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Abstract. This paper presents some numerical results of bending and vibration analy-
ses of an unstiffened and stiffened folded laminate composite plate using finite element
method. The effects of fiber orientations, boundary conditions, stiffener conditions of the
plates for deflections, natural frequencies, and the corresponding mode shapes, transient
displacement responses were considered. The Matlab programming using rectangular
isoparametric plate element with five degree of freedom per node based on Mindlin plate
theory was built to solve the problems. A good agreement is found between the results
of this technique and other published results available in the literature.

Keywords: Bending, folded laminated composite plate, vibration, dynamic response,
stiffeners, stiffened folded laminated composite plate, finite element.

1. INTRODUCTION

Many stiffened flat plates are designed to resist vibration due to dynamical loads.
The effect of the stiffeners on the vibration behaviors of flat plates is known to be signif-
icant. Thus it is not surprising that a number of papers has been devoted to the study
of this problem. Because the laminated plates with stiffeners become more and more im-
portant in the aerospace industry and other modern engineering fields, wide attention has
been paid on the experimental, theoretical and numerical analysis for the static and dy-
namic problems of such structures in recent years. Turkmen and Mecitoglu [1] presented
a numerical analysis and experimental study of stiffened laminated flat plates exposed to
blast shock waves. Zhao et al. [2] using an energy approach, investigated the free vibration
of the stiffened simply supported rotating cross-ply laminated cylindrical shells. Sadek
and Tawfik [3] presented a higher-order finite element model and studied the behavior of
concentrically and eccentrically stiffened laminated plates. Kumar and Mukhopadhyay [4]
used mixing plane stress triangular element and discrete Kirchhoff-Mindlin plate bending
element to investigate the stiffened laminated composite flat plates.

Olson and Hazell [5] have presented results from a theoretical and experimental
comparison study on the vibration characteristics of all clamped and eccentrically stiffened
isotropic flat plates. They used a triangular finite element in the calculations. Koli [6]
developed a 9-noded rectangular plate element and 3-noded beam element; the beams are
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placed along the plate nodal lines to analysis of stiffened laminated plates under transverse
loading. Biswal and Ghosh [7] used 4-noded rectangular elements with seven degrees of
freedom at each node for analysis of stiffened plates. Gangadhara Prusty [8] studied linear
static analysis of composite hat-stiffened laminated shells using 8-noded rectangular plate
element and 3-noded beam element.

All of those analyses only investigated for flat plate with stiffeners. The folded plate
is not readily available. The folded plate with stiffeners can be used to open the range of
engineering applications of laminated composite plate. Because, they are lightweight, easy
to form and economical, and have a much higher load carrying capacity than flat plates.

Behavior of unstiffened isotropic folded plates has been studied previously by a host
of investigators using a variety of approaches. Goldberg and Leve [9] developed a method
based on elasticity. According to this method, there are four components of displacements
at each point along the joints: two components of translation and a rotation, all lying
in the plane normal to the joint, and a translation in the direction of the joint. The
stiffness matrix is derived from equilibrium equations at the joints, while expanding the
displacements and loadings into the Fourier series considering boundary conditions. Bar-
Yoseph and Herscovitz [10] formulated an approximate solution for folded plates based on
Vlassov’s theory of thin-walled beams. According to this work, the structure is divided
into longitudinal beams connected to a monolithic structure. Cheung [11] was the first
author developed the finite strip method for analyzing isotropic folded plates. Additional
works in the finite strip method have been presented. The difficulties encountered with
the intermediate supports in the finite strip method [12] were overcome and subsequently
Maleki [13] proposed a new method, known as compound strip method. Irie et al. [14]
used Ritz method for the analysis of free vibration of an isotropic cantilever folded plate.

