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Abstract. This paper presents a method for calculating effective elastic moduli of honey-
comb core of sandwich plates. The theory is based on the homogenization method for
periodic composite materials. Abaqus software is used to model the localization elastic
problem on a representative volume element and then the balance of micro-macroscopic
deformation energy enables to calculate homogenized elastic moduli of the honeycomb
core. Numerical examples are carried out and compared to other models.
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1. INTRODUCTION

Sandwich structures are used in a wide variety of applications including aircraft,
aerospace, naval/marine, construction, and transportation industries where strong stiff
and light structures are required. These structures are composed of a core bonded to two
face sheets, among which the type-honeycomb core is much used. In practice, the difficul-
ties on the behavior analysis of these honeycomb sandwich structures reside on the cal-
culation of effective elastic properties of honeycomb core. This subject has been attracted
several researches. Gibson et al. [1], Masters and Evans [2] proposed an analytical solu-
tion for determining the in-plane elastic properties of honeycomb. Abd-el Sayed et al [3]
investigated a theoretical approach to the deformation of honeycomb-based composite
materials from which in-plane properties of honeycomb are derived. The out-of-plane
properties of honeycomb have been studied by Liu and Zhao [4], Shi [5] and Grediac [6]
using analytical and numerical methods. Other approaches in this subject can be found
in the works of Zhang and Ashby [7] and Nast [8]. A literature review shows that most of
studies used analytical approaches which requires hypothesis on the formulation. Alter-
natively, the homogenization method has been developed in recent years for the behavior
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analysis of heterogeneous composites [9–12], this approach is simple and efficient in esti-
mating the effective material properties, especially when a commercial package of finite
element method is applied.

This paper aims to present a numerical approach for estimating the homogenized
elastic properties of periodic honeycomb structures. The theory is based on homogeniza-
tion method for periodic composite materials. The numerical results are compared to
earlier works to verify the accuracy of the present study and to investigated the effects
of side-to-thickness ratio of the unit honeycomb cell on the in-plane elastic moduli of
honeycomb core.

2. THEORETICAL FORMULATION

Consider a honeycomb sandwich plate as Fig. 1a in which the honeycomb core is
constituted by honeycombs periodic in two directions x1 and x2 of the plate (Fig. 1b).
Therefore, it can extract a representative volume cell Y with sides 2l1 × 2l2 and height hc
as in Figs. 1c and 1d. The calculation of homogenized elastic properties of the honeycomb
structure requires the solution field of an elastic localization problem on the unit cell Y
that is expressed by

σ (x) .∇ = 0, σ (x) = C (x) ε (x) ,
ε (x) = E + e (uper (x)) ,
e (uper (x)) = gradsuper (x) ,
uper (x)periodicon ∂Yl , σ (x).n antiperiodicon ∂Yl .

(1)
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Fig. 1. Geometry of a representative volume element of honeycomb core of sandwich plate
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where ∇ is nabla operator, uper (x) is the displacement field periodic on the in-plane
boundaries ∂Yl of Y, e (uper (x)) the associated strain field, σ (x) the stress field, E the ho-
mogeneous in-plane strains. Eq. (1) is the general form of the elastic localization problem
of composite materials with periodic boundary conditions.

Moreover, due to the the depth hc of the honeycomb core is normally much larger
than its cell sizes so to simplify the calculation, the problem Eq. (1) can be considered
as a plane strain problem. The homogenized elastic constants thus constitute the plane
stiffness matrix

Chom =

 Chom
11 Chom

12 0
Chom

12 Chom
22 0

0 0 Chom
66

 . (2)

Once the solution field of Eq. (1) is obtained, the homogenized elastic constants can
be derived from the balance of the micro-macroscopic strain energy (Hill’s principle) [13]
as follows

W (E) =
1
2

EChomE = min
ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

Y
, (3)

where KA is used to indicate a kinematic admissible field, the operator <> is the surface
average which is followed

〈 f (x)〉y =
1

SY

∫
Y

f (x)dx , (4)

where SY is area of the mid-plane of the unit cell Y. Substituting Eq. (2) into Eq. (3) leads to

1
2

(
Chom

11 E2
11 + Chom

22 E2
22 + 2Chom

12 E11E22 + 4Chom
66 E2

12

)
= min

ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

. (5)

It can be seen from Eq. (5) that the constants Chom
11 , Chom

22 , Chom
12 , Chom

66 can be derived
by appropriate choices of the in-plane homogeneous strain field and by the calculation of
the average of strain energy on the cell Y subjected to periodic boundary conditions (see
Eq. (1)), and then homogenized elastic moduli Ehom

1 , Ehom
2 , νhom

12 , Ghom
12 will be obtained.

