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Abstract. This paper presents an analytical approach to investigate the nonlinear buck-
ling and post-buckling of thin annular spherical shells made of functionally graded ma-
terials (FGM) and subjected to mechanical load and resting on Winkler-Pasternak type
elastic foundations. Material properties are graded in the thickness direction accord-
ing to a simple power law distribution in terms of the volume fractions of constituents.
Equilibrium and compatibility equations for annular spherical shells are derived by us-
ing the classical thin shell theory in terms of the shell deflection and the stress function.
Approximate analytical solutions are assumed to satisfy simply supported boundary con-
ditions and Galerkin method is applied to obtain closed-form of load-deflection paths.
An analysis is carried out to show the effects of material and geometrical properties and
combination of loads on the stability of the annular spherical shells.

Keywords: Nonlinear buckling, post-buckling, FGM annular spherical shells, mechanical
loads, elastic foundations.

1. INTRODUCTION

Considerable researches have focused on the thermo-elastic, dynamic and buckling
analyses of functionally graded plates and shells in recent years. This is mainly due to the
increased use of functionally graded materials (FGMs) as the components of structures
in the advanced engineering. FGMs consisting of metal and ceramic constituents have
received increasingly attention in structural applications. Smooth and continuous change
in material properties enable FGMs to avoid interface problems and unexpected thermal
stress concentrations. By high performance heat resistance capacity, FGMs are now chosen
to use as structural components exposed to severe temperature conditions such as aircraft,
aerospace structures, nuclear plants and other engineering applications.

On the other hand, the static and dynamic interaction of shells with elastic foun-
dation is a problem of current importance. By using the theory of elasticity and theory
of shells, have many approaches to analyze the interaction between a structure and an
ambient medium. One of them is approach, which most earthen soils can be appropriately
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represented by a mathematical model from Pasternak, whereas sandy soils and liquids can
be represented by Winkler’s model ([1–3]).

As a result, the mechanical behavior of FGM shells, such as bending, vibration,
stability, buckling, etc., have also been studied by many scientists. Notably among them
are due to [4–10]. Recently, Duc et al. [11] investigated nonlinear axisymmetric response
of FGM shallow spherical shells on elastic foundations, namely the Winkler-Pasternak
foundations. Cheng and Batra [12] proposed a membrane analogy to derive an exact
explicit eigenvalues for compression buckling, hydrothermal buckling, and vibration of
FGM plates on a Winkler-Pasternak foundation based on the third-order plate theory.
The free vibration, transient response, large deflection and post-buckling responses of FGM
thin plates resting on Pasternak foundations were investigated by Yang and Shen [13] was
using the method of differential quadrature and Galerkin procedure. Huang et al. [14]
investigated Benchmark solutions for functionally graded thick plates resting onWinkler-
Pasternak elastic foundations. Ying et al. [15] obtained two-dimensional elasticity solutions
for functionally graded beams resting on elastic foundations. Sheng andWang [16] analyzed
thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells
embedded in an elastic medium. Sofiyev et al. investigated the vibration analysis of simply
supported FGM truncated conical shells resting on the two-parameter elastic foundation
[17], and [18] studied the buckling of the homogenous and FGM truncated conical shells
resting on Winkler-Pasternak type elastic foundations. Shen [19] studied post-buckling of
shear deformable FGM cylindrical shells surrounded by an elastic medium. Nonlinear free
vibration response, static response under uniformly distributed load, and the maximum
transient response under uniformly distributed step load of orthotropic thin spherical caps
on elastic foundation have been obtained by Dumir [20].

The annular spherical shell is one of the special shapes of the spherical shells. To
the best of our knowledge, there has been recently a few of publications on the annular
shells. Alwar and Narasimhan [21] investigated the axisymmetric nonlinear analysis of
laminated orthotropic annular spherical shell, the object of this investigation is to give
analytical solutions of large axisymmetric deformation of laminated orthotropic spherical
shells including asymmetric laminates. Dumir et al. [22] analyzed axisymmetric dynamic
buckling analysis of laminated moderately thick shallow annular spherical cap under cen-
tral ring load and uniformly distributed transverse load, applied statically or dynamically
as a step function load. Eslami et al. [23] studied an exact solution for thermal buckling
of annular FGM plates on an elastic medium and generalized coupled thermo-elasticity of
functionally graded annular disk considering the Lord-Shulman theory [24].