Perry et al. [15] presented a rectangular hybrid stress element for analyzing a
isotropic folded plate structures in bending cases. In this, they used a four-node element,
which is based on the classical hybrid stress method, is called the hybrid coupling element
and is generated by a combination of a hybrid plane stress element and a hybrid plate
bending element. Darilmaz et al. [16] presented an 8-node quadrilateral assumed-stress
hybrid shell element. Their formulation is based on Hellinger–Reissner variational prin-
ciple for bending and free vibration analyses of structures which have isotropic material
properties.

For unstiffened composite folded plate, Haldar and Sheikh [17] presented a free vi-
bration analysis of isotropic and composite folded plate by using a sixteen nodes triangular
element. Suresh and Malhotra [18] studied the free vibration of damped composite box
beams using four node plate elements with five degrees of freedom per node.

Recently, Niyogi et al. in [19] reported the analysis of unstiffened and stiffened
symmetric cross-ply laminate composite folded plates using first-order transverse shear
deformation theory and nine nodes elements. In their works, only in axis symmetric cross-
ply laminated plates were considered. So that, there is uncoupling between the normal and
shear forces, and also between the bending and twisting moments, then besides the above
uncoupling, there is no coupling between the forces and moment terms. Tran Ich Thinh
et al. in [20-23] presented a finite element method to analyze of bending, free vibration
and time displacement response of V-shape; W-shape sections and multi-folding laminate
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plate (which having trapezoidal corrugate plate). In these studies, the effects of folding
angles, fiber orientations, loading conditions, boundary condition have been investigated.

In this paper, eight-noded isoparametric rectangular plate elements were used to an-
alyze the stiffened folded laminate composite plate with in-axis configuration and off-axis
configuration. Some numerical results for bending, natural frequencies, and dynamic re-
sponses of the plates under various fiber orientations, stiffener orientations, and boundary
conditions are investigated.

2. THEORETICAL FORMULATION

2.1. Displacement and strain yield

According to the Reissner-Mindlin plate theory, the displacements (u, v, w) are re-
ferred to those of the mid-plane (u, v0, w) as
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Here, θx and θy are the total rotations, φx and φy are the constant average shear
deformations about the y and x-axes, respectively. The z-axis is normal to the xy-plane
that coincides with the mid-plane of the laminate positive downward and clockwise with
x and y. The generalized displacement vector at the mid- plane can thus be defined as

{d} = {u0, v0, w0, θx, θy}
T

The strain-displacement relations can be taken as
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2.2. Finite element formulations

The Hamilton variational principle is used here to derive the laminate equations of
motion. The mathematical statement of the Hamilton principle in the absence of damping
can be written as [24]
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In which
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U, T are the potential energy, kinetic energy; W is the work done by externally

applied forces. u = [u, v, w]T is the displacement of any generic point (x, y, z) in space.
In laminated plate theories, the membrane {N}, bending moment {M} and shear

stress {Q} resultants can be obtained by integration of stresses over the laminate thickness.
The stress resultants-strain relations can be expressed in the form
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where
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n: number of layers, hk−1, hk: the position of the top and bottom faces of the kth layer.
[Q′

ij]k and [C′

ij ]k: reduced stiffness matrices of the kth layer (see [25, 26]).
In the present work, the eight nodded isoparametric quadrilateral element with five

degrees of freedom per nodes is used. The displacement field of any point on the mid-plane
is given by
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where Ni(ξ, η) are the shape function associated with node i in terms of natural coordinates
(ξ, η). The strain field so that can be expressed as

{ε◦} =
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The element stiffness matrix is given by equation
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The element stiffness matrix is given by

[k]e =

∫

Ae

(

[B]T
)

[H ] [B]tdAe (9)

where [H ] is the material stiffness matrix given by [H ] =





[Aij] [Bij ] 0
[Bij ] [Dij] 0

0 0 [Fij ]





The element mass matrix is given by

[m]e =
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With ρ is mass density of material,
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ziρdz, i = 0, 1, 2. (11)

Nodal force vector is expressed as

{f}e =

∫

Ae

[Ni]
T qdAe (12)

Where q is the intensity of the applied load. For free and forced vibration analysis,
the damping effect is neglected then the governing equations are [23]:

