Vietnam Journal of Mechanics, VAST, Vol. 34, No.1 (2012), pp. 55-65

A REALIZATION MODEL TO DEVELOP THE
AUTOPILOT SYSTEM OF SHIPS
BY SPECIALIZING MDA

Ngo Van Hien, Vu Duy Quang
Hanoi University of Science and Technology, HUST

Abstract. This paper presents a method which is based on the Model-Driven Architec-
ture (MDA) and functional blocks to realize effectively the autopilot systems of ships.
It brings out an executable MDA process to cover completely the requirement analysis,
design and deployment phases of these systems. This process also allows the determined
design elements to be customizable and re-usable in the new applications of controlled
ship steering systems. The paper indicates straightforwardly the ship dynamic model-
to-be used, the Computation Independent Model (CIM) of a ship autopilot system, the
Platform Independent Model (PIM) of this system by using the Real-Time Unified Mod-
eling Language (UML), and its Platform Specific Model (PSM) implemented by the
functional blocks. Furthermore, the important transformation rules are also brought out
and applied to convert the identified PIM into PSM for implementing quickly this system
with different industrial frameworks such as the IEC61499 in a programmable controller.
Then, its deployment model completely is tested on a model ship with the predetermined
program and control performance.

Key words: Control of ships, MDA, Real-Time UML, functional blocks.

1. INTRODUCTION

The control systems are increasingly more intelligent and easier to operate for im-
proving the control performance. The immersion in an industrial control context makes
that the designers and programmers must take into account costs and existing standards
for analyzing, designing and implementing effectively these systems. The customization
and re-utilization are factors to be associated with the production of a new application in
order to reduce its costs, resources and time development.

The Model-Driven Architecture (MDA) [11] starts with the well-known and long
established idea to separate the specification of system operations from the details of the
way that system uses the capabilities of its platform. MDA provides an approach for,
and enables tools to be provided for: specifying a system independently of the platform
that supports it; specifying platforms; choosing a particular platform for the system; and
transforming the system specification into one for a particular platform.

Moreover, one of the key industries in Vietnam, the shipbuilding technology, is being
developed very rapidly. It has imported much equipment for building large and modern

56 Ngo Van Hien, Vu Duy Quang

ships especially control devices, so that the cost of a ship could be increased in comparison
with the living standards.

Starting from these considerations, we have developed a model-based realization
process to effectively carry out the control parts of Autopilot Systems of Ships (ASS),
which have the dynamic behaviours modelled by using hybrid automata [1]. This system
allows the trajectory of a ship to be stabilized with predetermined programs.

In our process, we adapt the dynamic model of ships [3], MDA'’s features, Functional
Blocks (FB) of IEC61499 standard [14] and S7-200 programmable controller [15] to perform
completely an executable process of the analysis, design and realization phases of ASS.

This paper is described by the following sections:

- Section 2 presents the overview of ship dynamic models, which permit us to gather
the requirement analysis of an ASS;

- Section 3 indicates the MDA specialization for an ASS to obtain an executable
MDA process model to develop this system:;

- Section 4 shows out the detailed executable MDA process to realize effectively an
ASS with the standard three degrees of freedom dynamic model of ships.

2. OVERVIEW OF SHIP MODELING AND CONTROL GUIDANCE

2.1. Main motion tasks of a ship

To obtain the most suitable feedback controller design for each operation mode of
a ship, it is convenient to classify its main motion tasks in the following types [3]:

- Point to point: the ship must reach a desired goal configuration starting from a
given initial configuration.

- Path following: the ship must reach and follow a geometric reference path in the
Cartesian space starting from a given initial configuration (on or off the path).

- Trajectory tracking and Path tracking: the ship must reach and follow a reference
trajectory / path in the Cartesian space (i.e., a geometric path with an associated timing
law) starting from a given initial configuration.

The control realization of these motion tasks can be carried out by using either feed-
forward commands, or feedback control, or a combination of the two.

