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Abstract. Based on the classical thin shell theory with the geometrical nonlinearity in
von Karman-Donnell sense, the smeared stiffener technique and Galerkin method, this
paper deals with the nonlinear dynamic problem of eccentrically stiffened functionally
graded circular cylindrical shells subjected to time dependent axial compression and
external pressure by analytical approach. The present novelty is that an approximate
three-term solution of deflection taking into account the nonlinear buckling shape is cho-
sen, the nonlinear dynamic second-order differential three equations system is established
and the frequency-amplitude relation of nonlinear vibration is obtained in explicit form.
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1. INTRODUCTION

Many authors studied the static buckling and postbuckling of FGM cylindrical
shells subjected to the mechanic and thermal loading. Shen [1, 2] investigated the non-
linear postbuckling of thin FGM cylindrical shells and FGM hybrid cylindrical shells in
thermal environments under lateral pressure and axial loading, respectively. Bahtui and
Eslami [3] investigated the coupled thermo-elasticity of FGM cylindrical shells. Batra and
Iaccarino [4] presented the exact solutions for radial deformations of a functionally graded
isotropic and incompressible second-order elastic cylinder. Huang and Han [5–7] studied
the buckling and postbuckling of un-stiffened FGM cylindrical shells under axial compres-
sion, radial pressure and combined axial compression and radial pressure based on the
Donnell shell theory and the nonlinear strain-displacement relations and the nonlinear
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three term solution form is used. Sun et al. [8] proposed the accurate symplectic space
solutions for thermal buckling of functionally graded cylindrical shells. The postbuckling
of shear deformable FGM cylindrical shells surrounded by an elastic medium was studied
by Shen [9]. Dung and Hoa [10] investigated the nonlinear torsional buckling and post-
buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Liew
et al. [11] studied postbuckling responses of functionally graded cylindrical shells under
axial compression and thermal loads. Sofiyev [12] analyzed the buckling of FGM circular
shells under combined loads and resting on the Pasternak type elastic foundation. The
non-linear static buckling of FGM conical shells which is more general than cylindrical
shells, were studied by Sofiyev [13, 14]. Torabi et al. [15] studied the linear thermal buck-
ling analysis of truncated hybrid FGM conical shells.

For dynamic analysis of FGM cylindrical shells, Singh et al. [16] investigated tor-
sional vibrations of functionally graded finite cylinders. Darabi et al. [17] presented respec-
tively linear and nonlinear parametric resonance analyses for un-stiffened FGM cylindri-
cal shells. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical
shells was investigated by Chen et al. [18]. Sofiyev and Schnack [19] and Sofiyev [20]
obtained critical parameters for un-stiffened cylindrical thin shells under linearly increas-
ing dynamic torsional loading and under a periodic axial impulsive loading by using the
Galerkin technique together with Ritz type variation method. Sofiyev [21–24] and Deniz
and Sofiyev [25] investigated the vibration and dynamic instability of FGM conical shells.
Torsional vibration and stability of functionally graded orthotropic cylindrical shells on
elastic foundations is presented by Najafov et al. [26]. Sofiyev and Kuruoglu [27] investi-
gated the torsional vibration and buckling of the cylindrical shell with functionally graded
coatings surrounded by an elastic medium. Tornabene and Viola [28] studied free vibra-
tion analysis of functionally graded panels and shells of revolution. Huang and Han [29]
presented the nonlinear dynamic buckling problems of un-stiffened functionally graded
cylindrical shells subjected to time-dependent axial load by using the Budiansky-Roth
dynamic buckling criterion [30]. Various effects of the inhomogeneous parameter, loading
speed, dimension parameters; environmental temperature rise and initial geometrical im-
perfection on nonlinear dynamic buckling were discussed. Dynamic analysis of thick short
length FGM cylinders was investigated by Asemi et al. [31].

In engineering design, plates and shells are usually reinforced by stiffeners for the
benefit of added load carrying capability with a relatively small additional weight. How-
ever, the investigation on this field has received comparatively little attention. Najafizadeh
et al. [32] have studied linear static buckling of FGM cylindrical shell under axial compres-
sion reinforced by FGM stiffeners. Bich et al. [33–36] investigated the nonlinear static and
dynamic analysis of FGM plates, cylindrical panels, shallow shells and cylindrical shells
with eccentrically homogeneous stiffener system. Dung and Hoa [37] presented an analyt-
ical study of nonlinear static buckling and post-buckling analysis of eccentrically stiffened
functionally graded circular cylindrical shells under external pressure with FGM stiffen-
ers and approximate three-term solution of deflection taking into account the nonlinear
buckling shape.

