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Abstract. The paper proposes an algorithm to solve a general Duffing equation, in
which a process of transforming the initial equation to a resulting equation is proposed,
and then the coupling successive approximation method is applied to solve the resulting
equation. By using this algorithm a special physical factor and complex-valued solutions
to the general Duffing equation are revealed. The proposed algorithm does not use any
assumption of small parameters in the equation solving. The coupling successive proce-
dure provides an analytic approximated solution in both real-valued or complex-valued
solution. The procedure also reveals a formula to evaluate the vibration frequency, ϕ, of
the non-linear equation. Since the first approximation solution is in a closed-form, the
chaos index of the general Duffing equation and the chaotic characteristics of solutions
can be predicted. Some examples are used to illustrate the proposed method. In the case
of chaotic solution, the Pointcaré conjecture is used for solution verification.

Keywords : General Duffing equation, coupling successive approximation method, chaos
index, chaotic structures of solutions.

1. INTRODUCTION

Many dynamical problems lead to a general Duffing equation [1–6] with not only
the third order but also second order nonlinearities. Recently, there have been increasing
researches dealing with the Duffing equation with a set of chaotic solutions. The commonly
index used to recognize the chaotic solutions of the Duffing equation is Liapunov index
[7], which requires a complex calculation. Therefore, there is a need to develop another
index using an easier calculation.

There are many available methods to solve nonlinear differential equations in gen-
eral, and the Duffing equation in particular. For examples:

- The Rungen Kutta [8] and Newmark [9] methods are two numerical methods,
which require no additional assumptions in equation solved. Applying these methods, some
authors were able to find and assess chaotic solutions to the Duffing equation. However,
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these solutions may not converge [10] and there are difficulties in assessing properties of
parameter-dependent solutions.

- The perturbation method [11], the asymptotic method [12], the averaging method
[13] and the extended Galerkin [14] method are four approximate analytical methods that
requires an assumption of small parameters in applying the algorithm to the equation and
convergence. However, in solving mechanical and dynamical problems [1–6], coefficients
of nonlinear terms and coefficients of exciting forces are rather large. The assumption of
small parameters also leads to another limitation in the four methods, where only periodic
solutions could be found and examined, but not chaotic solutions.

The methods used in Refs. [8–14] were able to find and assess the real-valued solu-
tions of the Duffing equation. These findings are considered sufficient for linear differential
equations since the linear combination of the real and imaginary components of the so-
lutions is also a solution to this type of equations. However, for nonlinear differential
equations, these findings are not sufficient as the linear combination is not a solution to
these equations [15]. Moreover, for the complex-valued solutions of nonlinear differential
equations, there exists a phase space instead of phase plane as for the real-valued solutions
[15].

In order to overcome the shortcoming, many new techniques appeared in the lit-
erature such as: variational iteration method [16, 17], energy balance method [18, 19],
parameter-expansion method [20], Hamiltonian approach [21, 22], variational approach
[23, 24], homotopy analysis method [25], . . .

When most of these methods are applied to free nonlinear vibration equation the
convergence of method is still open. They do not indicate the way to find complex-valued
solutions of the equation if that exist.

This paper proposes an algorithm and an iterative process to find the real-valued
solution or complex-valued solution of the general Duffing equation.

The focus of interests in the paper includes:
Finding an algorithm to transform the initial equation to a resulting equation;

proposing a coupling successive approximation method to solve the resulting equation;
finding an analytical approximation solution in real-valued or complex-valued solutions;
building the formulae for calculating the oscillation frequency of a system of non-linear
equations, and providing a simple indication of chaotic solutions to the Duffing equation;
describing chaotic solutions in an analytical form, examining the characteristics of chaotic
solutions and using the Poincaré conjecture for verifying the chaotic properties of the so-
lutions.

2. THE ALGORITHM TO TRANSFORM THE INITIAL EQUATION

TO THE RESULTING EQUATION

2.1. The algorithm to transform the initial equation

Consider a general Duffing equation as

ẍ + 2νẋ + λx3 + 2qx2 + kx = p cosω t. (1)
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Adding a fixed parameter σ to both sides of Eq. (1), then dividing both sides by x + d,
we have

1

x + d

(

ẍ + 2νẋ + λx3 + 2qx2 + kx + σ
)

=
σ + p cosω t

x + d
, (2)

where d is a fixed parameter, x + d is assumed to be different from zero and checked after
x is found.