2.2. Dynamic model of ships

According to SNAME (Society of Naval Architects and Marine Engineers) [17], the
six different motion components are defined as surge, sway, heave, roll, pitch, and yaw
(Table 1).

From the large field of guidance, navigation and control of ships, we repeat here the
6D (six degrees of freedom) dynamic model in body frame [3], [10], which can be written
in the following form:

n=J(nv)
Mo+ C(v)v+ D)v+g(n) = 7+ go + w,
where: n = (z,y, 2, ,0,)T is the position (NED: North, East and Down) and orientation

(Euler: RPY - Roll, Pitch and Yaw angles); v = (u,v,w,p,q,r)T is the velocity and
angular velocity; M = Mpgrp + My is the mass matrix; C(v) = Crp(v) + Ca(v) is the

A realization model to develop the autopilot system of ships by specializing MDA 57

Table 1. SNAME notations for ships

Degree of Moti Force and Linear and Position and
freedom otions moment | Angular velocity | Euler angles

1 Surge X U T

2 Sway Y v Y

3 Heave Z w z

4 Roll K D %)

5 Pitch M q 0

6 Yaw N r P

skew symmetric matrix of centripetal and Coriolis effects: Mpp - the generalized constant
inertia matrix and Crp together with the linear and angular velocities, M4 - the added
mass inertia matrix; D(v) = D + D, (v) is the symmetric and positive definite damping
matrix consisting of linear and nonlinear parts; g(n) is the vector of gravity and buoyancy
effects; 7 is the control force and torque; gq is the ballast force and torque; and finally w
is the force and torque of environmental effects caused by wind, waves and ocean current.

2.3. Using three degrees of freedom (3D) horizontal model

The horizontal motion of a surface ship is often described by the motion in surge,
sway and yaw. Therefore, we choose n = (z,y,¢)”, v = (u,v,r)T and the Jacobian matrix
typed 3 x 3 for obtaining the dynamic model of this case from the general model (1). The
detailed dynamics of this 3D model can be found in [3, 10].

In this paper, we are interested in the course keeping of ships, so we use the 3D
dynamic model to find out the control algorithms with a concrete guidance such as the
“Line-of-Sight” (LOS) [10].

wind
Wind loads
feedforward
command
input C Y Compass | meas
ontrol . ds.
—_— Reference N > O Contro‘l | Ship IMU >
model system allocation GPS
- IMU: Inertial Measurement Unit.
- GPS: Global Positioning System Observer and
wave filter

Fig. 1. Typical control structure of ships

58 Ngo Van Hien, Vu Duy Quang

From the definition of Hybrid Dynamic Systems (HDS) described in [1, 4] and the
ship dynamic model-to-be used, we find that Autopilot Systems of Ships (ASS) are HDS
whose dynamic behaviors can be modeled by Hybrid Automata (HA) [1, 5]. Because an
ASS has the continuous/discrete parts and their interactions such as the motions in surge,
sway and yaw, and external interacting events from the wind, waves and ocean currents.
The typical control structure of an ASS is shown in Fig. 1.

The detailed dynamic models of ships in body and NED frames with marine control
systems can be found in the excellent book of Fossen [3].

3. SPECIALIZING THE MODEL-DRIVEN ARCHITECTURE FOR A
CONTROL SYSTEM OF SHIPS

3.1. Overview of Model-Driven Architecture

The Model-Driven Architecture (MDA) [11] is an approach to system development,
which increases the power of models in that work. MDA contains three models to separate
the specification of the operation of a system from the details of the way that system uses
the capabilities of its platform:

- Computation-Independent Model (CIM): A CIM is referred to as a domain or
business model, the CIM presents the system at the highest level of abstraction.

- Platform-Independent Model (PIM): A PIM is used by control system architects
and designers to describe the control solution at a high level, independent of the solution’s
deployment platform.

- Platform-Specific Model (PSM): A PSM specifies a combination between the details
found in the PIM with the details representing how a solution can be implemented on a
platform.