[M ] {ü} + [K] {u} = {0} or
{

[M ]− ω2 [K]
}

= {0} (13)

And
[M ] {ü}+ [K] {u} = f (t) (14)

In which{u}, {ü} are the global vectors of unknown nodal displacement, acceleration,
respectively. [M ], [K], f(t) are the global mass matrix, stiffness matrix, applied load
vectors, respectively,

[M ] =

n
∑

1

[m∗]e; [K] =

n
∑

1

[k∗]e; {f(t)} =

n
∑

1

{f∗

e (t)} (15)

In which [m∗]e = [T ]T [m]e [T ]; [k∗]e = [T ]T [k]e [T ]; [f∗]e = [T ]T {f}e .
With n is the number of element.
In this analysis, both of stiffener and folded plates are modeled by eight-noded

isoparametric rectangular plate element, the membrane and bending terms are coupled,
as can be clearly seen in Fig. 1. Even more since a rotation of the normal appear as
unknowns for the Reissner–Mindlin model, it is necessary to introduce a new unknown for
the in-plane rotation called drilling degree of freedom, θz . The rotation θz at a node is not
measured and does not contribute to the strain energy stored in the element [23, 27]. The
technique is used here: Before applying the transformation, the 40 × 40 stiffness and mass
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Fig. 1. Global x, y, z and local x′, y′, z′ axes system for folded plate
element, folding angle α

matrices are expanded to 48 × 48 sizes, to insert sixth θz drilling degrees of freedom at each
node of a finite element. The off-diagonal terms corresponding to the θz terms are zeroes,
while a very small positive number, we taken the θz equal to 10−4 times smaller than the
smallest leading diagonal, is introduced at the corresponding leading diagonal term. The
load vector is similarly expanded by using zero elements at corresponding locations. So
that, for a folded element, the displacement vector of each node is [20, 23]:

{u} = [T ]
{

u′
}

(16)

where u′ = [u′, v′, w′]T is the displacement of a generic point in local coordinate system
(x’,y’,z’).

[T ] =

















lx′x ly′x lz′x 0 0 0
lx′y ly′y lz′y 0 0 0
lx′z ly′z lz′z 0 0 0
0 0 0 ly′y −lx′y lz′y
0 0 0 −ly′x lx′x −lz′x
0 0 0 ly′z −lx′z lz′z

















is the transformation matrix.
lij are the direction cosines between the global and local coordinates.

3. NUMERICAL RESULTS

Based on the foregoing theoretical formulation, a homemade Matlab code has been
developed to calculate deflections, natural frequencies and investigating the mode shapes,
transient displacement response of the folded composite plates with and without stiffeners.
The stiffeners are modeled as laminated plate elements. In transient analysis, the Newmark
method is used with parameters that control the accuracy and stability of α = 0.25and
δ = 0.5 (see [23]).
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3.1. Validation examples

3.1.1. Example 1: Isotropic stiffened flat plate

Firstly, to observe the accuracy of the present Matlab code, the isotropic stiffened
flat plate plotted in Fig. 2 is recalculated, which is a previously reported experimental and
theoretical example (Olson and Hazell, 1977; Pal and Niyogi, 2008). Dimension parameters
of the plate are illustrated with L = W = 203 mm, thickness of stiffener in 6.35 mm; width
of stiffener in 12.7 mm; elastic modulus E = 68.7 GPa, Poisson ratio υ = 0.3, density ρ
= 2820 kg/m3. The results are compared with numerical results given by Olson [5], Pal
et al. [19], and experimentally results given by Hazell [5]. In [5], the stiffener is molded by
beam elements, in [19] the stiffener is molded by nine nodes elements.

L

W

Fig. 2. Sitffended flat plate

Mode 1 Mode 3

Mode 2
Mode 4

Mode 5

Fig. 3. First five mode shapes
of stiffened flat plate

The first five natural frequencies obtained from the present code and those obtained
by Olson, Pal et al, Hazell are present in Tab. 1. The first five mode shapes are shown in
Fig.3. The results show a good agreement.