Concretely, four following cases are considered.

Case 1: E =

[
1 0
0 0

]
, Chom

11 is determined by

Chom
11
2

= min
ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

Y
. (6)

Case 2: E =

[
0 0
0 1

]
, Chom

22 is calculated by

Chom
22
2

= min
ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

Y
. (7)
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Case 3: E =

[
1 0
0 1

]
, Chom

12 is derived from

1
2

(
Chom

11 + Chom
22 + 2Chom

12

)
= min

ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

Y
. (8)

Case 4: E =

[
0 1
1 0

]
, Chom

66 is determined by

2Chom
66 = min

ε∈KA

〈
1
2

ε (x)C (x) ε (x)
〉

Y
. (9)

Moreover, it is observed from Fig. 1d that the unit cell Y is symmetric in the in-
plane directions, that enables to obtain simplifications, more specifically concerning the
boundary conditions. These symmetries lead to the use of “Dirichlet” boundary con-
ditions instead of “periodicity” conditions, the former ones being easier to account for
within finite element computations. In general way, if x → u (x∗) is the image of the
displacement field x→ u (x) by a symmetry S, the field u (x∗) is given by

u (x∗) = Su
(tSx

)
, (10)

while the image of a second order tensor by S is expressed as

T (x∗) = ST
(tSx

)t S . (11)

The formulations (10) and (11) imply that the image by S of the solution field
(u, ε, σ) of Eq. (1) complies with the following system

σ∗ (x) .∇ = 0, σ∗ (x) = C (x) ε∗ (x) ,
ε∗ (x) = SE

(tSx
)t S + Se

(tSx
)t S,

e (u∗per (x)) = gradsu∗per (x) ,
u∗per (x) periodic on ∂Yl , σ∗ (x).n antiperiodic on ∂Yl .

(12)

It can be seen from Eq. (12) that if a symmetry S and macroscopic strain E are
chosen as: E = SE

(tSx
)t S, the start and non-start variables will comply with the same

system of equations so that u∗per (x) = uper (x) , σ∗ (x) = σ (x). Otherwise, if the fol-
lowing condition is satisfied: E = −SE

(tSx
)t S, u∗per (x) = −uper (x) , σ∗ (x) = −σ (x).

Practically, the symmetry of the unit cell (Fig. 1d) along the x1- and x2-axis allows to
consider a quarter of Y as Fig. 2.

Fig. 2. Geometry of a quarter of the unit cell Y
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For Case 1 (Eq. (6)), the symmetry S with respect to the x1-axis is given by S1 =(
−1 0
0 1

)
, the stresses σ∗ (x) and displacements u∗per (x) are therefore of the form

σ∗ (x) =
(

σ11 −σ12
−σ12 σ22

)
(−x1, x2) , u∗per (x) =

{
−u1
u2

}
(−x1, x2) . (13)

Additionally, by using the periodic boundary conditions, the following results are ob-
tained

uper
1 (0, x2) = 0, uper

1 (l1, x2) = uper
1 (−l1, x2, ) = 0, σ12 (l1, x2) = 0, l1 = {−l1, 0, l1} . (14)

Similarly, by considering the symmetry with respect to the x2-axis with S2 =

(
1 0
0 −1

)
,

the following boundary conditions are obtained

uper
2 (x1, l2) = 0, l2 = {−l2, 0, l2} , σ12 (x1, l2) = 0, l2 = {−l2, 0, l2} . (15)

Finally, for the first case, the symmetry of the unit cell Y according to the x1 and x2-axis
leads to the following boundary conditions

x1 = 0 : u1 = 0, σ12 = 0, x1 = l1 : u1 = l1, σ12 = 0, x2 = 0, l2 : u2 = 0, σ21 = 0. (16)