Furthermore, MDA supports also for model transformation [11]. The model trans-
formation is the process of converting one model to another model of the same system.
Transformations can use different mixtures of manual and automatic transformation.

3.2. General MDA process for an ASS

In fact, MDA applications are largely spread and appreciated in the control software
industry; and the manufacturers have achieved great success in different domains [11,
18] such as the "Infrastructure", "Business Applications" and "Devices and Embedded
Systems".

Starting from MDA specifications and characteristics of dynamic model of ships, we
define here an executable process (Fig. 2), which permits us to carry out the development
of an industrial ASS modeled by hybrid automata model and to re-use it in different ASS
applications. This process includes the following main points:

- Object collaborations with UML (Unified Modeling Language) and Hybrid Au-
tomata (HA) present the CIM, which allow analyzing structure and behaviors of an in-
dustrial ASS.

- To describe a control system such as ASS with the HA’s formalism [1] and carry
out its evolution, we have introduced constraints and rules, which can be found in [4]. In
CIM, HA are used to describe mathematical behaviors (i.e., the dynamic model of ships:
Situations, State Variables, Transition, etc. of its HA) of this system.

A realization model to develop the autopilot system of ships by specializing MDA 59

Requireme
definition

Fig. 2. Executable MDA process for developing an ASS

- Object collaborations with UML [11] permit the identified HA model to be exactly
converted into business objects, which present control elements of the ASS being developed.

- Real-Time UML models indicate the PIM, which permit us to cover the design
phase of the developed system. These models are described by using the "capsules, ports,
protocols" concept [2, 8] that we adapted by specializing a set of capsules in precise be-
haviours.

- Functional block models are used to introduce the PSM of this system in order to
carry out its implementation phase with concrete industrial platforms such as IEC61499
[14], and in programmable controller such as S7-200 [15].

- There are transformations rules, which allow the identified CIM to convert into a
PIM, and to transform the PIM into a PSM. It also contains transformation trails, which
permit the models can track their transitions.

This process will be gone into detail in next sections for describing the development
phases of ASS control parts.

4. DETAILED EXECUTABLE MDA PROCESS TO DEVELOP AN ASS

4.1. CIM of an ASS

Main stages to build the CIM of an ASS are the followings:

- Identifying complex behaviors of the ASS being developed by using the use case
model [11]. In this step, it is necessary to provide industrial constraint conditions (for
example: maximum swing angles of rudder - ThetaMaz) of ASS in order to make sure
the precise operation of this system. Fig. 3 shows the main use case model of an ASS
(MDS - Measurement € Display System; MES - Marine Environment System including
disturbances such as the wind, waves, ocean currents etc...).

60 Ngo Van Hien, Vu Duy Quang

Make in safety Maintain _ cl <<communjcaté>>
ity Maintainer

[
{from U= -Cases) (from Uss-Cases)

(from Actors)
<<gxtends> ‘:‘:CD te>>
ﬁﬁcummunlcate:w Confi
on gure
ff'r:}rnUsE-\..sses
ME Pilot

. <<communicate=> - R
{from Actors) (from Actors)

Ifrom Use-Cass)

Fig. 3. Main use case model of an ASS

We find that the " Pilot" use case is oriented towards control modes; the complex
behaviors of this case must be specified by using sequence diagrams and local state ma-
chines. In our model, we use 3D dynamic model of ships and LOS guidance because we
are only interested in the course keeping [3, 10]. The detailed scenarios of the " Pilot" use
case its corresponding local state machine can be found in [7].

- Defining the extended functional diagram [4], which permits us to model trans-
formational activities of this system with events coming from outside. Starting from the
considered dynamic model of ships, its industrial constraint conditions, and the identified
use case model with LOS guidance, we bring out here an extended functional diagram of
an ASS (Fig. 4).

i MD$S MES
| i | Set-point : i
““““ (0 I VR
' AssConwoller | . |
I General » Limiter !
! K + ampli i '
~ ~ - 1
: ® . Ko — 1
| 1
1
: | I
! Kssa Ksss PID !
: |
| E 3 -~ 1
Real Real Real swing Y
position course angle Power ampli
41‘ Steering v
f’ﬂ} Ship machine & | Step motor
. Rudder [*

Fig. 4. Extended functional diagram of the ASS being developed

A realization model to develop the autopilot system of ships by specializing MDA 61

Here, K,,, Kgs1 and Ko are respectively the amplification coefficients of feedback
signals including the real position, course and swing angle; P,(t) and P(t) are the desired
and real course or position of the piloted ship.