Eq. (2) can be rewritten as

d

dt

(

u̇

u

)

+
u̇2

u2
+

d

dt

(

1

2

υ̇

υ

)

−

(

1

2

υ̇

υ

)2

=
σ + p cosω t

x + d
, (3)

in which
u̇

u
= a1

ẋ

x + d
+ a2x + a3 +

b

x + d
, (4)

1

2

υ̇

υ
= b1

ẋ

x + d
+ b2x + b3 +

b

x + d
(5)

and with the conditions that parameters σ, d, a1, a2, a3, b1, b2, b3, b are suitably determined.
Applying Eqs. (4) and (5) into Eq. (3), then combining the equivalent equation with

Eq. (2), we obtain a system of algebraic nonlinear equations of parameters

a1 − b1 = 1, a2 + b2 + 2a1a2 − 2b1b2 = 0,

(a2 + b2) d + 2a1a3 − 2b1b3 = 2ν (a1 + b1) ,

a2
2 − b2

2 = λ (a1 + b1) ,
(

a2
2 − b2

2

)

d + 2a2a3 − 2b2b3 = 2q (a1 + b1) ,

(2a2a3 − 2b2b3) d + a3
3 − b3

3 + (2a2 − 2b2) b = k (a1 + b1) ,
(

a3
3 − b3

3

)

d + (2a3 − 2b3) b = σ (a1 + b1) .

(6)

Solving the system of Eqs. (6), the parameters are given by

b1 = a1 − 1, a2 = (2a1 − 3)

√

−
λ

8
, b2 = (2a1 + 1)

√

−
λ

8
,

a3 =
1

3
√

−λ
8

[

(2a1 + 1) ν

√

−
λ

8
− (a1 − 1) q +

3

8
(2a1 − 1) λd

]

,

b3 =
1

3
√

−λ
8

[

(2a1 − 3) ν

√

−
λ

8
− a1q +

3

8
(2a1 − 1)λd

]

,

b =
2a1 − 1

8
√

−λ
8

[

(2q − λd) d +
8

9λ

(

q + 4ν

√

−
λ

8

)(

q − 2ν

√

−
λ

8

)

−
2

3

(

q+4ν

√

−
λ

8

)

d − k

]

,

σ = −
2

3λ

(

q + 4ν

√

−
λ

8

)[

8

9λ

(

q + 4ν

√

−
λ

8

)(

q − 2ν

√

−
λ

8

)

− k

]

.

(7)
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Given Eq. (4) and Eq. (5) and the parameters specified by Eq. (7) one can see that Eq.
(3) and Eq. (1) are totally equivalent.

Note that, there are still two arbitrary parameters, a1 and d in Eq. (7). For simplicity,
a1 and d are suitably selected. First, d is selected so that b = 0, i.e. d is selected from the
equation

(2q − λd) d +
8

9λ

(

q + 4ν

√

−
λ

8

)(

q − 2ν

√

−
λ

8

)

−
2

3

(

q + 4ν

√

−
λ

8

)

d − k = 0.

Solving the equation yields

d =
2

3λ

(

q − 2ν

√

−
λ

8

)

±
θ

2
√

−λ
8

, (8)

where

θ =

[

1

2

(

k −
4

3

q2

λ
−

2

3
ν2

)]

1

2

. (9)

Next, a1 is selected so that b1 = 0. Thus,

a1 = 1, a2 = −

√

−
λ

8
, b2 = 3

√

−
λ

8
,

a3 =
5

6
ν ∓

θ

2
+

q

12
√

−λ
8

, b3 = −
1

2
ν ∓

θ

2
−

q

4
√

−λ
8

.
(10)

Substituting b1 = b = 0 and the values b2, b3 given by Eq. (10) into Eq. (5) leads to

x =
1

3
√

−λ
8





1

2
(ν ± θ) +

q

4
√

−λ
8



 +
1

6
√

−λ
8

υ̇

υ
. (11)

Note that the selection of a1 and d such that b1 = b = 0 provides the most useful algorithm.
Subtracting side with side of Eqs. (4) and (5), respectively, we obtain

(a2 − b2) x + a3 − b3 =
u̇

u
−

1

2

υ̇

υ
−

ẋ

x + d
.

