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Abstract. Article introduces the Fast-Fourier transformation method (FFT) and an ap-
proximation method to calculate the conductivity of compound-inclusion composites in
two-dimensional space. The approximation compares favorably with the numerical re-
sults for a number of periodic and random models over a range of volume proportions of
phases, but divers at large volume proportions of the included phases when the interac-
tions between the inclusions are more pronounced.
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1. INTRODUCTION

Theoretical determination the effective conductivity of heterogeneous materials is
usually complicated due to the complexity of the microstructure and limited informa-
tion about the composites, such as the properties and volume proportions of the com-
ponent materials. An approach to the problem is to construct upper and lower bounds
based on the variational formulations [1, 2]. Matrix-particulate composite are suspen-
sions of particle-inclusions in a continuous materials. In many cases the inclusions have
the structure that can be presented as multi-coated inclusions. A simplest 2D model for
such composites are multi-coated circle assemblage model, when the matrix phase is de-
scribed as the outermost circular cell - an extension of Hashin-Shtrikman two-phase circle
assemblage. More accurate estimations in particular cases would require more detailed
numerical simulations. In this work we apply both numerical FFT method and the simple
multi-coated circle assemblage approximation to investigate some periodic and random
microstructures.
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2. FAST FOURIER METHOD IN HOMOGENIZATION

The main principles of the Fast Fourier method have been presented in previous
studies [3,4] (see more [5,6], in this section, we briefly recall the algorithm for composites
with coated.

Fig. 1. (a) Three components suspension of coated inclusion; (b) A coated inclusion

Due to the periodicity of the microstructures, one can consider an unit cell as a
representative volume element (RVE), which consists of a matrix medium (M) and coated
inclusion component (I = I1 ∪ I2) (see Fig. 1). Behavior of the component materials is
described by Fourier’s law

J(x) = −C(x).E(x), (1)
where E(x) and J(x) are respectively the local temperature gradient and thermal flux;
C(x) is the second order local conductivity tensor

C(x) =
n

∑
α=1

Cα Iα(x), (2)

Iα(x) =
{

1 if x ∈ Vα

0 if x 6∈ Vα
(3)

α designates the phase (α = I1; I2 or M).
Following [4], the problem in a unit cell is solved by explicit recurrence process{

Ei+1(x) = Ei(x)− Γ0(x) ∗ [C(x).E(x)] in the real space
Ei+1(ξ) = Ei(ξ)− Γ0(ξ).Ji(ξ) in the Fourier space

(4)

in which Γ0(ξ) is the Green operator, given by

Γ0(ξ) =
ξ ⊗ ξ

ξ · C0ξ
(5)

C0 is the conductivity of the reference medium; Ji(ξ) and Ei(ξ) are respectively Fourier
transformation of Ji(x) and Ei(x). Relationship between Ji(ξ) and Ei(ξ) is described by
expression

Ji(ξ) = C(ξ) ∗ Ei(ξ), (6)
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where the symbol “*” designates the product of convolution. The Fourier transformation
of conductivity tensor is

C(ξ) =
∫
V

C(x)eiξxdV = ∑
α

CαIα(ξ), (7)

Iα(ξ) defined by

Iα(ξ) =
1
V

∫
Vα

eiξxdV. (8)

In the case of coated inclusion, one has the exact expression of Iα(ξ)

II2(ξ) =
πa

2S‖ξ‖ J1(a‖ξ‖)∑
k

eiξXk , (9)

II1(ξ) =
π

2S‖ξ‖

[
bJ1(b‖ξ‖)− aJ1(a‖ξ‖)

]
∑

k
eiξXk , (10)

where S is the area of unit-cell; a, b are the inner and outer radii of coated-inclusion; Xk is
the center of coated-inclusion; J1 is the Bessel function of first kind and first order. IM(ξ)
can be derived from relation

∑
α

Iα(ξ) = 0, ∀ξ 6= 0 . (11)

For ξ = 0, one have Iα(0) = Vα. After replacing Eqs. (6), (7) in (4), one obtains

