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Abstract. In the study an extension of the Bubnov-Galerkin method in terms of the
equivalent linearization method is presented. It is combined with sequential linearization
and nonlinear procedure to yield a new method for solving nonlinear equations which
can improve the accuracy when the nonlinearity is strong. For illustration the Duffing
oscillator is considered to show the effectiveness of the proposed method.
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1. INTRODUCTION

Bubnov-Galerkin method is one of most popular approximate methods in many
fields of applied mechanics since the method is general in scope and can be used for both
conservative and nonconservative, both linear and nonlinear systems. The idea was appar-
ently first suggested in 1913 by Bubnov [1], whereas the first paper along with elaborative
examples was written in 1915 by Galerkin [2]. In 1937 Duncan [3] published the first com-
prehensive review of the method in the Western literature. For a given differential equation
the Bubnov-Galerkin method approximates the sought solution as a linear combination of
comparison functions and requires the orthogonality of the residual to each of comparison
functions. In this context the Bubnov-Galerkin method is also known as a weighted resid-
ual method [4]. Although the method can be used for both linear and nonlinear systems, it
is known that the accuracy of the method decreases when the nonlinearity becomes larger.
Elishakoff [5] connected the Bubnov-Galerkin method with the equivalent linearization
method.

In this paper a representation of the Bubnov-Galerkin method in terms of the equiv-
alent linearization method is presented and a dual approach is subsequently adopted to
suggest a new method for solving nonlinear equations. This combined approach allows
improving the accuracy when the nonlinearity is strong. For illustration the Duffing oscil-
lator and a nonlinear vibration of string are considered to demonstrate the effectiveness
of the proposed method.
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2. VIEW OF BUBNOV-GALERKIN METHOD FROM THE

STOCHASTIC LINEARIZATION CONTEXT

Consider the following nonlinear differential equation

L(W ) = 0 (1)

where L is a differential operator, W is an unknown function which satisfies specific
boundary conditions. We replace approximately the function L(W ) by a linear term

L(W ) ≈ kW (2)

where the coefficient k is chosen from the condition of minimum mean square deviation
criterion

〈

(L(W )− kW )2
〉

→ min
k

(3)

where < . > is a functional which is usually taken in a form of integration operator over
the domain of the operator L(W ). One gets from (3):

k =
< L(W )W >

< W 2 >
. (4)

Using Eq. (2) one obviously observes that Eq. (1) is satisfied approximately if

k = 0. (5)

Alternatively, from Eq. (4) we get another condition

< L(W )W >= 0. (6)

The Eq. (6) is known as the orthogonality of the residual L(W ) to the comparison
function W . Hence, the Bubnov-Galerkin method can be employed in terms of the equiv-
alent linearization method. Moreover, the accuracy of the method can be expected to be
improved by using the dual approach developed recently by Anh [5]. Suppose that the
operator L(W ) can be expressed as a sum of two operators:

L(W ) = M(W ) + N (W ) (7)

where M is the linear operator and N is the nonlinear operator.
At this juncture sequential linearization and nonlinearization approach will be ap-

plied to the nonlinear operator N (W ). Note that Anh [5] refers to it as the dual approach.
By the first step we replace N (W ) approximately by a linear term

N (W ) ≈ αW. (8)

The difference can be measured by the following expression:
〈

[N (W )− αW ]2
〉

.

Second step consists in the replacement of the equivalent linear term αW by the original
nonlinear term N (W ) but now multiplied by a factor. The difference can be measured by
the following expression:

〈

[αW − βN (W )]2
〉

.
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These two procedures should be optimized together, as follows,

D ≡
〈

[N (W ) − αW ]2
〉

+
〈

[αW − βN (W )]2
〉

→ min
α,β

(9)

The coefficients α, β are determined from the following requirements

∂(D)

∂α
= 0,

∂(D)

∂β
= 0, (10)

which yield

α =
1

2 − γ

〈N (W )W 〉

〈W 2〉
(11)

β =
η

2 − γ
(12)

where

γ =
〈N (W )W 〉2

〈(N (W ))2〉 〈W 2〉
. (13)

To reiterate, using Eqs. (7) and (8), the original equation (1) is replaced approximately
by the following one:

M(W ) + αW = 0 (14)

Applying to Eq. (14) the classical equivalent linearization method or the Bubnov-
Galerkin method one gets

〈M(W )W 〉 + α
〈

W 2
〉

= 0. (15)

Substituting Eqs. (11) and (13) into Eq. (15) yields

〈M(W )W 〉 +
1

2 − γ
〈N (W )W 〉 = 0 (16)

or, noting Eq. (7), one gets

〈L(W )W 〉+
γ − 1

2− γ
〈N (W )W 〉 = 0. (17)

Substituting (13) into (17) results in the following equation

〈L(W )W 〉+
〈N (W )W 〉2 −

〈

(N (W ))2
〉 〈

W 2
〉

2 〈(N (W ))2〉 〈W 2〉 − 〈N (W )W 〉2
= 0. (18)

It is seen that the equation (18) differs from the Bubnov-Galerkin equation (6).
Moreover, in general the orthogonality of the residual L(W ) to the comparison function
W is not required anymore. Because in addition to the first term that coincides with the
left side of Eq. (6), Eq. (18) contains an additional term.
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3. ILLUSTRATIVE EXAMPLE: DUFFING OSCILLATOR