Table 1. Five first natural frequencies of isotropic stiffened flat plate

Mode
Frequencies (Hz) Numerical results Experiment results

Present [19] [5] [5]

1 721.83 720.0 718.1 689

2 749.88 746.5 751.4 725

3 989.71 988.5 997.4 961

4 999.21 998.3 1007.1 986

5 1407.56 1405.9 1419.8 1376

In [5] (Olson and Hazell, 1977), the plate portion of the stiffened panels was modeled
by triangular elements and the stiffeners were modeled by refined beam bending and
torsion elements. Both in-plane and bending motions in the plate were considered, but in-
plane inertias were neglected. The reasons need to be further investigated. The transverse
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shear deformation, the rotary inertia of plate and stiffeners are considered in the present
method. It is obvious that the current model is more advanced.

3.1.2. Example 2: Isotropic folded plate

In this example, the five folds folded plate structure illustrated in Fig. 4 is recal-
culated, which is a previously reported by Perry et al. [15] (1992) using a rectangular
hybrid shell element and by Darilmaz et al. [16] (2006), using an 8-node assumed stress
hybrid element. The dimensions of the structure are of L = 1 m; the width of L2 = L;
and thickness of t = 0.05 m.

z

x

y

L

L

2L

2L

(A)

a

a

NM

q

(B)

(C)

(D)

(a)

0

5

10

0

5

10

-10

-8

-6

-4

-2

0

(b)

0

5

10

0

5

10

-10

-8

-6

-4

-2

0

(c)

Fig. 4. Five first mode shapes of stiffened flat plate, (a) Geometry of the plate with
two edges AB and CD: simply supported, (b) Deformed plate with 108 elements,
(c) Deformed plate with 192 elements

Table 2. Comparison of deflection (w) at points M and N and convergence of
natural frequencies (Hz) for the five folds folded plate with simply supported edges

Number of elements Source
Deflections Natural frequencies (Hz)

wM wN f1 f2 f3 f4

48

Perry et al.[15] -0.12171 -0.13101 - - - -

ANSYS [15] -0.12180 -0.12940 - - - -

Darilmaz et al [16] -0.12133 -0.12842 - - - -

Present -0.12378 -0.13446 2.82 12.86 14.54 27.63

108 Present -0.12229 -0.13389 2.78 12.76 14.38 27.47

192

Perry et al.[15] -0.12177 -0.13114 - - - -

ANSYS [15] -0.12170 -0.13050 - - - -

Darilmaz et al [16] -0.12163 -0.13043 - - - -

Present -0.12243 -0.13353 2.78 12.76 14.39 27.46

The boundary condition: two edges AB and CD: simply supported: u = v = w = θz

= 0. Knife-edge loading (q = 100 kN/m) of the center line of the upper plate is considered
for static analysis. The material properties used are as, E = 2.1×106 N/cm2, υ = 0.3.

Because the compatible finite elements are used, the natural frequencies should
converge to the values of the mathematical model, as the number of elements is increased.
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The results, as listed in Tab. 2, show that the reasonable convergence has been achieved
with relatively small decrements in the first four frequencies,ts.

In the subsequent finite element models, the plate is divided by 192 eight-noded
isoparametric rectangular plate elements. In Tab. 2, deflections at point M and N obtained
by Perry et al. [15] and Darilmaz et al. [16] are given together with the present results for
comparison. It is observed that the deflections are in good agreement.

In the following subsections, several new numerical examples have been analyzed.