In this study, by using the classical thin shell theory, an approximate solution, which
was proposed by Agamirov [25] and was used by Sofiyev [18] for truncated conical shells,
the authors tried to apply this form to solve problems related to annular FGM spherical
shells. This study is one of the first attempts about the nonlinear postbuckling analysis
of thin FGM annular spherical shells under mechanical loads and resting on Winkler-
Pasternak type elastic foundations.
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2. GOVERNING EQUATIONS

Consider an annular spherical shell is subjected to external pressure q uniformly
distributed on the outer surface as shown in Fig. 1. R is the radius of curvature, r1, r0
indicate the radii and h is thickness of annular.
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2.1. Material properties of functionally graded shells

The annular spherical shell is made of FGM, from a mixture of ceramics and metals,
and is defined in coordinate system (ϕ, θ, z), where ϕ and θ are in the meridional and
circumferential direction of the shells, respectively and z is perpendicular to the middle
surface positive inwards.

Suppose that the material composition of the shell varies smoothly along the thick-
ness by a simple power law in terms of the volume fractions of the constituents as

Vc(z) = (
2z + h

2h
)k, −h

2
≤ z ≤ h

2
,

Vm(z) = 1− Vc(z),
(1)

where k (volume fraction index) is a non-negative number that defines the material dis-
tribution, subscripts m and c represent the metal and ceramic constituents, respectively.

The modulus of elasticity E of FGM annular spherical shell can be defined as

E(z) = Em + Ecm(
2z + h

2h
)k, −h

2
≤ z ≤ h

2
, (2)

where the Poisson ratio ν is assumed to be constant ν(z) = const and Ecm = Ec − Em.
In the present study, the classical shell theory is used to obtain the equilibrium

and compatibility equations as well as expressions of buckling loads and nonlinear load-
deflection curves of thin FGM annular spherical shells. For a thin annular spherical shell
it is convenient to introduce a variable r, referred as the radius of parallel circle with the
base of shell and defined by r = R sinϕ. Moreover, due to shallowness of the shell it is
approximately assumed that cosϕ = 1, Rdϕ = dr.
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2.2. Winkler-Pasternak type elastic foundations

The annular spherical shell is resting on the elastic foundations. For the elastic
foundation, one assumes the two-parameter elastic foundation model proposed by Paster-
nak [1]. The foundation medium is assumed to be linear, homogenous and isotropic. The
bonding between the annular spherical shell and the foundation is perfect and frictionless.
If the effects of damping and inertia force in the foundation are neglected, the foundation
interface pressure may be expressed as

qe = k1w − k2∆w,

where ∆w =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
, w is the deflection of the annular spherical shell, k1

is Winkler foundation modulus and k2 is the shear layer foundation stiffness of Pasternak
model.

2.3. Fundamental relations and governing equations

According to the classical shell theory, the strains at the middle surface and the
change of curvatures and twist are related to the displacement components u, v, w in
the ϕ, θ, z coordinate directions, respectively, taking into account Von Karman-Donnell
nonlinear terms as [23]

ε0r =
∂u

∂r
− w

R
+

1

2
(
∂w

∂r
)2, χr =

∂2w

∂r2
,

ε0θ =
1

r

∂v

∂θ
+
u

r
− w

R
+

1

2r2
(
∂w

∂θ
)2, χθ =

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
,

γ0rθ =
∂v

∂r
+

1

r

∂u

∂θ
− v

r
+

1

r

∂w

∂r

∂w

∂θ
, χrθ =

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ
,

(3)

where ε0r and ε0θ are the normal strains, γθr is the shear strain at the middle surface of the
spherical shell, χr, χθ, χrθ are the changes of curvatures and twist.

The strains across the shell thickness at a distance z from the mid-plane are

εr = ε0r − zχr, εθ = ε0θ − zχθ, γ0rθ = γθr − zχrθ. (4)

Using Eqs. (3) and (4), the geometrical compatibility equation of an shallow spher-
ical shell is written as [10]

1

r2
∂2ε0r
∂θ2

− 1

r

∂ε0r
∂r

+
1

r2
∂

∂r
(r2

∂ε0θ
∂r

)− 1

r2
∂2

∂r∂θ
(rγ0rθ) = −∆w

r
+ χ2

rθ − χrχθ, (5)

where ∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
is a Laplace’s operator.

The stress-strain relationships are defined by the Hooke law

(σr, σθ) =
E(z)

1− ν2
[(εr, εθ) + ν (εθ, εr)] , σrθ =

E(z)

2(1 + ν)
γrθ. (6)
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The force and moment resultants of an FGM spherical shell are expressed in terms
of the stress components through the thickness as

(Nij ,Mij) =

h/2∫
−h/2

σij(1, z)dz, ij = (rr, θθ, rθ) (7)

In case of (i = j = r) or (i = j = θ) for simplicity denoted Nrr = Nr, Nθθ = Nθ,
Mrr = Mr,Mθθ = Mθ.