For illustration of the effectiveness of the equation (18) we consider the well known
Duffing oscillator under random excitation

L(W ) ≡
d2W

dt2
+ 2h

dW

dt
+ ω2

0W + µW 3 − σξ̇ (t) = 0 (19)

where ξ̇ (t) is the white noise process with unit intensity. The comparison function W is
taken as a solution of the corresponding linear equation:

d2W

dt2
+ 2h

dW

dt
+ ω2

0W + kW − σξ̇ (t) = 0. (20)

Substituting (20) into (19) gives the residual

L(W ) = µW 3 − kW. (21)

Thus by using the Bubnov-Galerkin method one gets

〈L(W )W 〉 =
〈

(µW 3 − kW )W
〉

= 0 (22)

or

k = µ

〈

W 4
〉

〈W 2〉
= 3µ

〈

W 2
〉

(23)

where < . > is the mathematical expectation operator. The system of two equations (20)
and (23) allows obtaining the unknown < W 2 >.

Using the present method one considers L(W ) as a sum of two operators M(W )
and N (W ) where

M(W ) =
d2W

dt2
+ 2h

dW

dt
+ ω2

0
W − σξ̇ (t) , N (W ) = µW 3. (24)

Substituting Eqs. (21), (23) into (18) gives

〈(

µW 3 − kW
)

W
〉

+
µ2

〈

W 4
〉2

− µ2
〈

W 6
〉 〈

W 2
〉

2µ2 〈W 6〉 〈W 2〉 − µ2 〈W 4〉2
µ

〈

W 4
〉

= 0. (25)

Noting that
〈

W 2n
〉

= 1 · 3 · 5 · · · (2n − 1)
〈

W 2
〉n

(26)

one gets

3µ
〈

W 2
〉2

− k
〈

W 2
〉

+
(15− 9)

〈

W 2
〉4

(30− 9) 〈W 2〉4
3µ

〈

W 2
〉2

= 0 (27)

or

k =
15

7
µ

〈

W 2
〉

. (28)

It is remarkable that Eqs. (23) and (28) differ from each other.
The results of mean-square response of Duffing oscillator (19) obtained by the

Bubnov-Galerkin method (< W 2 >GM) and present method (< W 2 >PM) are compared
with the exact ones (< W 2 >E) in Table 1. It is seen that the errors of mean-square
responses determined by the present method are much less than the errors of mean-square
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response obtained by the straightforward Bubnov-Galerkin method for the case of strong
nonlinearity.

Table 1. Mean-Square Responses < W 2 > of Duffing oscillator for σ2/(4h) =
1, ω0 = 1

γ (< W 2 >E) (< W 2 >GM) error % (< W 2 >PM) error %
0.1 0.8176 0.8054 1.4876 0.8465 3.5352
0.5 0.5792 0.5486 5.2861 0.6062 4.6670
1.0 0.4679 0.4343 7.1938 0.4885 4.4082
5.0 0.2543 0.2270 10.7384 0.2624 3.1708
10 0.1889 0.1667 11.7721 2.6697 2.6697
50 0.0904 0.0784 13.2721 1.8539 1.8539
100 0.0650 0.0561 13.6491 0.0660 1.6331

It should be noted that the present method can also be used for investigating deter-
ministic nonlinear vibrations. In fact, consider a particular case of Eq. (19) where h, σ = 0,
i.e. we have free periodic vibrations described by the following differential equation:

L(W ) ≡
d2W

dt2
+ ω2

0W + µW 3 = 0. (29)

The corresponding linear equation reads

d2W

dt2
+ ω2

0W + kW = 0 (30)

where the equivalent linear term is determined by Eq. (25) but the operator < . > is taken
as follows

< · >=
1

l

l
∫

0

(·)dϕ (31)

where l is a positive value. For the case l = 2π substituting W = acosφ into (25) yields
〈[

µ(a cosϕ)3 −ka cos ϕ]a cos ϕ〉+

+
µ2

〈

(a cosϕ)4
〉2

− µ2
〈

(a cosϕ)6
〉

〈

(a cosϕ)2
〉

2µ2 〈(a cosϕ)6〉 〈(a cosϕ)2〉 − µ2 〈(a cosϕ)4〉2
µ

〈

(a cosϕ)4
〉

= 0.
(32)

Noting
〈

cosϕ2
〉

=
1

2
,

〈

cosϕ4
〉

=
3

8
,

〈

cos ϕ6
〉

=
5

16
, (33)

one gets

k =
15

22
µa2. (34)

Hence, the frequency of the free Duffing oscillator (29) obtained by the present method is

ω = (ω2

0 +
15

22
µa2)1/2. (35)
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That approximate frequency differs from the approximate frequency

ω = (ω2

0 +
3

4
µa2)1/2 (36)

obtained by the classical linearized method. The accuracy of two approximate frequencies
(35), (36) can be investigated by comparing with the exact one [6].

4. CONCLUSION

In the study the Bubnov-Galerkin method in the context of the equivalent lineariza-
tion method is first reiterated. A sequential linearization and nonlinearization method is
then adopted to suggest a new method for solving nonlinear equations. This dual or se-
quential method can improve the accuracy of the equivalent linearization technique when
the nonlinearity is strong. For illustration the Duffing oscillator subjected to random ex-
citation is considered to demonstrate the effectiveness of the proposed methodology. The
method appears to have a certain potential, it ought to be explored for wider nonlinear
classes.
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