To best of authors’ knowledge, there is no analytical approach on the nonlinear dy-
namic analysis of stiffened FGM shells subjected to time dependent external pressure and
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axial compression by analytical approach. In addition, the nonlinear three term solution
of deflection is popular used to investigate the nonlinear static analysis of shell [5-8 and
37], but there are a mathematical difficulty on the nonlinear dynamic analysis. This paper
studies the dynamic behavior of stiffened FGM cylindrical circular shells under mechanic
loads. The nonlinear dynamic equations are derived by using the classical shell theory
with the nonlinear strain-displacement relation of large deflection, the smeared stiffeners
technique and Galerkin method. The three-term solution of deflection is used and the
frequency-amplitude relation of nonlinear vibration is obtained in explicit form.

2. ECCENTRICALLY STIFFENED FGM CYLINDRICAL SHELLS
(ES-FGM CYLINDRICAL SHELLS)

An ES-FGM cylindrical shell as shown in Fig. 1 is assumed to be thin with length
L, mean radius R, reinforced by homogeneous ring and stringer stiffener systems. Stiffener
material is similarly designed with Refs. [33–36] is full ceramic if it is located at ceramic-rich
surface and is pure-metal if is located at metal-rich surface. The origin of the coordinate 0
locates on the middle plane of the shell, x, y = Rθ, z axes are in the axial, circumferential,
and inward radial directions, respectively.

Fig. 1. Geometric and the coordinate system of an eccentrically stiffened FGM cylindrical shell

Functionally graded material is assumed to be made from a mixture of ceramic and
metal with the simple power law exponent of volume fraction distribution

Vc = Vc(z) =
(

2z + h

2h

)k

, Vm = Vm(z) = 1− Vc(z),

where h is the thickness of shell; k ≥ 0 is the volume fraction index; z is the thickness
coordinate and varies from −h/2 to h/2; the subscripts m and c refer to the metal and
ceramic constituents, respectively.
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Effective properties Preff of functionally graded material are determined by linear
rule of mixture

Preff = Prm(z)Vm(z) + Prc(z)Vc(z).
The Young’s modulus and mass density can be written by according to the men-

tioned law

E(z) = EmVm + EcVc = Em + (Ec − Em)
(

2z + h

2h

)k

,

ρ(z) = ρmVm + ρcVc = ρm + (ρc − ρm)
(

2z + h

2h

)k

,

(1)

and the Poisson’s ratio ν is assumed to be constant for simplicity. According to the von
Karman nonlinear strain-displacement relations of cylindrical shell [38], the mid-surface
strain components are

ε0
x =

∂u

∂x
+

1
2

(
∂w

∂x

)2

, ε0
y =

∂v

∂y
− w

R
+

1
2

(
∂w

∂y

)2

,

γ0
xy =

∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
, χx =

∂2w

∂x2
, χy =

∂2w

∂y2
, χxy =

∂2w

∂x∂y
,

(2)

where ε0
x and ε0

y are normal strains, γ0
xy is the shear strain at the middle surface of shell,

χx, χy, χxy are the change of curvatures and twist of shell, and u = u (x, y), v = v (x, y),
w = w (x, y) are displacements along x, y and z axes, respectively. The strains components
can be written as the form

εx = ε0
x − zχx, εy = ε0

y − zχy, γxy = γ0
xy − 2zχxy. (3)

The deformation compatibility equation is deduced from Eq. (2)

∂2ε0
x

∂y2
+

∂2ε0
y

∂x2
−

∂2γ0
xy

∂x∂y
= − 1

R

∂2w

∂x2
+

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
. (4)

Hook’s stress-strain relation for the shell is presented

σsh
x =

E(z)
1− ν2

(εx + νεy) , σsh
y =

E(z)
1− ν2

(εy + νεx) , τ sh
xy =

E(z)
2 (1 + ν)

γxy, (5)

and for stiffeners
σst

s = Esεx, σst
r = Erεy, (6)

where Es, Er are Young’s modulus of stringer and ring stiffeners, respectively.
Taking into account the contribution of stiffeners by the smeared stiffeners technique

and omitting the twist of stiffeners [38] and integrating the stress-strain relations and their
moments through the thickness of shell, the force and moment of an ES-FGM cylindrical
shell are

Nx =
(

A11 +
EsAs

ss

)
ε0
x + A12ε

0
y − (B11 + Cs) χx −B12χy,

Ny = A12ε
0
x +

(
A22 +

ErAr

sr

)
ε0
y −B12χx − (B22 + Cr) χy,

Nxy = A66γ
0
xy − 2B66χxy,

(7)
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Mx = (B11 + Cs) ε0
x + B12ε