Ei+1(ξ) = Ei(ξ)− Γ0(ξ). ∑
α

Cα(Iα ∗ Ei)(ξ). (12)

For the three-component medium considered, the expression (12) can be written as

Ei+1(ξ) = Ei(ξ)− Γ0(ξ).
[
CMEi + (CI1 − CM)(II1 ∗ Ei) + (CI2 − CM)(II2 ∗ Ei)

]
. (13)

Let the unit-cell be subjected to the macroscopic temperature gradient E0. At convergence
of the iterative process, one finds

Q = J(ξ = 0) = Ce f f E0 , (14)

in which Ce f f is the effective conductivity tensor. The numerical algorithm is given as
follows

Iteration i = 1: E1(ξ) = 0 ∀ξ 6= 0; E1(0) = E0

J1(ξ) = C(ξ) ∗ E1(ξ)

Iteration i: Ei(ξ) and Ji(ξ) are known convergence test
Ei+1(ξ) = Ei(ξ)− Γ0(ξ).Ji(ξ)

Ji+1(ξ) = C(ξ) ∗ Ei+1(ξ)

The convergence of the iterative procedure is reached when

‖Ji+1(ξ)− Ji(ξ)‖
‖Ji(ξ)‖ < ε , (15)

where ε is a prescribed value (10−3 in the present work).
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3. MULTI-COATED INCLUSION MODEL

Consider a multi-coated circle model, where the disks made of material-1 (I1) are
embedded in the circular shells of material-2 (I2), the latter are embedded in the circular
shell of material-3 (M), and all composite circles of all possible sizes but with the same

Fig. 2. Doubly-coated circles

volume proportions of phases fill all the material space (Fig. 2), and the relative volume
proportions and coating orders of the phases in all n-compound spheres are the same.
Macroscopic conductivity tensor of the model can be estimated by three-point correlation
bounds for general isotropic multi-component materials [7]

(C−1
R − v

′
c ·A

−1
c · vc)

−1 ≤ Ce f f ≤ Cv − v
′
c ·A−1

c · vc , (16)

where CV and CR are respectively Voigt and Reuss average and

vc =
{1

2
v1(C1 − CR), . . . ,

1
2

vn(Cn − CR)
}T

, (17)

v
′
c =

{1
2

v1C1, . . . ,
1
2

vnCn

}T
, (18)

Ac = {Ac
αβ} , α, β = 1, . . . , n

Ac
αβ =

1
4

vαCαδαβ +
1
2

n

∑
γ=1

(
Aαβ

γ − vαCR

n

∑
δ=1

C−1
δ Aδβ

γ

)
Cγ , (19)

vc =
{1

2
v1(C−1

V − C−1
1 ), . . . ,

1
2

vn(C−1
V − C−1

n )
}T

, (20)

v
′
c =

{
− 1

2
v1C−1

1 , ...,−1
2

vnC−1
n

}T
, (21)

Ac = {A
c
αβ} , α, β = 1, . . . , n

Ac
αβ =

1
4

vαC−1
α δαβ +

1
2

n

∑
γ=1

(
Aαβ

γ − vαC−1
V

n

∑
δ=1

Cδ Aδβ
γ

)
C−1

γ . (22)
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The bounds (16) contain the conductivities Cα, volume fraction vα of the phases,
Aβγ

α describing the micro structure of the composite and the parameters Aβγ
α of this n-

phase model in general d dimensions have been determined [8, 9]

Aβγ
α =

d− 1
d

vαvβvγ

(
∑
δ<α

vδ · ∑
κ≤α

vκ

)−1

, β, γ < α,

Aαβ
α = −d− 1

d
vαvβ

(
∑
δ≤α

vδ

)−1

, β < α,

Aαα
α =

d− 1
d

vα ∑
δ<α

vδ

(
∑
κ≤α

vκ

)−1

, α ≥ 2,

Aβγ
α = 0 if β > α or γ > α or α = β = γ = 1.

