,
and hence responses in the structure. Control diagram of the controller with two-input
state variables x1 and ẋ1 and one-output control variable u is shown in Fig. 2.

 2 

by the meaning of the terms. Many interesting semantic properties of terms can be formulated using 

this relation, and some of these can be taken to form an axiom system of HAs. Application of 

hedge-algebras-based fuzzy controller (HAC) in structural active fuzzy control with remarkable 

results in [1, 16-19] provided a new approach to study problems of vibration control of structures. 

However, the actuator saturation, a very important problem because any actuation mechanisms are 

subject to inherent physical limitations, was still not considered in [1, 16-19]. 

In this paper, the problem of actuator saturation control of a benchmark structure with active 

bracing system (ABS) subjected to earthquake excitation using hedge-algebras-based fuzzy 

controller (HAC) is presented to show advantages of the proposed controller. 

 

2. Problem under consideration 

In this paper, a benchmark three-storey shear-beam building model subjected to earthquake 

excitation 
0x  shown in Fig. 1 studied by Du et al. in 2011 [20] with actuator saturation is 

considered for controller design.  
 

0x  

x2 

x1 

x3 

m1 

m2 

m3 

k2 

k1 

k3 c3 

c2 

c1 ABS 

mi =1000 kg, ci = 1.407 kNs/m, and 

ki = 980 kN/m, where i = 1,2,3, 

respectively.  

The ABS is installed at the first 

floor to control the vibration of the 

structure. 

The 1940 El Centro earthquake of 

which peak ground acceleration is 

scaled to 0.112 g is used as 

excitation load 0x  of the structure. 
 

Fig. 1. The structural system and parameters 

The motion equation of the structure system with actuator saturation is expressed as: 

 0[ ]{ } [ ]{ } [ ]{ } sat( ) { }M x C x K x u x      (1) 

where {x} = [x1  x2  x3]
T
, {} = [m1  m2  m3]

T
.  

Control force u is generated by the ABS installed on the first floor and sat(u) with limit of ulim 

for the actuator is described as follows [20]: 

 

lim lim

lim lim

lim lim

if

sat( ) if

if

u u u

u u u u u

u u u




   
  

  (2) 

The n × n (n = 3) matrices [M], [C] and [K] represent the structural mass, damping and 

stiffness matrices, respectively.  

The goal of the designed controller is to reduce dynamic responses in the first floor, and hence 

responses in the structure. Control diagram of the controller with two-input state variables x1 and 1x  

and one-output control variable u is shown in Fig. 2. 
 

CONTROLLER 

1x  

u 
1x  

1x  

1x  STRUCTURE 

 
Fig. 2. Control diagram 

It is assumed that the reference domains of the state variables and the control variable are 

given by a0  x1  a0, b0  1x   b0 and –c0 ≤ u ≤ c0. 

 

3. Controller design 

The idea and basic formulas of HAs theory based on definitions, theorems, and propositions 

in [1, 8-19] are summarized and presented in Appendix 1.  

Fig. 2. Control diagram

It is assumed that the reference domains of the state variables and the control vari-
able are given by −a0 ≤ x1 ≤ a0, −b0 ≤ ẋ1 ≤ b0 and −c0 ≤ u ≤ c0.

3. CONTROLLER DESIGN

The idea and basic formulas of HAs theory based on definitions, theorems, and
propositions in [1, 8–19] are summarized and presented in Appendix 1.

Consider a HAs structure AX = (X,G,C,H, ≤), where G = {Negative, Positive} and
H = {Very, Little}. In this case, p = q = 1, and as a result, SQM values ϕ for all linguistic
values of the term-set X are determined through only two independent fuzziness param-
eters, which are 0 < fm(c−) and µ(h−) < 1. Some typical linguistic values with SQM
values of the term-set X are calculated and arranged in Tab. 1 for the case of fm(c−) and
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µ(h−) = 0.5. Where, Ne, Po, V and L stand for Negative, Positive, Very and Little, respec-
tively.

Hence, by utilizing HAs theory to describe term-set of a linguistic variable, in-
herent order relationships between linguistic values existing in the term-set are closely
guaranteed.