Substituting the value of x given by Eq. (11) into the above equation leads to

2

3
(ν ∓ θ)−

2

3

υ̇

υ
=

u̇

u
−

1

2

υ̇

υ
−

ẋ

x + d
.

Integrating the equation with respect to t yields

υ−2/3e2/3(ν∓θ)t =
u

(x + d)υ1/2
.

Taking a new function ξ into consideration as

υ−2/3e2/3(ν∓θ)t =
u

(x + d)υ1/2
=

1

ξ2
, (12)
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therefore we obtain
1

2

υ̇

υ
=

3

2

ξ̇

ξ
+

1

2
(ν ∓ θ) . (13)

Based on given Eq. (13) and Eq. (11), a transformation is obtained as

x = −
2

3λ

[

q + 4ν

√

−
λ

8

]

+
1

2
√

−λ
8

ξ̇

ξ
. (14)

2.2. Transforming the initial equation to the resulting one

Eq. (3) can be rewritten as

d

dt

(

u̇

u
+

1

2

υ̇

υ

)

+
u̇2

u2
−

(

1

2

υ̇

υ

)2

=
σ + p cosω t

x + d
. (15)

Multiplying both sides of the equation by u/υ1/2 leads to

u

υ1/2

d

dt

(

u̇

u
+

1

2

υ̇

υ

)

+
u

υ1/2

[

(

u̇

u

)2

−

(

1

2

υ̇

υ

)2
]

= (σ + p cosωt)
u

(x + d)υ1/2
.

Integrating the obtained equation with respect to t, we find an initial integral

u

υ1/2

(

u̇

u
+

1

2

υ̇

υ

)

= D2 +

t
∫

0

(σ + p cosωt)
u

(x + d)υ1/2
dt, (16)

where D2 is an integral constant.
Substituting the values a1 = 1, b = 0, parameters a2, a3 given by Eq. (10) and

Eq. (14) into Eq. (4) leads to

u̇

u
=

ẋ

x + d
−

1

2

ξ̇

ξ
+

1

2
(ν ∓ θ) (17)

and integrating it with respect to t yields

u = (x + d) ξ−1/2e1/2(ν∓θ)t. (18)

From Eqs. (12), (13), (17) and (18) one can get

u

υ1/2

(

u̇

u
+

1

2

υ̇

υ

)

=
1

ξ2

[

ẋ + (x + d)

(

ξ̇

ξ
+ ν ∓ θ

)]

. (19)

Using Eqs. (8) and (14), the formulae of ẋ and x + d are expressed as

ẋ =
1

2
√

−λ
8

(

ξ̈

ξ
−

ξ̇2

ξ2

)

,

x + d =
1

2
√

−λ
8

[

ξ̇

ξ
+ (ν ± θ)

]

.
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Substituting the above-obtained formulae into Eq. (19) gives

u

υ1/2

(

u̇

u
+

1

2

υ̇

υ

)

=
1

2
√

−λ
8 ξ3

[

ξ̈ + 2νξ̇ −
1

2
Kξ

]

, (20)

where

K = k −
4

3

q2

λ
−

8

3
ν2.

From Eqs. (12), (16), and (20), the resulting equation is obtained

ξ̈ + 2νξ̇ −
1

2
Kξ = f (ξ, t) , (21)

where

f (ξ, t) = 2

√

−
λ

8
ξ3



D2 +

t
∫

0

(σ + p cosωt)
1

ξ2
dt



 .

The formula (14) and Eq. (21) are the transformation and the resulting equation that the
present paper is looking for. In order to formulate a successive approximation method, the
right hand side of Eq. (21) is written as

f (ξ, t) = 2

√

−λ

8
η (ξ, t) ξ, (22)

where

η (ξ, t) = ξ2



D2 +

t
∫

0

(σ + p cosω t)
1

ξ2
dt



 . (23)

3. EQUATION SOLVED BY THE COUPLING SUCCESSIVE

APPROXIMATION METHOD

Finding an analytic approximated solution to Eq. (21) by the coupling successive
approximation method is carried out by continuous loops of iteration. Each loop contains
continuously iterative steps.