(23)

The three-point correlation parameters Aβγ
α of the model are determined as following

A11
2 = A22

2 = −A12
2 = −A21

2 =
d− 1

d
v1v2

(v1 + v2)
,

A11
3 =

d− 1
d

v2
1v3

(v1 + v2)
, A12

3 = A21
3 =

d− 1
d

v1v2v3

(v1 + v2)
,

A13
3 = A31

3 = −d− 1
d

v1v3 , A22
3 =

d− 1
d

v2
2v3

(v1 + v2)
,

A23
3 = A32

3 = −d− 1
d

v2v3 , A33
3 =

d− 1
d

v3(v1 + v2) ,

(24)

and other Aβγ
α = 0. d is the dimension of the Euclidean space (d = 2, 3). In this particu-

lar case, the exact value of the effective transverse conductivity is determined when the
upper and lower bounds coincide [4].

4. APPLICATIONS AND COMPARISONS

For numerical illustrations, consider some periodic models: square model (Fig. 3),
hexagonal model (Fig. 4) and random model (Fig. 5). In random model, 60 coated-
inclusion were planted randomly in a unit cell such that there is no circle overlapping.
Coordinates of the center does not change but the outer radii change from 0.02 to 0.05
(corresponding volume fraction from 0.0754 to 0.4712).

Assume that the volume proportion between the phase I1 and phase I2 is constant
(vI1 /vI2 = 1) for all three cases. We take C1 = 1, C2 = 5 and C3 = 20. With them we
can make 6 different combinations for the phases’ conductivity. Figs. 6, 7 and 8 present
the result for cases: CM = 1, CI2 = 20, CI1 = 5; CM = 5, CI2 = 1, CI1 = 20; CM =
20, CI2 = 1, CI1 = 5 respectively. Exact value of doubly-coated circle model (vI1 =
vI2 = 0.1 −→ 0.45; vM = 1− 2vI1) is also given for comparisons. Numerical simulations
indicate that for doubly-coated (and multi-coated) circle assemblage model, the bounds



174 Nguyen Van Luat, Nguyen Trung Kien

Fig. 3. Square model Fig. 4. Hexagonal model

Fig. 5. Random model
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Fig. 6. Macroscopic conductivity for case
CM = 1, CI2 = 20, CI1 = 5

Fig. 7. Macroscopic conductivity for case
CM = 5, CI2 = 1, CI1 = 20

Fig. 8. Macroscopic conductivity for case CM = 20, CI2 = 1, CI1 = 5

(16) converge to the exact effective conductivity, and we have an analytical expression of
the conductivity for the model.

From Figs. 6, 7 and 8 one can see that: all the results fall inside the Hashin-Shtrikman’
bounds as expected. When the volume fraction of the compounded inclusions is small-
to-moderate (less than 30%), the model agrees well with the numerical results. When
the volume fraction of the compounded inclusions increases, the numerical results diver
from each other as well as from the model due to the influence of spatial distribution. The
fact indicates the effect of the compound-inclusion interactions in close distances, which
can not be accounted for by the idealistic coated circle model. The largest differences
(compared to the model) appear in random model, followed by square and hexagonal
models. At small volume fractions of compound spheres, the results appear to close to
lower or upper HS bounds when the compound spheres appear more or less conductive
than the matrix as discussed in [10]. However at large volume proportions of the coated



176 Nguyen Van Luat, Nguyen Trung Kien

spheres the inclusions get close into each other, the influence of the matrix separating
them becomes less dominant, and the results diver from the bounds as observed.

5. CONCLUSION

Macroscopic conductivity of three phases composites is determined using Fast-
Fourier methods. Some periodic models are studied: square array, hexagonal array
and random array. The numerical results of all models fall inside the Hashin-Shtrikman
bounds. We observe that the simple multi-coated circle assemblage appears good when
the volume proportion of the inclusions are from small to intermediate. At large volume
fraction of inclusions, numerical simulations are needed for particular geometries to give
more accurate evaluations of the effective conductivity, through practical microgeometry
is generally hard to be described and incorporated into numerical scheme.
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