Table 1. Some typical linguistic values with SQM values

Linguistic values VNe Ne LNe W LPo Po VPo

SMQ values ϕ 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Next, designing steps of the hedge-algebras-based fuzzy controller (HAC) for ac-
tive control of the structure are presented. Operation principle of HAC with two-input
state variables x1 and ẋ1 and one-output control variable u is shown in Fig. 3 [19].
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Although linguistic variables x1, ẋ1 and u under consideration are different, their
hedge algebras are here defined with a similar HAs structure AX as shown in above with
the case of fm(c−) = 0.5 and µ(h−) = 0.5. The components of the controller are presented
as follows [19]:

- Normalization: the reference domains of the linguistic variables X, given in the
form of an interval [a, b], must be normalized into the domain of a SQM, given in [0,1],
by the unique transformation: gX: [a, b]→ [0, 1]. These mappings for state variables are
presented in Fig. 4.
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- HA-Rule Base with SQMs: a typical fuzzy rule base stored in the form of if-then
rules with SQM values is considered for HAC as shown in Tab. 2.
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Table 2. HAC rule base with SQM values

aaaaaaaaa
ϕ(x1)

ϕ(ẋ1)
LNe: 0.375 W: 0.5 LPo: 0.625

Ne: 0.25 VNe: 0.125 Ne: 0.25 LNe: 0.375
LNe: 0.375 Ne: 0.25 LNe: 0.375 W: 0.5
W: 0.5 LNe: 0.375 W: 0.5 LPo: 0.625
LPo: 0.625 W: 0.5 LPo: 0.625 Po: 0.75
Po: 0.75 LPo: 0.625 Po: 0.75 VPo: 0.875

- HA-Inference Engine: the semantically quantifying surface (SQS) established
through the points that present the control rules occurring in Tab. 2 as shown in Fig. 5
are here considered as the HA inference engine to infer the control force u for given HA
input (x1 and ẋ1) [1].
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By regarding the designing steps of HAC, some characteristics of the controller
HAC for structural active control could be found as follows:
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- Their components and operation principle are similar to those of a conventional
fuzzy controller (denoted by FC) for structural active control that contains two-input
state variables x1 and ẋ1 and one-output control force u. This analogical FC is presented
in Appendix 2.

- The inherent semantic order between the linguistic values based on their SQMs is
closely guaranteed and expressed instead of using any fuzzy sets.

- The HA-Rule Base with SQMs could be clearly observed by utilizing the seman-
tically quantifying surface (SQS).

- The normalization, HA-Inference Engine and de-normalization components are
easily operated by using very simple linear interpolations.

- As a result, it can be emphasized that the hedge-algebras-based fuzzy controller
are easy in establishment, coherent in implementation and efficient in computation time
[19].

4. NUMERICAL RESULTS

In this section, two important criteria for building structures subjected to external
dynamic loads are considered as follows:

- Peak storey drift:

J1 = max
t,i

(
|di (t)|
dmax

)
(3)

- Peak absolute acceleration:

J2 = max
t,i

(
|ẍai (t)|
ẍa max

)
(4)

The criteria J1 and J2 respectively relate to structural safety and human tolerance.
Where, di(t) is the storey drift of the ith floor in the controlled response, dmax is the pick
storey drift in the uncontrolled response, ẍai(t) is the absolute acceleration of the ith floor
in the controlled response and ẍa max is the pick absolute acceleration in the uncontrolled
response.

First, the actuator limitation is given as ulim = 700 N. The values of the criteria J1
and J2 for the structure are given in Tab. 3, where the results given from other methods
are also included for comparison. It is found that the proposed controller provides quite
good results in reducing the pick storey drift as well as pick absolute acceleration. The
results obtained from the HAC are quite better than those of the analogical FC in term of
both criteria J1 and J2.

Table 3. Normalized maximum values of responses in the case of ulim = 700 N

Controllers LQR [21] MBBC [21] SSMC [21] Lim et al. [21] Du et al. [20] FC HAC
J1 0.657 0.381 0.388 0.396 0.41 0.491 0.460
J2 0.584 0.548 0.560 0.543 0.53 0.587 0.551

Time responses of the storey drift of the first floor, the absolute acceleration of
the third floor and the control force in the case of ulim = 700 N are shown in Figs. 7-9,
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respectively. It can be seen from Figs. 7-9 that a quite similar variation of the storey drift
of the first floor, the absolute acceleration of the third floor and the control force of the
controllers FC and HAC could be found for the case of ulim = 700 N.
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Fig. 9. Control force in the case of ulim = 700 N

Next, in order to study the influence of the actuator limitation on the criteria J1 and
J2, different values of ulim are considered and simulation results are plotted in Figs. 10-11.
It can be found that the performance of HAC is quite better than that of FC for all cases
of actuator limitations as well as for both criteria J1 and J2.
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Fig. 17. Control force in the case of ulim = 900 N 

It can be observed in Figs. 12-17 that the responses of the storey drift, the absolute 

acceleration and the control force obtained from the controllers are also quite similar the cases of 

ulim = 500 N and ulim = 900 N. 