3.2. Study cases of: folded laminated plate

Consider a five folds folded composite plate shown in Fig. 5, the material properties
are shown in Tab. 3, L = 1 m, total thickness t = 0.02 m, folding angle α = 120◦. Lami-
nation schemes: symmetric and anti-symmetric in-axis configurations [0◦/90◦/0◦/90◦/0◦];
[0◦/90◦/0◦/90◦/0◦/90◦] and off-axis configurations [θ◦/-θ◦/θ◦/-θ◦/θ◦]; [θ◦/-θ◦/θ◦/-θ◦/θ◦/-
θ◦] are constructed. The reasons that we are take the configurations to investigate in this
section are [26]: For symmetric laminates, from the definition of [Bij ] (see Eq. (5)) matrix,
it can be proved [Bij] = 0. So that, there is uncoupling between the bending deforma-
tions and shear strains. Add-on, if the plate has an in-axis configurations, it is not only
symmetric, giving [Bij] = 0, but also A16 = A26 = B16 = B26 = D16= D26 = 0. So that,
there is also uncoupling between the bending and twisting. For anti-symmetric laminate,
the matrix [Bij] is not equal to zero and if it consists of alternating +θ and –θ plies, the
plate has higher shear stiffness and shear strength properties.
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Fig. 5. Geometry of stiffened folded composite plate and knife-edge loading conditions

Table 3. Graphite-Epoxy (AS4/3501) material properties.

E1(GPa) E2 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) υ12 ρ (kg/m3)

144.8 9.67 4.14 3.45 4.14 0.3 1500

Four following cases for different stiffener orientations are studied:
Case 1. Unstiffened folded composite plate (Fig. 5a), including 192 elements.
Case 2. Six x-stiffeners are attached below the folded plate running along the length

of the clamped edges (Fig. 5b) with total mass increment of 10% (width of stiffening plate
taken equal to 5cm and thickness remaining same as the original folded plate) with 192 of
elements used for plate and 48 of elements used for six x-stiffeners.
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Case 3. Two y-stiffeners are attached below the folded plate along transverse direc-
tion (Fig. 5c) with total mass increment of 9.78% (width of stiffening plate taken equal
to 5cm and thickness remaining same as the original folded composite plate)with 192 of
elements used for plate and 48 of elements used for two y-stiffeners.

Case 4. Six x-stiffeners and one y-stiffeners (which having the same geometry) are
attached below the folded plate with total mass increment of 14.89% (Fig. 5d) with 192
of elements used for plate; 48 of elements used for six x-stiffeners and 24 of elements used
for one y-stiffener.

The boundary conditions are
- Simply supported: at edges AB and CD: u = v = w= θz= 0.
- Clamped: at edges AB and CD: u = v = w= θx = θy= θz= 0.
- Cantilever plate: clamped all edges at x = 0 (except the edges of stiffeners).

3.3. Bending behaviors of stiffener orientations

The example deals with the effect of stiffener orientations on deflections of the plate
subjected to a knife-edge loading q = 10 kN/m, towards the negative direction of the z-xis
(plotted in Fig. 5). The plates with constant thickness t = 0.02m are considered in all
cases.

Two boundary conditions: simply supported at edges AB, CD and clamped at edges
AB, CD are taken for the analyses.

The deflections along the central line (y = L) of individual top plate for four cases
are compared in Fig. 6 - Fig. 7 with the same scale for each.

+ For 5 plies [45◦/ − 45◦/45◦/ − 45◦/45◦] with the same thickness
ti = t/5.

(a) (b)

Fig. 6. Effects of stiffener orientation on deflections of the five folds folded com-
posite plate, 5 plies [45◦/ − 45◦/45◦/ − 45◦/45◦] , thickness ti = t/5.

From Fig. 6 and Fig. 7, it is seen that the deflections of case 3 are least, although
addition in mass is least in this case. The deflections of case 1 and case 2 are very closed
to each others among all boundary conditions and layup sequencies schemes. When case
2 is reinforced by one y-stiffener with a mass increment of about 4.78%, the deflection is
significantly smaller than the one of before reinforcement. However, although total mass
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increment of 14.78%, the deflections of case 2 are still higher than the deflections of case
3.

+ For 6 plies [45◦/ − 45◦/45◦/ − 45◦/45◦/ − 45◦] with the same thickness of ti = t/6.