By using Eqs. (4), (6), and (7) the constitutive relations can be given as

(Nr, Mr) =
(E1, E2)

1− ν2
(
ε0r + νε0θ

)
− (E2, E3)

1− ν2
(χr + νχθ) ,

(Nθ, Mθ) =
(E1, E2)

1− ν2
(
ε0θ + νε0r

)
− (E2, E3)

1− ν2
(χθ + νχr) ,

(Nrθ, Mrθ) =
(E1, E2)

2(1 + ν)
γ0rθ −

(E2, E3)

1 + ν
χrθ.

(8)

From the relations one can write

ε0r =
1

E1
(Nr − νNθ) +

E2

E1
χr, ε

0
θ =

1

E1
(Nθ − νNr) +

E2

E1
χθ,

γ0rθ =
2(1 + ν)

E1
Nrθ +

2E2

E1
χrθ,

(9)

Mr =
E2

E1
Nr −D(χr + νχθ),Mθ =

E2

E1
Nθ −D(χθ + νχr),

Mrθ =
E2

E1
Nrθ −D(1− ν)χrθ.

(10)

where

D =
E1E3 − E2

2

E1(1− ν2)
, E1 =

h/2∫
−h/2

[Ec + Ecm(
2z + h

h
)k]dz =

(
Em +

Ecm
k + 1

)
h,

E2 =

h/2∫
−h/2

z[Ec + Ecm(
2z + h

h
)k]dz = h2Ecm(

1

k + 2
− 1

2k + 2
),

E3 =

h/2∫
−h/2

z2[Ec + Ecm(
2z + h

h
)k]dz =

(
Em
12

+
Ecm

2(k + 1)(k + 2)(k + 3)

)
h3.

(11)
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The nonlinear equilibrium equations of a perfect shallow spherical shell based on
the classical shell theory [11]

∂Nr

∂r
+

1

r

∂Nrθ

∂θ
+
Nr

r
− Nθ

r
= 0, (12)

∂Nθ

r∂θ
+
∂Nrθ

∂r
+

2Nrθ

r
= 0, (13)

∂2Mr

∂r2
+

2

r

∂Mr

∂r
+ 2(

∂2Mrθ

r∂r∂θ
+

1

r2
∂Mrθ

∂θ
) +

1

r2
∂2Mθ

∂θ2
− 1

r

∂Mθ

∂r
+

1

R
(Nr +Nθ)+

+
1

r

∂

∂r
(rNr

∂w

∂r
+Nrθ

∂w

∂θ
) +

1

r

∂

∂θ
(Nrθ

∂w

∂r
+
Nθ

r

∂w

∂θ
) + q − k1w + k2∆w = 0.

(14)

The Eqs. (12), (13) are identically satisfied by introducing a stress function F as

Nr =
1

r

∂F

∂r
+

1

r2
∂2F

∂θ2
, Nθ =

∂2F

∂r2
, Nrθ = −1

r

∂2F

∂r∂θ
+

1

r2
∂F

∂θ
. (15)

Substituting Eqs. (3), (9), (15) into the Eqs. (5) and substituting Eqs. (3), (10),
(15) into Eq. (14) leads to

1

E1
∆∆F = −∆w

R
+ (

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ
)2 − ∂2w

∂r2
(
1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
), (16)

D∆∆w − ∆F

R
− (

1

r

∂F

∂r
+

1

r2
∂2F

∂2θ
)
∂2w

∂r2
− (

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
)
∂2F

∂r2

+2(
1

r

∂2F

∂r∂θ
− 1

r2
∂F

∂θ
)(

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ
) = q − k1w + k2∆w.

(17)

Regularly, the stress function F should be determined by the substitution of deflec-
tion function w into compatibility equation (16) and solving resulting equation. However,
such a procedure is very complicated in mathematical treatment because obtained equa-
tion is a variable coefficient partial differential equation. Accordingly, integration to obtain
exact stress function F (r, θ) is extremely complex. Similarly, the problem of solving the
equilibrium is in the same situation. Therefore one should find a transformation to lead
Eqs. (16), (17) into constant coefficient differential equations. Suppose such a transforma-
tion

w = w(ς), F = F0(ς)e
2ς , where r = r0e

ς , ς = ln
r

r0
. (18)

Substituting Eq. (18) into Eqs. (16), (17) and establishing a lot of calculations lead
to the transformed equations