Then we build a global state machine in order to bring out the global dynamic
behavior of the ASS being developed system from all local identified state machines. The
specific rules which permit us to discover this global state machine can be found in [4].
The detailed global state machine, which corresponds with the above use case model and
extended functional diagram, is shown in Fig. 5.

Fail Execution

tart . Stabilized determined course

Piloting
® Rudder
[DeltaR = True & Theta < ThetaMax]

Determmination

[DeftaR = True]

Detected fail

Stop automatic Right
mode Ready configunatio

[Deltal = True & Theta < ThetaMax]

Require
maintenance Appgared Interaction Events[Errors = True]

Limiter

Ready maintenance el

Ready maintgnance
Maintenance

Ready configuration

Configuration Stop
L Test Ok

Display parameters Display values

Save

Selected values Updated

Fig. 5. Global state machine of the ASS being developed

Where: "Left", " Right" and "Idle" are the main states of the rudder (or step motor);
"High", "Low" and "Middle" are the operational modes of the Limiter component; Sm,
Sh and Sl are the internal generated events causing by the operational modes of Limiter.
These events are handled in HA of this ASS.

- Specifying the hybrid automaton of an ASS; this includes situations, invariants,
continuous state spaces, events, initial situation, initial continuous state, and continuous
fluids. We have defined the steps and realization hypotheses, which can be found in [5, 7]
to determine HA of the ASS being developed.

Within limit of the paper, we do not show here the detailed CIM results of this
system, so all of these results can be seen in [7].

62 Ngo Van Hien, Vu Duy Quang

4.2. PIM of an ASS
4.2.1. Global PIM’s structure

We find that the direct transformation of CIM to the implementation environment
must be supplemented to carry out an industrial ASS and its re-use in the new application
development phase. For example, the above identified CIM are not well adapted to visu-
alize, model interconnection types between control objects or sub-systems. In the detailed
design phase of an industrial ASS, we transform the identified CIM into PIM, which is
based on transformation rules described in [6, 13] and uses the Real-Time UML notation
[2, 8]. This PIM closes to implementation but not tied to a platform; because the Real-
Time UML version includes the "capsules, ports, protocols" concepts that we adapted by
specializing a set of capsules in precise behaviors to carry out completely this ASS and
to re-use generic capsules in different ASS applications. From the approach described in
[4], we proposed 5 main control capsules of PIM, which take part in the HA realization of
the ASS being developed: the continuous part’s capsule, discrete part’s capsule, internal
interface’s capsule, external interface’s capsule and Instantaneous Global Continuous Be-
havior (IGCB’s capsule). The general communication structure of these control capsules
is described by using the Real-Time UML component diagram (Fig. 6).

<<Executable>> <<|gess <<Executable>>
ContinuousPart _——— Externallnterface

e |
| <<u§se>> | _l_ — _==use=> “4“59:’:’
| | |

| g “zlUse== <<Executable>>
| ASS_Application [—— — — — }:ﬁb IGCB
| | | Se=> |
<kuse>> I=<=:use:=:= _________ | =:1use>:=
| v ¥

<<FExecutable== - =:=;Execut:at}le:=:=
:I—:I:: Internalinterface <<use=>> DiscretePart

Fig. 6. General communication structure of main control capsules

4.2.2. Detailed PIM

- The discrete part’s capsule contains a set of situations and transitions in HA of
the ASS being developed (i.e., the macro-motion in surge, sway and yaw). This capsule
also contains a state machine to make its own evolution with other capsules such as the
internal interface’s capsule and the IGCB’s capsule and to treat the default internal event.