(a) (b)

Fig. 7. Effects of stiffener orientation on deflections of the five folds folded com-
posite plate, 5 plies [45◦/ − 45◦/45◦/ − 45◦/45◦/− 45◦] , thickness ti = t/6.

It is observed that case 3 is the best process of reinforcement for bending with
the above loading scheme and case 2 is the worst process of reinforcement. For both of
boundary conditions: clamped or simply supported at edges AB and CD, bending ability
of the plate descended from case 3 to case 4, case 2 and case 1.

For symmetric and anti-symmetric in-axis configurations, bending behaviors of the
plates are similar but they are giving less deflections.

3.3.1. Free vibration analysis

In this section, free vibration of the same unstiffened and stiffened five folds folded
composite plate is carried out to investigate the effect of stiffener orientations. The bound-
ary conditions are: simply supported at edges AB, CD and clamped at edges AB, CD; The
lamination schemes are: symmetric; anti-symmetric in-axis configuration and off-axis con-
figuration. Five first natural frequencies of the plates were computed and listed in Tab. 4
and Tab. 5 for the simply supported condition and clamped condition, respectively.

Five corresponding first mode shapes are available in Fig. 8 for the lay-up sequences
[45◦/ − 45◦/45◦/ − 45◦/45◦/ − 45◦] which giving comparisons of simply supported plate
for different stiffeners orientations.

From Tab. 4 and Tab. 5, it is observed that, Case 3 gives the highest natural fre-
quencies among the four cases, although addition in mass is least in the stiffened folded
plates;

the natural frequencies of Case 2 (with total mass increment of 10%) are least. This
phenomenon makes sense to us because the flexural rigidity of the plate should decrease as
the effect of inertial momentum of x-stiffeners, for sure that we plotted the mode shapes
of the plates in Fig. 8; natural frequencies of Case 4 do not make any significant change
over the unstiffened folded plates, although total mass increment of 14.78%.
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Table 4. Comparison of five first natural frequencies of five folds composite folded
plate for various stiffeners conditions: simply supported at edged AB and CD,
t = 0.02 m

Mode
[45◦/-45◦/45◦/-45◦/45◦] [0◦/90◦/0◦/90◦/0◦]

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

1 5.52 5.24 8.46 7.11 10.12 9.56 13.87 10.63

2 25.47 24.63 38.62 32.08 37.63 36.13 46.15 29.15

3 38.41 37.52 45.41 40.02 47.32 45.04 63.24 50.86

4 56.53 54.17 85.34 71.15 90.78 86.73 110.71 65.98

5 78.76 77.57 96.74 84.06 101.36 96.02 132.76 107.34

Mode
[45◦/-45◦/45◦/-45◦/45◦/-45◦] [0◦/90◦/0◦/90◦/0◦/90◦]

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

1 5.64 5.41 8.32 7.03 8.07 7.56 12.12 10.15

2 20.01 25.16 38.52 31.86 31.11 30.11 41.23 30.49

3 42.34 41.22 49.01 41.42 37.56 35.54 55.03 47.72

4 57.18 54.92 85.61 71.83 74.12 71.19 97.72 71.68

5 88.83 86.23 101.13 87.51 80.07 76.53 116.34 102.14

Table 5. Comparison of five first natural frequencies of five folds composite folded
plate for various stiffeners conditions: clamped at edged AB and CD, t = 0.02 m

Mode
[45◦/ − 45◦/45◦/ − 45◦/45◦] [0◦/90◦/0◦/90◦/0◦]

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 16.01 15.38 21.97 19.02 30.11 28.23 35.11 27.52

2 34.15 33.12 49.15 41.17 51.03 48.63 59.23 37.14

3 46.02 45.03 52.83 45.62 64.17 60.78 79.21 64.34

4 67.83 65.51 100.96 84.07 104.27 99.65 123.33 76.67

5 87.79 85.77 104.14 89.56 123.76 117.02 152.34 111.54

Mode
[45◦/-45◦/45◦/-45◦/45◦/-45◦] [0◦/90◦/0◦/90◦/0◦/90◦]