1

E1

(
∂4F0

∂ς4
+ 4

∂3F0

∂ς3
+ 4

∂2F0

∂ς2
+ 4

∂3F0

∂ς∂θ2
+ 2

∂4F0

∂ς2∂θ2
+ 4

∂2F0

∂θ2
+
∂4F0

∂θ4

)
= −r

2
0

R
(
∂2w

∂ς2
+
∂2w

∂θ2
) +

1

e4ς
(
∂2w

∂ς∂θ
− ∂w

∂θ
)2 +

1

e4ς
(
∂2w

∂ς2
− ∂w

∂ς
)(
∂w

∂ς
+
∂2w

∂θ2
),

(19)
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D(
∂4w

∂ς4
− 4

∂3w

∂ς3
+ 4

∂2w

∂ς2
− 4

∂3w

∂ς∂θ2
+ 2

∂4w

∂ς2∂θ2
+ 4

∂2w

∂θ2
+
∂4w

∂θ4
)

− r20e
4ς

R
(
∂2F0

∂ς2
+ 4

∂F0

∂ς
+ 4F0 +

∂2F0

∂θ2
)− (

∂F0

∂ς
+ 2F0 +

∂2F0

∂θ2
)(
∂2w

∂ς2
− ∂w

∂ς
)e2ς

− (
∂2F0

∂ς2
+ 2F0 + 3

∂F0

∂ς
)(
∂w

∂ς
+
∂2w

∂ς∂θ
)e2ς + 2(

∂2F0

∂ς∂θ
+
∂F0

∂θ
)(
∂2w

∂ς∂θ
− ∂w

∂θ
)e2ς

− qr40e4ς + k1wr
4
0e

4ς − k2(
∂2w

∂ς2
+
∂2w

∂θ2
)r20e

2ς = 0.

(20)

Eqs. (19) and (20) are the basic equations used to investigate the nonlinear buckling
and postbuckling of FGM annular spherical shells resting on elastic foundations. These
are nonlinear equations in terms of two dependent unknowns w and F .

3. STABILITY ANALYSIS

In this section, the FGM annular spherical shell is assumed to be simply supported
along the periphery and subjected to mechanical loads uniformly distributed on the outer
surface and the base edges of the shell. Depending on the in-plane behavior at the edge
of boundary conditions will be considered in case the edges are simply supported and
immovable. For this case, the boundary conditions are

u = 0, w = 0,
∂2w

∂ς2
− ∂w

∂ς
= 0, Nr = N0, Nrθ = 0, with ς = 0 (i.e at r = r0), (21)

where N0 is the fictitious compressive load rendering the immovable edges.
The boundary conditions (21) can be satisfied when the deflection w is approxi-

mately assumed as follows [18,25]

w = Weς sin(β1ς) sin(nθ), β1 =
mπ

a
, a = ln

r1
r0
, (22)

where W is the maximum amplitude of deflection and m,n are the numbers of half waves
in meridional and circumferential direction, respectively. The form of this approximate
solution was proposed by Agamirov [25] and it was used by Sofiyev [18] for truncated
conical shells.

Introduction of Eqs. (22) into Eq. (19) gives

1

E1
(
∂4F0

∂ς4
+ 4

∂3F0

∂ς3
+ 4

∂2F0

∂ς2
+ 4

∂3F0

∂ς∂θ2
+ 2

∂4F0

∂ς2∂θ2
+ 4

∂2F0

∂θ2
+
∂4F0

∂θ4
) =

= −r
2
0e
ςW

R
[(1− β21 − n2) sin(β1ς) + 2β1 cos(β1ς)] sin(nθ) +

W 2β21
2

(n2 − 1) cos(2β1ς)

− W 2

4
(β1 − β1n− β31) sin(2β1ς) +

W 2

2
β21n

2 cos(2nθ)

+
W 2

4
(β1 − β1n2 − β31) sin(2β1ς) cos(2nθ) +

W 2

2
β21 cos(2β1ς) cos(2nθ).