0
y −

(
D11 +

EsIs

ss

)
χx −D12χy,

My = B12ε
0
x + (B22 + Cr) ε0

y −D12χx −
(

D22 +
ErIr

sr

)
χy,

Mxy = B66γ
0
xy − 2D66χxy,

(8)

where Aij , Bij , Dij (i, j = 1, 2, 6) are extensional, coupling and bending stiffness of the un-
stiffened FGM cylindrical shell. They are defined as

A11 = A22 =
E1

1− ν2
, A12 =

E1ν

1− ν2
, A66 =

E1

2 (1 + ν)
,

B11 = B22 =
E2

1− ν2
, B12 =

E2ν

1− ν2
, B66 =

E2

2 (1 + ν)
,

D11 = D22 =
E3

1− ν2
, D12 =

E3ν

1− ν2
, D66 =

E3

2 (1 + ν)
,

(9)

in which

E1 =
(

Em +
Ec − Em

k + 1

)
h, E2 =

(Ec − Em) kh2

2 (k + 1) (k + 2)
,

E3 =
[
Em

12
+ (Ec − Em)

(
1

k + 3
− 1

k + 2
+

1
4k + 4

)]
h3,

Is =
dsh

3
s

12
+ Asz

2
s , Ir =

drh
3
r

12
+ Arz

2
r ,

Cs = ±EsAszs

ss
, Cr = ±ErArzr

sr
,

zs =
hs + h

2
, zr =

hr + h

2
,

ss =
2πR

ns
, sr =

L

nr
,

(10)

where
Cs and Cr are negative for outside stiffeners and positive for inside ones.
ss and sr are the spacing of the stringer and ring stiffeners, respectively.
ds, hs and dr, hr are the width and thickness of the stringer and ring stiffeners, respectively.
As, Ar are the cross-section areas of stiffeners.
Is, Ir, zs, zr are the second moments of cross section areas and the eccentricities of stiffeners
with respect to the middle surface of shell, respectively.
Es, Er are Young’s modulus of stringer and ring stiffeners, respectively.

From the Eq. (7), one can obtain inversely

ε0
x = A∗

22Nx −A∗
12Ny + B∗

11χx + B∗
12χy,

ε0
y = A∗

11Ny −A∗
12Nx + B∗

21χx + B∗
22χy,

γ0
xy = A∗

66Nxy + 2B∗
66χxy,

(11)
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where

A∗
11 =

1
∆

(
A11 +

EsAs

ss

)
, A∗

22 =
1
∆

(
A22 +

ErAr

sr

)
,

A∗
12 =

A12

∆
, A∗

66 =
1

A66
,

∆ =
(

A11 +
EsAs

ss

) (
A22 +

ErAr

sr

)
−A2

12,

B∗
11 = A∗

22 (B11 + Cs)−A∗
12B12,

B∗
22 = A∗

11 (B22 + Cr)−A∗
12B12,

B∗
12 = A∗

22B12 −A∗
12 (B22 + Cr) ,

B∗
21 = A∗

11B12 −A∗
12 (B11 + Cs) ,

B∗
66 =

B66

A66
.

(12)

Substituting Eq. (11) into Eq. (8) leads to

Mx = B∗
11Nx + B∗

21Ny −D∗
11χx −D∗

12χy,

My = B∗
12Nx + B∗

22Ny −D∗
21χx −D∗

22χy,

Mxy = B∗
66Nxy − 2D∗

66χxy,

(13)

where

D∗
11 = D11 +

EsIs

ss
− (B11 + Cs) B∗

11 −B12B
∗
21,

D∗
22 = D22 +

ErIr

sr
−B12B

∗
12 − (B22 + Cr) B∗

22,

D∗
12 = D12 − (B11 + Cs) B∗

12 −B12B
∗
22,

D∗
21 = D12 −B12B

∗
11 − (B22 + Cr) B∗

21,

D∗
66 = D66 −B66B

∗
66.

(14)

The nonlinear equations of motion of a thin circular cylindrical shell based on the

assumption u� w and v � w, ρ1
∂2u

∂t2
→ 0, ρ1

∂2v

∂t2
→ 0 [17, 19,39] are given by

∂Nx

∂x
+

∂Nxy

∂y
= 0,

∂Nxy

∂x
+

∂Ny

∂y
= 0,

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+ Ny

∂2w

∂y2
+

+
1
R

Ny + q0 = ρ1
∂2w

∂t2
+ 2ρ1µ

∂w

∂t
,

(15)
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where µ is the linear damping coefficient, and

ρ1 =

h
2∫

−h
2

ρ(z)dz + ρs
As

ss
+ ρr

Ar

sr
=

(
ρm +

ρc − ρm

k + 1

)
h + ρs

As

ss
+ ρr

Ar

sr
, (16)

with ρr = ρm, ρs = ρm if stiffeners are full metal and ρr = ρc, ρs = ρc if stiffeners are full
ceramic. The first two of Eq. (15) are identically satisfied by introducing a stress function
ϕ