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 17.06 16.32 22.01 18.69 23.61 22.21 30.03 27.01

2 35.72 34.18 49.28 42.32 41.34 40.02 51.18 40.26

3 48.17 46.71 53.79 47.15 50.79 48.03 69.17 60.72

4 71.19 68.02 101.42 85.36 84.01 81.73 108.37 82.16

5 94.82 91.73 108.88 93.62 97.75 92.97 132.83 117.54
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For Cases 1, 2 and 3, the natural frequencies of the plates having off-axis configu-
rations are always lower than the frequencies of plates having in-axis configurations.

However, for Case 4, the second and fourth frequencies of off-axis plates are higher
than the others because of the effect of y-stiffener initial momentum (for more clearly see
the plotted mode shape in Fig. 8). We can also notice that the natural frequencies of the
plates are significantly altered for y-stiffeners.

+ Case 1:

f1= 17.06 (Hz) f2 =35.72 (Hz) f4= 71.19 (Hz) f5= 94.82 (Hz)f3= 48.17 (Hz)

+ Case 2:

f1= 16.32 (Hz) f2= 34.18 (Hz) f4= 68.02 (Hz) f5= 91.73 (Hz)f3= 46.71 (Hz)

+ Case  3:

f1= 22.01 (Hz) f2= 49.28 (Hz) f4= 101.42 (Hz) f5= 108.88 (Hz)f3= 53.79 (Hz)

+ Case 4:

f1= 18.69 (Hz) f2= 42.32 (Hz) f4= 85.36 (Hz) f5= 93.62 (Hz)f3= 47.15 (Hz)

Fig. 8. First five mode shapes of simply supported; unstiffened and stiffened of
the five folds folded composite plate, folding angle α = 120◦,

[45◦/ − 45◦/45◦/ − 45◦/45◦/45◦]

For the same thickness and fiber orientation, when the number of ply increases the
natural frequencies do not always increases (the second frequency of case 1; the second
and third frequencies of Case 2 and Case 3 for simply supported condition are decrease).
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It is observed that the effect of geometry of the folded plate on natural frequencies is
significant.

Fig. 8 shows that the stiffeners do not make any change in getting mode shapes
of presented plates (mode shapes make this study interesting, useful in dynamic analysis
of the plates, but any generalized recommendation is very difficult without undergoing
numerical experiments).

3.3.2. Transient response

In the analysis of transient response the same folded composite plates are subjected
to an exploded knife-edge loading condition scheme of q= 1 kN/m, which having t1 =1
ms, t2 =2 ms, t3 =50 ms, illustrated in Fig. 9.

Time (s)

t1

q(t)

t2 t3

q

0

Fig. 9. Exploded loading condition scheme

- Effect of stiffeners orientations

To observe the effects of stiffener orientations on transient displacement response,
the plates having lamination schemes [45◦/-45◦/45◦/-45◦/45◦/-45◦] and [0◦/90◦/0◦/90◦/0◦

/90◦] (denoted as [45◦/-45◦]3 and [0◦/90◦]3) are considered. The imposed boundary condi-
tions: simply supported and clamped at edges AB, CD. The results presented in the Fig.
10(a)-(d) have been compared for different cases.

Fig. 10(a) and Fig. 10(c) show the displacement response of point M (the center
point of individual top plate) for clamped at edges AB, CD. Fig. 10(b) and Fig. 10(d)
show the responses for simply supported at edges AB, CD.

(a) (b)
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(c) (d)

Fig. 10. Effects of stiffener orientations on transient displacement responses of the
five folds composite folded plate, knife-edge loading condition, time step ∆t =

0.5(ms).

From Fig. 10, it can be observed that the displacement responses of Case 1 and
Case 2 are closed to each other. The two y - stiffeners can be clearly improve the stiffness
of the plate (Case 3) because of the deflection is decrease and the frequencies of the wave
increase. The difference becomes more rapidly for simply supported plates. Furthermore,
there is a significant increase of vibration frequencies when the plates having clamped at
edges.