(23)
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Solving this obtained equation with the boundary conditions (21) for the stress
function F0 yields

F0 = f1e
ς sin(β1ς) sin(nθ) + f2e

ς cos(β1ς) sin(nθ) + f3 cos(2β1ς) + f4 cos(2nθ)

+f5 cos(2β1ς) cos(2β2θ) + f6 sin(2β1ς) cos(2nθ) + f7 sin(2β1ς) + 1/2N0r
2
0,

(24)

with

f1 = −r
2
0E1W [A(1− β21 − n2) + 2Bβ1]

(A2 +B2)R
, f2 = −r

2
0E1W [B(1− β21 − n2) + 2Aβ1]

(A2 +B2)R
,

f3 = E1l3W
2, f4 = E1l4W

2, f5 = E1l4W
2, f6 = E1l6W

2, f7 = E1l7W
2,

(25)

and

A = 9− 22β21 + β41 + n4 − 10n2 + 2β21n
2, B = 8β31 − 24β1 + 8β1n

2,

l3 =
b6c3 + c4a6
a3b6 + a6b3

, l4 =
β21

32(β22 − 1)
, l5 =

b5c5 + a5c6
a4b5 + a5b4

, l6 =
a4c6 − b4c5
a4b5 + a5b4

, l7 =
a3c4 − b3c3
a3b6 + a6b3

.

(26)
(the remaining constants are given in Appendix I)

Applying Galerkin method with the limits of integral is given by the formula
ln

r1
r0∫

0

2π∫
0

Φeς sin(β1ς) sin(nθ)dςdθ = 0, (27)

where Φ is the left hand side of Eq. (20) after substitution Eqs. (22) and (24) in it. From
Eq. (27) we obtain the following equation

q − N0A5

B1r20
W − A0N0

RB1
=

(
DA3

B1r40
+
E1A4

B1R2
+
k1A6

B1
+
k2A7

B1r20

)
W +

E1A2

RB1r20
W 2 +

E1A1

B1r40
W 3, (28)

where the constants B1, A0, A1, A2, A3, A4, A5 are given in Appendix II.
Eq. (28) is used to determine the buckling loads and nonlinear equilibrium paths

of FGM annular spherical shell under mechanical loads including the effect of elastic
foundations.

3.1. Case N0 = 0

Eq. (28) reduces to

q =

(
D∗R4

hA3

B1R4
0

+
E∗

1A4R
2
h

B1
+
K1D

∗A6

B1
+
K2D

∗A7R
2
h

B1R2
0

)
W ∗ +

E∗
1A2R

3
h

B1R2
0

(W ∗)2 +
E∗

1A1R
4
h

B1R4
0

(W ∗)3,

(29)
by putting

E∗
1 =

E1

h
,E∗

2 =
E2

h2
,W ∗ =

W

h
,Rh =

h

R
,R0 =

r0
R
,D∗ =

D

h3
,K1 =

k1h
4

D
,K2 =

k2h
2

D
.

If the FGM annular spherical shell does not rest on elastic foundations, we received

q =

(
D∗R4

hA3

B1R4
0

+
E∗

1A4R
2
h

B1

)
W ∗ +

E∗
1A2R

3
h

B1R2
0

(W ∗)2 +
E∗

1A1R
4
h

B1R4
0

(W ∗)3. (30)
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Eqs. (29) and (30) may be used to find static critical buckling load and trace
postbuckling load-deflection curves of FGM annular spherical shell. It is evident q(W ∗)
curves originate from the coordinate origin. In addition, Eq. (29) indicates that there is no
bifurcation-type buckling for pressure loaded annular spherical shell and extremum-type
buckling only occurs under definite conditions. The extremum pressure buckling load of

the shell can be found from Eqs. (29) and (30) using the condition
dq

dW ∗ = 0.

3.2. Case N0 6= 0

A FGM annular spherical shell simply supported with immovable edges under si-
multaneous action of uniform external pressure q is considered.

The condition expressing the immovability on the boundary edges, i.e. u = 0 on
r = r0, and r = r1 is fulfilled on the average sense as

π∫
0

r1∫
r0

∂u

∂r
rdrdθ = 0. (31)

From Eqs. (3) and (9) one can obtain the following relation

∂u

∂r
= ε0r +

w

R
− 1

2
(
∂w

∂r
)2

=
1

E1
(
1

r

∂F

∂r
+

1

r2
∂2F

∂θ2
− ν ∂

2F

∂r2
) +

E2

E1

∂2w

∂r2
+
w

R
− 1

2
(
∂w

∂r
)2.

(32)

Using the transformation (18) into Eq. (32) yields

∂u

∂r
=

1

E1r20

[
∂F0

∂ς
+ 2F0 +

∂2F0

∂θ2
− v

(
∂2F0

∂ς2
+ 3

∂F0

∂ς
+ 2F0

)]
+

E2

E1r20e
2ς

(
∂2w

∂ς2
− ∂w

∂ς

)
+
w

R
− 1

2r20e
2ς

(
∂w

∂ς

)2

.