The results obtained from the HAC are quite better than those of the analogical FC in term of 

both criteria J1 and J2 for all cases of ulim. However, the improvements are small, about 6%. Both 

controllers, HAC and FC, are simulated base on similar control rule bases (see Tables 2 and 5) and 

the same condition of the actuator saturation. Hence, above small differences could be due to the 

differences in components of the controllers HAC vs. FC: Normalization vs. Fuzzification, HA-

Inference Engine vs. FC- Inference Engine and De-normalization vs. De-fuzzification. 

In order to illustrate the computation performance of the proposed controller, computation 

times (CPU times) of HAC and FC are measured in the case of ulim = 700 N and presented in Table 

4. It is shown that the CPU time of HAC is much reduced by over 90% in comparison with that of 

the analogical FC. The CPU times are measured when running computer programs on the machine 

ASUS U46E with 8GB RAM, the OS is Windows 7 Home Premium, the programming language is 

Matlab 7.6.0, the total time of simulation is 15 s and the time step size is 0.01 s. It is a significant 

benefit of HAC in practical control because computation time of control forces is one of the main 

factors of input time delay of a controller. 
Table 4. Comparison of CPU computation time (s) of fuzzy controllers 

Controller FC HAC 

Computation time 13.42 1.09 

Reduction ratio (%) 0 91.88 

 

5.  Conclusions  

In this paper, the problem of actuator saturation control of a benchmark structure with active 

bracing system (ABS) subjected to earthquake excitation using hedge-algebras-based fuzzy 

controller (HAC) is presented.  

It can be emphasized that the hedge-algebras-based fuzzy controller for active control with 

actuator saturation of the structure are easy in establishment, coherent in implementation, effective 

in control performance and very efficient in computation time in comparison with the analogical 

conventional fuzzy controller. 
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Time responses of the storey drift of the first floor, the absolute acceleration of the
third floor and the control force in the cases of ulim = 500 and 900 N are plotted in Figs.
12-17, respectively.

It can be observed in Figs. 12-17 that the responses of the storey drift, the absolute
acceleration and the control force obtained from the controllers are also quite similar the
cases of ulim = 500 N and ulim = 900 N.

The results obtained from the HAC are quite better than those of the analogical FC
in term of both criteria J1 and J2 for all cases of ulim. However, the improvements are
small, about 6%. Both controllers, HAC and FC, are simulated base on similar control
rule bases (see Tab. 2 and Tab. 5 in Appendix 2) and the same condition of the actuator
saturation. Hence, above small differences could be due to the differences in components
of the controllers HAC and FC: Normalization and Fuzzification, HA-Inference Engine
and FC-Inference Engine and De-normalization and De-fuzzification.

Table 4. Comparison of CPU computation time (s) of fuzzy controllers

Controller FC HAC
Computation time 13.42 1.09
Reduction ratio (%) 0 91.88

In order to illustrate the computation performance of the proposed controller, com-
putation times (CPU times) of HAC and FC are measured in the case of ulim = 700 N and
presented in Tab. 4. It is shown that the CPU time of HAC is much reduced by over 90%
in comparison with that of the analogical FC. The CPU times are measured when running
computer programs on the machine ASUS U46E with 8GB RAM, the OS is Windows 7
Home Premium, the programming language is Matlab 7.6.0, the total time of simulation
is 15 s and the time step size is 0.01 s. It is a significant benefit of HAC in practical control
because computation time of control forces is one of the main factors of input time delay
of a controller.

5. CONCLUSIONS

In this paper, the problem of actuator saturation control of a benchmark struc-
ture with active bracing system (ABS) subjected to earthquake excitation using hedge-
algebras-based fuzzy controller (HAC) is presented.

It can be emphasized that the hedge-algebras-based fuzzy controller for active con-
trol with actuator saturation of the structure are easy in establishment, coherent in imple-
mentation, effective in control performance and very efficient in computation time in
comparison with the analogical conventional fuzzy controller.
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APPENDIX 1

In this section, the idea and basic formulas of HAs theory are summarized based
on definitions, theorems and propositions in [1, 8–18].

By the term meanings, these could be observed that extremely small < very small
< small < approximately small < little small < big < very big < extremely big... So, a fol-
lowing viewpoint is made: term-domains can be modelled by a poset (partially ordered
set), a semantics-based order structure. Next, the way to find out this structure will be
explained.

Consider DISPLACEMENT as a linguistic variable and let X be its term-set. As-
sume that its linguistic hedges used to express the DISPLACEMENT are Extremely, Very,
Approximately, Little, which for short are denoted by, respectively, E, V, A and L, and its
primary terms are Positive and Negative, which are denoted by Po and Ne, respectively.
Then, X ={Po, V Po, E Po, EA Po, A Po, LA Po, L Po, L Ne, Ne, A Ne, V Ne, E Ne ...} ∪
{0, W, 1} is a term-domain of DISPLACEMENT, where 0, W and 1 are specific constants
called absolutely Negative, neutral and absolutely Positive, respectively.