- The continuous part’s capsule is related to transformational activities in the iden-
tified extended functional diagram such as PID controller, Limiter, elements of feedback
etc. according to our case study. The continuous part’s capsule also has a state machine to

A realization model to develop the autopilot system of ships by specializing MDA 63

make its own evolution with other capsules such as the IGCB’s capsule and the internal
interface’s capsule.

- The IGCB’s capsule contains concrete continuous fluids of the ASS being developed
at time given in its HA. Each continuous fluid corresponds with a situation in this HA.
The IGCB’s capsule has a state machine to make its own evolution with other capsules
such as the discrete part’s capsule and the external interface’s capsule. In this evolution,
the IGCB’s capsule exchanges periodic signals.

- The internal interface’s capsule generates internal events of the ASS being devel-
oped, so that the discrete part’s capsule can make its own evolution by these events. It
has a state machine to make its own evolution with other capsules such as the continuous
part’s capsule and the discrete part’s capsule.

- The external interface’s capsule is an intermediary, which receives or sends episodic
events and periodic signals between the developed ASS and their interacted systems such
as MES and MDS in our case study. The external interface’s capsule has a state machine
to make its own evolution with other capsules such as the discrete part’s capsule and the
IGCB’s capsule.

In addition, the re-use is very important for developing the general industrial control
system; because it makes it possible to reduce the time, resource and development cost.
We find different re-usable view in the development of industrial ASS such as:

- The re-use view based on the virtual mechanism of objects, classes, or class hier-
arch.

- The re-use view based on the capsule collaboration. For example, the generic state
machine of identified main capsules, industrial constraints can be specialized to develop
different industrial applications.

The specialization description, which makes it possible to re-use the capsule col-
laboration of a developed ASS in the new application for different types of ships, can be
found in [4, 7].

The detailed PIM of this ASS has been shown in [7]. The validation and verification
of this model have been corrected by using the "IBM Rational Rose Real-Time € Architect
Real-Time" tools [8].

4.3. PSM of an ASS

To carry out an ASS, we can convert the above identified PIM into PSMs by using
different specific technology or platforms such as Java, .NET, IEC61131, IEC64199 etc.
in order to implement its PIM. But we are interested in the realization of an industrial
ASS. We have decided to choose industrial platforms such as IEC61499 [14] to realize the
implementation model of this ASS in a programmable logic controller such as S7-200 [15].

From the characteristics of capsules [2, 8], Functional Block (FB) instances of
TEC61499 and specifications of S7-200 programmable controller, the PSM of an ASS is
accomplished by applying the following transformation rules:

- Each capsule is implemented by an FB.

- Each sub-capsule is executed by a component FB, the super-capsule corresponds
with a composite FB.

- Protocols are carried out by the input/output event and signal flow of FB instances.

64 Ngo Van Hien, Vu Duy Quang

- Ports are performed by a set of inputs and outputs, which can be associated to
corresponding event /signal flow.

- Entity classes such as continuous elements or Instantaneous Global Continuous
Behaviors (IGCB) are mapped to resource capacities, which are notified to the appropriate
algorithms for realizing their evolution.

- State machines of the main control capsules are carried out by execution control
functions, which notify the resource capacities to schedule an algorithm for the evolution.

All of PSM’s elements have been produced to completely realize the above considered
ASS. The detailed results can be are found in [7]. We have also tested the realization
model of this application with the installation of a concrete model ship. This model ship
had been built by the other research project [12]. The scenarios of tests are based on the
above identified use case model and global state machine. All of tests are satisfied with
the predetermined control performance.

5. CONCLUSION

We have presented a realization model to develop the Autopilot System of Ships
(ASS). This model is based on the specialization of Model-Driven Architecture (MDA)
in order to effectively implement control parts of this system. We indicated the following
important points:

- Adapting the dynamic model and control structure of ships to gather the require-
ment analysis of an ASS.