3.1. Loops of iteration

In loop “0”th, we solve the linear differential equation (21) without the right hand
side to find the solution of ξ0 (t). In the first loop, substituting ξ (t) = ξ0 (t) in the right
hand side of Eq. (21) and solving the obtained linear differential equation we find ξ1 (t)
and so on. In loop n−1th, the value ξn−1 (t) is found. The function η(ξn−1, t) is computed
by the formula (22)

η (ξn−1, t) = (ξn−1)
2



D2 +

t
∫

0

(σ + p cosω t)
1

(ξn−1)2
dt



 , (24)
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the iteration scheme of successive approximation method is introduced as following

ξ̈n + 2νξ̇n −
1

2
Kξn = 2

√

−
λ

8
η(ξn−1, t)ξn−1, n = 1, 2, 3 . . . (25)

By solving Eq. (25), where the right hand side is a known function and taking into account
Eq. (9), the analytic approximated solution in nth loop of iteration is obtained

ξn =

√

−λ
8

θ
yn−1 −

√

−λ
8

θ
zn−1 + D3e

−(ν−θ)t
− D4e

−(ν+θ) t
, (26)

where

yn−1 (t) = e−(ν−θ)t





t
∫

0

η(ξn−1, t)ξn−1e
(ν−θ)t

dt



 , (27)

zn−1 (t) = e−(ν+θ)t

t
∫

0

η (ξn−1, t) ξn−1e
(ν+θ)tdt, (28)

θ =

[

1

2

(

k −
4

3

q2

λ
−

2

3
ν2

)]

1

2

.

Examining Eq. (26) we can predict some characteristics of solution.

If k −
4

3

q2

λ
−

2

3
ν2 > 0 then θ is a real number, the solution describes an oscillation

depending only one excited frequency ω.

If k −
4

3

q2

λ
−

2

3
ν2 < 0 then θ is an imaginary number, i.e

θ = iϕ with ϕ =

[

1

2

(

2

3
ν2 +

4

3

q2

λ
− k

)]1/2

,

where ϕ plays the role of a new frequency of a nonlinear vibration. The solution (26)
describes a complex oscillation with many frequencies: excited frequency ω, vibration
frequency ϕ and combined frequency of ω and ϕ, that the chaotic characteristics of solution
may be predicted.

Each function in the sequence ξ0(t), ξ1(t), . . . , ξn−1(t), ξn(t) can be determined from
the one immediately proceeding it by solving the respective linear differential equation (25).

The process is stopped when the condition max
n

‖ξn (t) − ξn−1 (t)‖ < ε is achieved,

where ε is a small positive number as required. But the convergence proving of this process
is very complicated.

Thus, a coupling successive approximation method based on Eq. (22) must be devel-
oped with the iterative steps as following: in each loop of iteration, continuously iterative
steps are carried out.
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3.2. Iterative steps in each loop

In the loop nth, when the iterative step mth is carried out, the value η (ξn−1, t) is
fixed. This value is taken at the end of the previous loop (loop n− 1th). At this point, the
iteration scheme of the coupling successive approximation method for the loop nth and
the iterative step mth is expressed as

ξ̈n,m + 2νξ̇n,m −
1

2
Kξn,m = 2

√

−λ

8
η (ξn−1, t) ξn,m−1, n = 1, 2, 3 . . . , m = 1, 2, 3 . . . (29)

where n denotes the number of loop and n-the number of iterative step.
The approximate solution ξn−1 (t) in the last loop n − 1th is taken as an initial

approximation at the iterative step “0”th of the loop nth, denoted as ξn,0 (t). Thus, that
requires

ξn−1 (t) = ξn,0 (t) .

Solving Eq. (29), where the right hand side is a known function, we have

ξn,m =

√

−λ
8

θ
yn,m−1 −

√

−λ
8

θ
zn,m−1 + D3e

−(ν−θ) t
− D4e

−(ν+θ)t
, (30)

where

yn,m−1 (t) = e−(ν−θ)t





t
∫

0

η(ξn,0, t)ξn,m−1e
(ν−θ)t

dt



 ,

zn,m−1 (t) = e−(ν+θ)t

t
∫

0

η (ξn,0, t) ξn,m−1e
(ν+θ)tdt.

(31)

From which

ξ̇n,m = − (ν − θ)

√

−λ
8

θ
yn,m−1 + (ν + θ)

√

−λ
8

θ
zn,m−1

− (ν − θ)D3e
−(ν−θ) t

+ (ν + θ) D4e
−(ν+θ) t

,

ξ̈n,m = (ν − θ)2

√

−λ
8

θ
yn,m−1 − (ν + θ)2

√

−λ
8

θ
zn,m−1 + (ν − θ)2D3e

−(ν−θ)t

− (ν + θ)2D4e
−(ν+θ)t

+ 2

√

−λ

8
η (ξn,0, t) ξn,m−1.