A term-domain X can be ordered based on the following observation:
- Each primary term has a sign which expresses a semantic tendency. For instance, Pos-

itive has a tendency of “going up”, called positive one, and it is denoted by c+, while
Negative has a tendency of “going down”, called negative one, denoted by c−. In general,
the formula c+ ≥ c− is evident, semantically.

- Each hedge also has a sign. It is positive if it increases the semantic tendency of
the primary terms and negative, if it decreases this tendency. For instance, V is positive
with respect to both primary terms, while L has a reverse effect and hence it is negative.
Denote by H− the set of all negative hedges and by H+ the set of all positive ones of
DISPLACEMENT.

The term-set X can be considered as an abstract algebra AX = (X, G, C, H, ≤),
where G = {c−, c+}, C = {0, W, 1}, H = H+ ∪ H− and ≤ is a partially ordering relation
on X. It is assumed that H− ={h−1, . . ., h−q}, where h−1 < h−2 < . . . < h−q, H+ ={h1,
. . ., hp}, where h1 < h2 < . . . < hp.

The fuzziness measure of vague terms and hedges of term-domains is defined as
follow a fm: X → [0, 1] is said to be a fuzziness measure of terms in X if:

fm(c−)+fm(c+) = 1 and ∑ h∈Hfm(hu) = fm(u), for ∀u ∈ X, (5)

For the constants 0, W and 1, fm(0)= fm(W)= fm(1) = 0, (6)
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For ∀x, y ∈ X, ∀h ∈ H,
fm(hx)
fm(x)

=
fm(hy)
fm(y)

. (7)

This proportion does not depend on specific elements, called the fuzziness measure
of the hedge h and denoted by µ(h).

For each fuzziness measure fm on X, then:

fm(hx) = µ(h)fm(x), for every x ∈ X, (8)

fm(c−) + fm(c+) = 1, (9)
p

∑
i=−q,i 6=0

fm(hic) = fm(c), c ∈ {c−, c+}, (10)

p

∑
i=−q,i 6=0

fm(hix) = fm(x), (11)

−1

∑
i=−q

µ(hi) = α and
p

∑
i=1

µ(hi) = β where α, β > 0 and α + β = 1. (12)

A function Sign: X → { − 1, 0, 1} is a mapping which is defined recursively as
follows, for h, h′ ∈ H and c ∈ {c−, c+}:

Sign(c−) = −1, Sign(c+) = +1, (13)

Sign(hc) = −Sign(c), if h is negative w.r.t. c, (14)

Sign(hc) = +Sign(c), if h is positive w.r.t. c, (15)

Sign(h’hx) = −Sign(hx), if h′hx 6= hx and h′ is negative w.r.t. h, (16)

Sign(h’hx) = +Sign(hx), if h′hx 6= hx and h′ is positive w.r.t. h, (17)

Sign(h’hx) = 0, if h′hx = hx. (18)

Let fm be a fuzziness measure on X. A semantically quantifying mapping (SQM)
ϕ: X → [0,1], which is induced by fm on X, is defined as follows:

ϕ(W) = θ = fm(c−), ϕ(c−) = θ − α f m(c−) = β fm(c−), ϕ(c+) = θ + αfm(c+),

ϕ(hjx) = ϕ(x) + Sign(hjx)

 j

∑
i=Sign(j)

fm(hix)−ω(hjx)fm(hjx)

 ,
(19)

where
j ∈ {j : −q ≤ j ≤ p&j 6= 0} = [−q p],

ω(hjx) =
1
2
[
1 + Sign(hjx)Sign(hphjx)(β− α)

]
.

(20)

It can be seen that the mapping ϕ is completely defined by (p + q) free parameters:
one parameter of the fuzziness measure of a primary term, and (p + q− 1) parameters of
the fuzziness measure of hedges.
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APPENDIX 2

In this section, designing of the conventional fuzzy controller (FC) which is similar
to HAC is presented.
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Table 5. Rule base of FC 
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 Fig. 19. Fuzzifications of x1, ẋ1 and u

Operation principle of the analogical FC with two-input state variables x1 and ẋ1
and one-output control variable u with actuator saturation is shown in Fig. 18. The rule
base of FC is presented in Tab. 5 and fuzzifications of the linguistic variables are shown
in Fig. 19, where Z is stood for linguistic value ”Zero”. Mamdani method and centre
gravity method are used as inference engine and de-fuzzification method of FC.
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