- Specializing MDA’s features to obtain an executable MDA process model to en-
tirely develop this system.

- Specifying the Computation Independent Model (CIM) of an ASS to carry out its
object-oriented analysis phase.

- Introducing the Platform Independent Model (PIM) for obtaining the object-
oriented design model. This model can be customized and re-used in the new applications
of ASS.

- Defining the Platform Specific Model (PSM) which is transformed from the iden-
tified PIM by applying the specific transformation rules, ‘Functional Block’ instances of
TEC61499 standard and S7-200 programmable controller in order to carry out entirely the
evolution of an ASS and to test it with the predetermined control performance.

In the future, we will develop completely our model with the connection to reality
of real actuators, in order to deploy perfectly it in the ship engineering of Vietnam.

ACKNOWLEDGEMENT

This work has been completed by financial supports of scientific research projects
at the Department of Ship Engineering and Fluid Mechanics, Hanoi University of Science
and Technology.

REFERENCES

[1] Carloni L. P., Passerone R., Pinto A. and Sangiovanni-Vincentelli A. L., Languages and Tools
for Hybrid Systems Design, now Publishers Inc., (2006).

A realization model to develop the autopilot system of ships by specializing MDA 65

[2] Douglass B. P., Real Time UML: Advances in the UML for Real-Time Systems, Third Edition,
Addison- Wesley, (2004).

[3] Fossen T. I., Guidance and Control for Ocean Vehicles, John Wiley & Sons, (1994).

[4] Hien N. V., Une Méthode Industrielle de Conception de Commande par Automate Hybride
Développée en Objets, These de Doctorat, SUPMECA et Univertsité Marseille III, France,
(2001).

[5] Hien N. V., Soriano T., Implementing Hybrid Automata for Developing Industrial Control
Systems, 8" IEEE - ETFA, Nice, France, (2001).

[6] Hien N. V., Quang V. D., Vinh H. T., Soriano T., A General Implementation Model of
Industrial Control Systems Using Real-Time UML and Functional Block, VICAG6, Vietnam,
(2005).

[7] Hien N. V. et al., A Method of Model-Driven Architecture to Develop Industrial Hybrid Dy-
namic Systems: Application to the Automatic Ship Steering Systems, Final report of research
project, code: B2010-01-354, HUST, (2011).

[8] IBM Rational Software, IBM Rational online documentation, Redbooks and training kit,
https://www.ibm.com/developerworks/university/, (2009).

[9] Karl-Heinz J., Tiegelkamp M., IEC 61131-3: Programming Industrial Systems, Second Edition,
Springer, (2010).

[10] Lantos B., Marton L., Nonlinear Control of Vehicles and Robots, Springer, (2011).

[11] OMG, MDA & UML Specifications, http : //www.omg.org/ (2008).

[12] Quang L. et al., Calculate, Design and Manufacture the Model Ship of Salvage, Report of
research project, code: B2009-01-291, HUST, (2010).

[13] Quang L., Hien N. V., Soriano T., Specializing model-driven architecture to develop industrial
Control systems, 5th SEATUC, Vietnam (2011).

[14] Lewis R., Modeling Control Systems Using IEC 61499: Appling function blocks to distributed
systems, the institution of Engineering and Technology, (2008).

[15] Siemens AG; S7-200 Programmable Controller System Manual, Siemens AG, (2002).

[16] Soriano T., Hien N. V., Using Objects Collaboration to Model the Control of an Industrial
System, 7** IEEE - ETFA, Barcelona, Spain, (1999).

[17] SNAME, Nomenclature for Treating the Motion of a Submerged Body Through a Fluid,
SNAME Technical and Research Bulletin 1-5, Jersey City, New Jersey, U.S.A., (1952).

[18] TURKI S., Ingénierie systeme guidée par les modeles: Application du standard IEEE 15288,
de Darchitecture MDA et du langage SysML & la conception des systémes mécatroniquesrs,
Thése de Doctorat, Université du Sud Toulon-Var, France, (2008).

Received April 04, 2011