(32)

Remarks : If each loop is carried out with only one step, the coupling successive method
will return to the single successive method as mentioned in Section 3.1.
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4. FINDING INTEGRAL CONSTANT

In the loop nth and the step m + 1th, basing on Eq. (14), we have

xn,m+1 = −
2

3λ

(

4ν

√

−λ

8
+ q

)

+
1

2
√

−λ
8

ξ̇n,m+1

ξn,m+1
, (33)

ẋn,m+1 =
1

2
√

−λ
8





ξ̈n,m+1

ξn,m+1
−

(

ξ̇n,m+1

ξn,m+1

)2


 . (34)

Assumed that
ξn,m+1 |t=0 = ξ0

n,m+1,

ξ̇n,m+1 |t=0 = ξ̇0
n,m+1,

xn,m+1 |t=0 = x0, ẋn,m+1 |t=0 = ẋ0.

From the relations (30)-(32)

ξ0
n,m+1 = D3 − D4, ξ̇0

n,m+1 = − (ν − θ)D3 + (ν + θ)D4,

ξ̈n,m+1 |t=0 = (ν − θ)2 D3 − (ν + θ)2 D4 + 2

√

−λ

8
η
(

ξ0
n,0, 0

)

ξ0
n,m,

according to Eq. (24)

η(ξ0
n,0, 0) = (ξ0

n,0)
2D2.

Thus, it can be written as

ξ̈n,m+1 |t=0 = (ν − θ)2 D3 − (ν + θ)2 D4 + 2

√

−λ

8

(

ξo
n,0

)2
ξ0
n,mD2.

From the above relations

x0 = −
2

3λ

(

4ν

√

−λ

8
+ q

)

+
1

2
√

−λ
8

− (ν − θ)D3 + (ν + θ)D4

D3 − D4
, (35)

ẋ0 =
1

2
√

−λ
8







(ν − θ)2 D3 − (ν + θ)2 D4 + 2
√

−λ
8

(

ξ0
n,0

)2
ξ0
n,mD2

D3 − D4

−

[

− (ν − θ)D3 + (ν + θ)D4

D3 − D4

]2
}

(36)

Solving the Eqs. (35) and (36) in terms of the variables D2, D4 or D2, D3, here we find
D2, D4

D4 = D3

x0 + 2
3λ

(

4ν
√

−λ
8 + q

)

+ 1

2
q

−λ

8

(ν − θ)

x0 + 2
3λ

(

4ν
√

−λ
8 + q

)

+ 1

2
q

−λ

8

(ν + θ)

, (37)
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D2 =
2θD3

(

ξ0
n,0

)2
ξ0
n,m

{

2
√

−λ
8

[

x0 + 2
3λ

(

4ν
√

−λ
8 + q

)

+ ν + θ

]}

.







ẋ0 + 2

√

−λ

8

[

x0 +
2

3λ

(

4ν

√

−λ

8
+ q

)]2

+
(ν + θ)2

2θ



x0 +
2

3λ

(

4ν

√

−λ

8
+ q

)

+
1

2
√

−λ
8

(ν − θ)





−
(ν − θ)2

2θ



x0 +
2

3λ

(

4ν

√

−λ

8
+ q

)

+
1

2
√

−λ
8

(ν + θ)











,

(38)

where D3 is an elective constant, it is possible to select D3 = 1.

5. CALCULATING STEPS

Step 1: Providing input parameters k, q, ν, λ, p, ω, x0, ẋ0.
Step 2: Finding σ based on Eq. (7), θ based on Eq. (9) and other input parameters.
Step 3: Finding the integral coefficients based on Eq. (37) and Eq. (38).

Step 4: Getting the 0th approximation ξ1,0 = D3e
−(ν−θ)t or ξ1,0 = D4e

−(ν+θ)t, and deter-
mining the initial condition ξ0

n,0, ξ
0
n,m.