- Effect of boundary conditions

In this subsection, the effects of boundary condition on transient response of point
M have been investigated for imposed boundary conditions: simply supported and clamped
at edges AB, CD; and clamped at x = 0 (cantilever plate). The plates having lamination
schemes of [45◦/-45◦/45◦/-45◦/45◦/-45◦] are taken to these analyses. The present results
have been compared in Fig. 11(a)-(d) for four cases. From the Fig. 11, we found that the
displacement amplitudes of cantilever plates are significantly lower than the ones of others
boundary condition cases.

(a) (b)
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(c) (d)

Fig. 11. Effects of boundary conditions on transient displacement responses of the
five folds composite folded plate, knife-edge loading condition, time step ∆t =

0.5(ms)

- Effect of fiber orientations

In this subsection, we investigated the displacement responses of the plate for vari-
ous ply orientations of θ = 15◦, 30◦, 45◦, 60◦, 75◦. The simply supported plate is subjected
to a knife-edge loading scheme for duration time analysis of T=0.025 (sec). The lamina-
tion schemes [θ◦/-θ◦/θ◦/-θ◦/θ◦/-θ◦] and [0◦/90◦/0◦/90◦/0◦/90◦] (denoted as [0◦/90◦]3) are
taken.

The displacement responses of point M are calculated and plotted in Fig. 12 to show
the influence of ply orientation for different cases.

From Fig. 12, it is seen that displacement responses of [0◦/90◦]3 laminate plates and
the plates having ply of θ = 15◦ are closed. As the ply angle increases, the wave arrives
at an earlier time and the frequencies of the wave increase. It can be concluded that a
bigger ply orientation increases the stiffness in the axial direction, and speed of vibration
extinction more quickly in that direction. The smallest displacement amplitude occurs for

(a) (b)
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(c) (d)

Fig. 12. Effects of fiber orientations on transient displacement responses of the
five folds composite folded plate, knife-edge loading condition, time step ∆t =
0.5(ms), duration time T = 0.025(sec)

the laminate with the ply angle of θ = 15◦ because of the lowest bending stiffness in the
lateral direction.

4. CONCLUSION

In this study, a finite element method using eight-noded isoparametric plate ele-
ments, based on the first order shear deformation theory was investigated for analysis of
free vibration and transient response of the unstiffened and stiffened folded laminate com-
posite plate by considering various parameters. The transverse shear deformation, rotary
inertia of plate and stiffeners are considered in the present method to show the advantage
of the model.

Generic validation studies dealing with isotropic stiffened, folded plates are under-
taken to ensure the suitability of the present approach towards the unstiffened and stiffened
folded laminate composite plate analysis.

Some set of new results are presented to see the effects of fiber orientations, loading
conditions, boundary conditions, and fiber orientation on: bending deflections, natural
frequencies, dynamic responses and mode shapes of unstiffened; stiffened folded laminate
composite plates.

The applicability of the present approach covers a wide range of forced vibration
problems, with varying material combinations, geometric features, and boundary condi-
tions.
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APPENDIX

p1

p2

pi pj pj+m

pi+1 pj+1

si

si+1

1pi 2pi

3pi
4pi

5pi

6pi

7pi

8pi

1pj
2pj

3pj4pj

5pj

6pj

7pj

8pj

1si

2si

3si

4si

5si
6si

7si8si

p(…)

p(…) p(…)

Element (pi) of

individual plate Element (pj) of

individual plateElement (sj) of

individual stiffener

coincident nodes

The degrees of freedoms between the plate and stiffener at the intersection are
coincident.

For example: node (2pi) of element pi; node (1si) of element si and node (1pj) of
element pj are coincident. It is similar for nodes (6pi; 8si and 8pj) and for nodes (3pi; 4si

and 4pj),...
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