(33)

Introduction of Eqs. (22), (24) into the Eq. (33) then substituting obtained result
into Eq. (31) lead to the expression for the fictitious load N0

N0 =
E1

(−1 + v) (−1 + e2a)πr20

[
E2A9

E1
+
r20A10

R

]
W +

E1A8

(−1 + v) (−1 + e2a)πr20
W 2, (34)

where the constants A8, A9, A10 are given in Appendix II.

4. RESULTS AND DISCUSSION

In this section, the nonlinear response of the FGM annular spherical shell is analyzed.
The shell is assumed to be simply supported along boundary edges. In characterizing
the behavior of the spherical shell, deformations in which the central region of a shell
moves toward the plane that contains the periphery of the shell are referred to as inward
deflections (positive deflections). Deformations in the opposite direction are referred to as
outward deflection (negative deflections).
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The following properties of the FGM shell are chosen [11]: Em = 70GPa, Ec =
380GPa, Poisson’s ratio is chosen to be 0.3.

The effects of material and geometric parameters on the nonlinear response of the
FGM annular spherical shells under mechanical loads including the effects of elastic founda-
tion are presented in Figs. 2-6. It is noted that in all figuresW/h denotes the dimensionless
maximum deflection of the shell.
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Fig. 2 shows the effects of volume fraction index k(0, 1, 5,+∞) on the nonlinear
response of the FGM annular spherical shell subjected to external pressure and compressive
load (mode (m,n) = (1, 11)). As can be seen, the load-deflection curves become lower when
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k increases. This is expected because the volume percentage of ceramic constituent, which
has higher elasticity modulus, is dropped with increasing values of k.

Fig. 3 depicts the effects of curvature radius-thickness ratio R/h (200, 300, 400, and
500) on the nonlinear behavior of the external pressure and compressive load of the FGM
annular spherical shells (mode (m,n) = (1, 11)). From Fig. 3 we can conclude that when
the annular spherical shells get thinner-corresponding with R/h getting bigger, the critical
buckling loads will get smaller.

Fig. 4 analyzes the effects of 2 base-curvature radius ratio r1/r0 on the nonlinear
response of FGM annular spherical shells subjected to uniform external pressure. It is
shown that the nonlinear response of annular spherical shells is very sensitive with change
of r1/r0 ratio characterizing the shallowness of annular spherical shell. Specifically, the
enhancement of the upper buckling loads and the load carrying capacity in small range of
deflection as r1/r0 increases is followed by a very severe snap-through behaviors. In other
words, in spite of possessing higher limit buckling loads, deeper spherical shells exhibit a
very unstable response from the post-buckling point of view. Furthermore, in the same
effects of base-curvature radius ratio r1/r0 the load of the nonlinear response of FGM
annular spherical shells is higher when the shallowness of annular spherical shell (H) is
smaller, where H is the distance between two radii r1, r0, and calculated by

H(r1, r0) =
√
R2 − r20 −

√
R2 − r21 = R

[√
1−

(r0
R

)2
−
√

1−
(r1
R

)2]
.
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Fig. 5 examines the dependence of the nonlinear response of FGM annular spherical
shells on the mode (m,n). It is easily recognized that with m = 1, the more increased the
value of n, the higher increasing of the value of extreme point, corresponding to the higher
load capacity of the shells. Note that, when m is even or m ≥ 3, the graphic consists of
symmetric curves through the origin of the coordinate system and the extreme point does
not exist in the load-deflection curves.
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Effects of the elastic foundations (K1,K2) on the nonlinear response of FGM annular
spherical shells are shown in Fig. 6. Obviously, elastic foundations played positive role
on nonlinear static response of the FGM annular spherical shell: the large K1 and K2

coefficients are, the larger loading capacity of the shells is. It is clear that the elastic
foundations can enhance the mechanical loading capacity for the FGM annular spherical
shells, and the effect of Pasternak foundation K2 on critical uniform external pressure is
larger than the Winkler foundation K1.