Step 5: Finding ξn,m+1, ξ̇n,m+1 based on Eq. (30), Eq. (31) and Eq. (32).
Step 6: Finding xn,m+1 (t) , ẋn,m+1 (t)based on Eq. (33) and Eq. (34).
Step 7: Plotting {Re [xn,m+1 [t]] , Re [ẋn,m+1 [t]] , Im [xn,m+1 [t]]}.
Step 8: Plotting {Re [xn,m+1 [t]] , Re [ẋn,m+1 [t]]}.
Step 9: Plotting {Re [xn,m+1 [t]]}.

The approximations in the first step of the first loop: ξ1,1, ξ̇1,1, ξ̈1,1 are found by
integrating in closed form, next the approximations are found by integrating numerically.

6. APPLICATION AND ASSESSMENT OF SOLUTION PROPERTIES

6.1. Exact solution

The resulting equation of the proposed method can be used to find exact solutions
in some particular cases:

Consider an initial equation

ẍ + λx3 + kx = 0.

It is derived from the Eq. (1) when ν = 0, q = 0, p = 0.
In this case, the transformation (14) and the solving Eq. (21) can be written as

x =
1

2
√

−λ
8

ξ̇

ξ
, ξ̈ −

1

2
kξ = 0,
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where: σ = 0 because ν = 0, q = 0 and selected constant can be chosen D2 = 0.
Based on the resulting equations, we find

ξ = C cosh(

√

k

2
t + φ),

and

x =

√

−k

λ
tanh

(

√

k

2
t + φ

)

, (39)

ẋ = k

√

−1

2λ

1

cosh2

(

√

k
2 t + φ

) , (40)

in which: C, φ - integral constants.
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Fig. 1. Comparison of exact solution (39) with numerical solutions using Mathematica 7 and the
solution at first approximation of the proposed coupling successive approximation method

(CSAM); k = 1, λ = −2, x[0] = 0, ẋ[0] = 0.5

With the initial set of parameters: k = 1, λ = −2, φ = 0 and the initial condition

x0 = x (t)|t=0 = 0, ẋ0 = ẋ (t)|t=0 = 0.5,
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the exact solution (39), (40) can be found

x =

√

1

2
tanh

(

√

1

2
t

)

, ẋ =
1

2

1

cosh2
(
√

1
2 t
) .

Solving the initial equation with the set of parameters: k = 1, λ = −2, x0 = 0, ẋ0 = 0.5
by the numerical method using Mathematica 7 and the coupling successive approximation
method (CSAM) then comparing obtained results with the exact solutions (39), (40) we
can see that they are coincided exactly (see Fig. 1).

6.2. Real-valued solution

In this case, θ is real and λ is smaller than zero. In fact, consider Eq. (1) with given
parameters k = 0.12, q = 0.0, λ = −1.0, ν = 0.4, ω = 1.0, p = 1.558, x0 = −0.4, ẋ0 = −1.0.

In this case θ can be evaluated as θ = 0.0816497.
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Fig. 2. Phase plane with t (50, 550), based on the results at the first approximation
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Fig. 3. Solution x(t), based on the results at
the first approximation
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Fig. 4. Solution ẋ(t), based on the results at
the first approximation
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Remarks:
When θ is real and λ < 0, the obtained solution is real-valued one.
The phase curves illustrated in Fig. 2 are smooth. They are not intersecting, inter-

twined into a closed ring.
The curve x(t) is periodic with decreasing amplitude, and the solution x(t) shows a

stable motion (Figs. 3 and 4).

6.3. Complex-valued solutions

Complex-valued solutions have two components, the real and imaginary, Re [x (t)] ,
Im [x (t)]. Differentiated complex-valued solution with respect to time also has two compo-
nents, the real and imaginary, Re[ẋ(t)], Im[ẋ(t)]. From Eq. (1) and the equivalent Eq. (3),
the initial integral (19) including the four components mentioned above is founded. There-
fore only three components are independent. The three components form a phase space,
which is different from a phase plane in the case of real valued solution [15].

Consider Eq. (1) with the following parameters k = −1/5, q = 0.0, λ = 8/15,
ν = 1/50, ω = 0.32, p = 0.4, x0 = −0.4, ẋ0 = −1.0.

In this case θ can be evaluated as an imaginary number θ = 0.316493i, thus θ = iϕ
where ϕ is real.
Remarks :

The coefficient of nonlinear term λ = 8/15 is twice as big as the coefficient of linear
term k = −1/5. Thus, it is not suitable to use the assumption of small parameters in
solving this problem.