Similarly, the boundary conditions of Case 2 (Eq. (7)) are given by

x2 = 0 : u2 = 0, σ21 = 0, x2 = l2 : u2 = l2, σ21 = 0, x1 = 0, l1 : u1 = 0, σ12 = 0. (17)

For Case 3 (Eq. (8))

x1 = 0 : u1 = 0, σ12 = 0, x1 = l1 : u1 = l1, σ12 = 0,
x2 = 0 : u2 = 0, σ21 = 0, x2 = l2 : u2 = l2, σ21 = 0.

(18)

For Case 4 (Eq. (9))

x1 = 0 : u2 = 0, σ11 = 0, x1 = l1 : u2 = l1, σ11 = 0,
x2 = 0 : u1 = 0, σ22 = 0, x2 = l2 : u1 = l2, σ22 = 0.

(19)

It can be seen that the boundary conditions defined in Eqs. (16)-(19) enable to easily
model the unit cell Y by using a commercial software.

3. NUMERICAL RESULTS AND DISCUSSIONS

A number of numerical examples will be considered in this section to verify the
accuracy of the present theory and to investigate the effects of side-to-thickness ratio of
the unit honeycomb cell on the in-plane effective elastic moduli. Unless specific mention,
the following parameters of the honeycomb cell is used (in [2]): E = 1 GPa, ν = 0.3, l = h,
t = 0.1 mm, θ = 30◦. The elastic localization problem will be modelized by Abaqus
software in which a linear plane strain element CPE4R (Fig. 3) is used with a refined
meshing to assure the convergence of the strain energy. Due to the symmetry of the unit
cell in the x1- and x2-directions, a quarter of the cell with the prescribed displacement
boundary conditions is carried out.

Tab. 1 presents the comparison of homogenized elastic moduli obtained from the
present study and those obtained from Gibson et al. [1], Masters and Evans [2]. It can be
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Fig. 3. A meshing on a quarter of the unit cell Y using a linear plane strain element CPE4R

Table 1. Homogenized elastic moduli with l/t = 10

Method Ehom
1 (GPa) Ehom

2 (GPa) νhom
12 νhom

21 Ghom
12 (GPa)

Present 0.0189 0.0189 0.8632 0.8632 0.0051
Gibson et al. [1] 0.0185 0.0185 1 1 0.0046

Master and Evans [2] 0.0165 0.0165 0.8571 0.8571 0.0044
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Fig. 4. Variation of homogenized Young’s
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seen from this table that the present solution is similar with that of [1] for Young’s moduli
while the Poisson’s ratio derived from the present study is in well agreement with that
of [2]. It should be noted that the expression of Poisson’s ratio of [1] requires vhom

12 =

vhom
21 , that will be lead to the numerical problems in the calculation of the plane stiffness

constants Chom
ij . Tab. 1 shows that there are minor differences on the shear modulus



A numerical approach for estimating the effective elastic properties of honeycomb structures 237

4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

l/t

G
ho

m
12

Gibson et al. [1]
Masters and Evans [2]
Present

Fig. 6. Variation of homogenized shear modulus Ghom
12 (GPa) with respect to l/t

between the models. Moreover, in order to investigate the effect of the side-to-thickness
ratio of the unit honeycomb cell on the homogenized elastic moduli, Figs. 4-6 display the
variation of the homogenized elastic moduli with respect to the l/t. It can be seen from
Figs. 4-6 that the Young’s and shear modulus decrease with an increase of l/t, conversely
the Poisson’s ratio increases with l/t (Fig. 5).

4. CONCLUSIONS

This paper proposed a numerical approach for estimating the effective elastic mod-
uli of periodic honeycomb structures. The theory is based on the homogenization method
for periodic composite materials. Abaqus software is used to model the localization elas-
tic problem on a representative volume element and then the balance of micro-
macroscopic deformation energy enables to calculate homogenized elastic moduli of the
honeycomb core. Numerical examples are carried out and compared to other models.
The present method is found to be simple and efficient in predicting equivalent elastic
moduli of honeycomb structures.
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