5. CONCLUDING REMARKS

Due to practical importance of FGM annular spherical shells and the lack of inves-
tigations on stability of these structures, the present paper aims to propose an analytical
approach to study the problem of nonlinear buckling and postbuckling of FGM thin an-
nular spherical shells on elastic foundations. Based on the classical thin shell theory, the
equilibrium and compatibility equations are derived in terms of the shell deflection and
the stress function. This system of equations has been transformed into another system of
more simple equations, so the appropriate formulas for FGM annular spherical shells are
found as a special case. The results show the effects of the material composition, volume
fraction of constituent materials, Winkler and Pasternak type elastic foundations on the
nonlinear response of FGM annular spherical shells are very appreciable.
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APPENDIX I

a3 = 16(β41 − β21), b3 = 32β31 ,

a4 = 16(β41 − β21 + 2β21n− n2 + n4), b4 = 32(β31 + β1n
2),

a5 = 32(β31 + β1n
2), b5 = 16(β1 − β21 + 2β21n

2 − n2 + n4),

a6 = 32β31 , b6 = 16(β41 − β21),

c3 = 0.5(β21n
2 − β21), c5 = 0.5β21 ,

c4 = 0.25(β1n
2 − β1 + β31), c6 = −c4.

APPENDIX II

C1 = a4, C2 = b5, B1 =
−2mπa(−1 + e5a(−1)m)

n(25a2 +m2π2)
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m2π3
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1− e6a

)
(9a2 +m2π2)

,

A1 = h11 + h12

(mπ
a
t3 + t4 − 2t4n

2
)

+ h13

(mπ
a
t6 + t5

)
+ h14

(mπ
a
t5 + t6

)
+

+ h15

(mπ
a
t4 − t3 − 2t3n

2
)

+ h16

(
2m2π2

a2
t3 +

3mπ

a
t4 − t3

)
+

+ h17

(
−2m2π2

a2
t4 +

3mπ

a
t3 + t4

)
+ h18

(
2m2π2

a2
t5 +

3mπ

a
t6 − t5

)
+

+ h19

(
−2m2π2

a2
t6 +

3mπ

a
t5 + t6

)
+ h110

(
t3 −

2mπ

a
t4

)
+ h111

(
t4 +

2mπ

a
t3

)
,

A2 = h21

(
−6t1 +

m2π2

a2
t1 +

5mπ

a
t2

)
+ h22

(
6t2 −

m2π2

a2
t2 +

5mπ

a
t1

)
+

+ h23

(
−t3 +

2mπ

a
t4 +

m2π2

a2
t3 + n2t3

)
+ h24

(
t3 +

2mπ

a
t3 −

m2π2

a2
t4 + n2t4

)
+

+ h25

(
m2π2

a2
t5 +

2mπ

a
t6 − t5

)
+ h26

(
−m2π2

a2
t6 +

2mπ

a
t5 + t6

)
+ h27 +

+ h28

(
2nt1 −

mnπ

a
t2

)
+ h29

(
2nt2 +

mnπ

a
t1

)
+ h210

(
−3t1 +

mπ

a
t2 + n2t1

)
+

+ h211

(
3t2 +

mπ

a
t1 − n2t2

)
,

A3 =
1

8

m2π3
(
e2a − 1

) (
a4 + 2m2π2a2 +m4π4 − 2n2a4 + 2m2n2π2a2 + n4a4

)
a4(a2 +m2π2)

,

A4 =
−m2π3

(
e6a − 1

) (
−9t1a

2 + 6t2mπa+ t1m
2π2 + t1n

2a2
)

24a2(9a2 +m2π2)
+

+
mπ2

(
e6a − 1

) (
−9t2a

2 − 6t1mπa+ t2m
2π2 + t2n

2a2
)

8a(9a2 +m2π2)
,



Nonlinear post-buckling of thin FGM annular spherical shells under mechanical loads and ... 305

A5 =
−8m3π3

(
−3m2π2 − 7a2 + 3e5am2π2(−1)m + 7e5a(−1)ma2

)
3an(625a4 + 250m2π2a2 + 9m4π4)

,

A6 =
m2π3

(
e6a − 1

)
24 (9a2 +m2π2)

, A7 =
m2π3

(
−m2π2 + 3a2e4a − 3a2 + e4am2π2

)
16a2 (4a2 +m2π2)

,

A8 =
m2π2

16a2
−
(
t6a

2 + t5mπa− vt6a2 + 2vt6m
2π2 − 3vt5mπa

)
a2 +m2π2

+

+
mπ

(
t5a

2 − t6mπa− vt5a2 + 2vt5m
2π2 + 3vt6mπa

)
a (a2 +m2π2)

A9 =
−πm (−1 + ea(−1)m)

an
,

A10 =
aπm

(
−1 + e3a(−1)m

)
n (9a2 +m2π2)

−
mπ

(
−1 + e3a(−1)m

) (
−t2mπa+ 3t1a

2 − n2t1a2 + vm2π2t1 + 5vt2mπa− 6vt1a
2
)

an (9a2 +m2π2)