In this example, θ = 0.316493i, the solution is a complex-valued and chaotic one.
From time period t(5000, 6000) to t(9500, 10500), the phase space has a relatively stable
structure (Figs. 5 and 6).

The curves in the phase space (Fig. 5) intersect. They are not smooth and have
complex behavior.

()x té ùë û&Re

(m/s)

Im

(m)

()x té     ùë     ûRe

(m)

x té ùë û()

Fig. 5. Phase space with t(5000, 6000), based
on the results at the first approximation
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(m/s)

Im

(m)

()x té     ùë     ûRe

(m)

x té ùë û()

Fig. 6. Phase space with t (9500,10500), based
on the results at the first approximation

The curves illustrating motion x(t) (Fig. 7) do not behave with any patterns, being
affected by not only global motion, but also local motion. They never repeat themselves
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Fig. 7. The real component of solution x(t),
based on the results at the first approximation

Fig. 8. Poincaré section of the phase space in
Fig. 5 with Im[x(t)] = 0

and there is no sign of resonance, although the frequency of exciting force ω = 0.32 is very
close to the vibration frequency ϕ = 0.316493.

Poincaré section (Fig. 8) includes a collection of points. Thus, the chaotic property
of the solution in this example is proved.

6.4. Chaotic solution

As can be seen that the indication of the chaotic solution to the Duffing equation
is shown by the factor θ (see Eq. (9)), when θ = iϕ, ϕ is real number.

Consider Eq. (1) with the following parameters k = 0.0, q = 0.0, λ = 1.0, ν =
0.025, ω = 1.0, p = 7.5, x0 = −0.4, ẋ0 = −1.0.

In this case θ can be evaluated as θ = 0.0144338i.

Im
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Fig. 9. Phase space with t (150,1150), based
on the results at the first approximation
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Fig. 10. Phase plane with t (150,1150), based
on the results at the first approximation
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Fig. 11. The real component of solution x(t),
based on the results at the first approximation

Fig. 12. Poincaré section of the phase space in
Fig. 9 with Im[x(t)] = 0

Remarks:
The coefficient λ = 1.0 and the coefficient of exciting force p = 7.5 have finite values

different from zero and large, meanwhile the coefficient of the linear term k = 0. Thus, it
is not suitable to use the assumption of small parameters in solving this problem.

In this example, θ = 0.0144338i, the solution is complex-valued one. Based on the
indication, θ = iϕ, the solution is chaotic.

The curves in the phase space (Fig. 9), and the phase plane (Fig. 10) are rough,
creased, intersecting and intertwined.

The curves of the real-valued component of solution x(t) cluster together. They do
not repeat each with other, but they have similar structure (Fig. 11). The clusters are thus
considered sustainable.

Poincaré section (Fig. 12) consists of a set of points. Thus, the chaotic property of
the solution in this example is proved.

7. CONCLUSION

Findings of the paper are summarized as follows:
1. An algorithm to solve the Duffing equation is proposed, in which a method to

transform the initial equation to the resulting equation and a coupling successive approx-
imation method (CSAM) to solve the resulting equation are presented.

2. Based on the proposed algorithm, the analytic approximated solutions obtained
may be real-valued, complex-valued.

3. The indication of chaotic solutions to Duffing equation is found. The indication is

k −
4

3

q2

λ
−

2

3
ν2 < 0.

4. When the indication is satisfied, the Duffing equation has complex-valued solu-
tions, and the phase curve is a spatial curve in a phase space in stead of the phase plane.
The Poincare section consists of a set of points and the solution is chaotic.
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5. A formula to compute the vibration frequency of Duffing equation is obtained

ϕ =

[

1

2

(

2

3
ν2 +

4

3

q2

λ
− k

)]1/2

,

this frequency is only dependent on the parameters of the equation, and independent of
parameters of exciting forces.

6. The structure of chaotic solutions is revealed, since the first approximation solu-
tion is able to be expressed in an analytic form. The chaotic solution consists of complex
vibration with many frequencies: exciting frequency ω, vibration frequency ϕ and com-
bined frequency of ω and ϕ, with bounded amplitude. The chaotic solution is going towards
the attracting set as the process towards limit.

7. Using the resulting equation of the proposed method an exact analytical solution
can be found to some specific Duffing equations without right hand side.
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