+
3
(
−1 + e3a(−1)m

) (
mπt1a+ 3t2a

2 − n2t2a2 − 5vmπt1a+ vt2m
2π2 − 6vt2a

2
)

n (9a2 +m2π2)
,

h11 =
m3π4

(
e4a − 1

) [
4a2πm

(
3n2 − 1

)
+
(
2n2 − 1

) (
m3π3 − 2a3

)]
512a4(n2 − 1)(4a2 +m2π2)

+

+
π4m(e4a − 1)

(
a3 − πm3

)
256a2(n2 − 1)(a2 +m2π2)

,

h12 =
−π2m

(
e4a − 1

)
(2πm− a)

32 (a2 +m2π2)
+
π5m4

(
e4a − 1

) (
π2m2 − 2a2

)
32a2(4a4 + 5a2m2π2 +m4π4)

,

h13 =
π3m2

(
e4a − 1

)
(2πm− a)

16a (a2 +m2π2)
+

9m7nπ10(−1 + e4a)
2

16a(4a4 + 5a2m2π2 +m4π4)

h14 = −2h12, h15 = −1

2
h13, h16 =

−3aπ4m3(−1 + e2a)

8 (a4 + 5a2m2π2 + 4m4π4)
+
π3m2(−1 + e2a)

4 (a2 + 4m2π2)
,

h17 =
π2m

(
e2a − 1

) [
2π3m3 − a2πm+ a3 + am2π2

]
8 (a2 + 4m2π2) (a2 +m2π2)

,

h18 =
π3m2(−1 + e2a)

(
3aπm− 2a2 − 2π2m2

)
4 (a2 + 4m2π2) (a2 +m2π2)

,

h19 =
π2m

(
e2a − 1

) [
−4π3m3 + 2a2πm+ a3 + am2π2

]
8 (a2 + 4m2π2) (a2 +m2π2)

,

h110 =
−π4nm3(−1 + e4a)

16a(a2 +m2π2)
, h111 =

nπ3m2(−1 + e4a)

16(a2 +m2π2)
,
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h21 =
8am2π2 (a−mπ)

(
−1 + (−1)me3a

)
9n (9a4 + 10a2m2π2 +m4π4)

,

h22 =
4amπ

(
−1 + (−1)me3a

) (
−2amπ +m2π2 + 3a2

)
9n (9a4 + 10a2m2π2 +m4π4)

,

h23 =
160a2m2π2(−1 + (−1)me5a)

3n(625a4 + 250a2m2π2 + 9m4π4)
,

h24 =
−8aπm

(
−1 + (−1)me5a

) (
25a2 − 3m2π2

)
3n(625a4 + 250a2m2π2 + 9m4π4)

,

h25 =
160a2m2π2

3n(625a4 + 250a2m2π2 + 9m4π4)
,

h26 = −h24, h27 =
amπ3

(
−1 + (−1)me5a

)
12n(25a2 +m2π2)

,

h28 =
−40π3m3a

(
−1 + (−1)me5a

)
3(625a4 + 250a2m2π2 + 9m4π4)

,

h29 =
4m2π2

(
−1 + (−1)me5a

) (
3m2π2 + 25a2

)
3(625a4 + 250a2m2π2 + 9m4π4)

,

h210 =
−8m2π2

(
−1 + (−1)me5a

) (
−5a3 + 10a2mπ + 3m3π3

)
3an(625a4 + 250a2m2π2 + 9m4π4)

,

h211 =
4πm

(
−1 + (−1)me5a

) (
50a2mπ − 25a3 − 3am2π2 + 16m3π3

)
3n(625a4 + 250a2m2π2 + 9m4π4)

,

t1 =

{
A(1− β21 − n2) + 2Bβ1

}
(A2 +B2)

,

t2 =

{
B(1− β21 − n2) + 2Aβ1

}
(A2 +B2)

,

t3 =

{
C1(−β1n2 + β1 − β31)− 64(β31 + β1n

2)β21
}

4
[
C1C2 + (32β31 + 32β1n2)

2
] ,

t4 =

{
C2β

2
1 + 16(β31 + β1n

2)(−β1n2 + β1 − β31)
}

2
[
C1C2 + (32β31 + 32β1n2)

2
] ,

t5 =
4
{

(β41 − β21)(β1n
2 − β1 + β31)− 4β31(β21n

2 − β21)
}

(16β41 − 16β21)
2

+ 1024β61
,

t6 =
8
{

(β41 − β21)(β21n
2 − β21) + (β1n

2 − β1 + β31)β31
}

(16β41 − 16β21)
2

+ 1024β61
.
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