Nx =
∂2ϕ

∂y2
, Ny =

∂2ϕ

∂x2
, Nxy = − ∂2ϕ

∂x∂y
. (17)

Substituting Eq. (11) into Eqs. (4) and (13) and the third of Eq. (15), taking into
account Eqs. (2) and (17), we have

A∗
11

∂4ϕ

∂x4
+ (A∗

66 − 2A∗
12)

∂4ϕ

∂x2∂y2
+ A∗

22

∂4ϕ

∂y4
+ B∗

21

∂4w

∂x4
+

+ (B∗
11 + B∗

22 − 2B∗
66)

∂4w

∂x2∂y2
+ B∗

12

∂4w

∂y4
+

1
R

∂2w

∂x2
−

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
= 0,

(18)

ρ1
∂2w

∂t2
+ 2ρ1µ

∂w

∂t
+ D∗

11

∂4w

∂x4
+ (D∗

12 + D∗
21 + 4D∗

66)
∂4w

∂x2∂y2
+

+ D∗
22

∂4w

∂y4
−B∗

21

∂4ϕ

∂x4
− (B∗

11 + B∗
22 − 2B∗

66)
∂4ϕ

∂x2∂y2
−B∗

12

∂4ϕ

∂y4
−

− 1
R

∂2ϕ

∂x2
− ∂2ϕ

∂y2

∂2w

∂x2
+ 2

∂2ϕ

∂x∂y

∂2w

∂x∂y
− ∂2ϕ

∂x2

∂2w

∂y2
− q0 = 0.

(19)

Eqs. (18) and (19) are a nonlinear governing equation system. They are used to
investigate the dynamic characteristics of ES-FGM circular cylindrical shells.

3. NONLINEAR DYNAMIC BUCKLING ANALYSIS

Suppose that an ES-FGM cylindrical shell is simply supported and subjected to
uniformly distributed pressure of intensity q0 and axial compression of intensity r0 respec-
tively at its cross-section (in N/m2). The boundary conditions of this study are

w = 0, Mx = 0, Nx = −r0h, Nxy = 0, at x = 0, L. (20)

Assume the buckling mode shape is represented by the popular form [5–8, 39], the
simply supported boundary condition Eq. (20) is fulfilled on the average sense

w = f0 + f1 sin
mπx

L
sin

ny

R
+ f2 sin2 mπx

L
, (21)

where f0 = f0(t) is time dependent unknown uniform deflection of pre-buckling state,
f1 = f1(t) is time dependent unknown linear buckling deflection, f2 = f2(t) is time
dependent unknown nonlinear deflection, m is numbers of half waves and n is numbers of
full wave in axial and circumferential directions, respectively.
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Substituting Eq. (21) into Eq. (18) and solving obtained equation, leads to

ϕ = ϕ1 cos
2mπx

L
+ ϕ2 cos

2ny

R
− ϕ3 sin

mπx

L
sin

ny

R
+

+ ϕ4 sin
3mπx

L
sin

ny

R
− σ0yh

x2

2
− r0h

y2

2
,

(22)

where denote

ϕ1 =
n2λ2

32A∗
11m

2π2
f2
1 −

(
4λL− 16B∗

21m
2π2

)
32A∗

11m
2π2

f2, ϕ2 =
m2π2

32A∗
22n

2λ2
f2
1 ,

ϕ3 =
B

A
f1 +

m2n2π2λ2

A
f1f2, ϕ4 =

m2n2π2λ2

G
f1f2,

(23)

A = A∗
11m

4π4 + (A∗
66 − 2A∗

12) m2n2π2λ2 + A∗
22n

4λ4,

B = B∗
21m

4π4 + (B∗
11 + B∗

22 − 2B∗
66) m2n2π2λ2 + B∗

12n
4λ4 − L2

R
m2π2,

D = D∗
11m

4π4 + (D∗
12 + D∗

21 + 4D∗
66) m2n2π2λ2 + D∗

22n
4λ4,

G = 81A∗
11m

4π4 + 9 (A∗
66 − 2A∗

12) m2n2π2λ2 + A∗
22n

4λ4,

λ =
L

R
.

(24)

Substituting the expressions (21) and (22) into Eq. (19) and then applying Galerkin
method lead to

σ0yh = Rq0 −Rρ1
d2f0

dt2
−R

ρ1

2
d2f2

dt2
− 2Rρ1µ

df0

dt
−Rρ1µ

df2

dt
, (25)

L4ρ1
d2f1

dt2
+ 2L4ρ1µ

df1

dt
+

(
D +

B2

A

)
f1 +

(
m4π4

16A∗
22

+
n4λ4

16A∗
11

)
f3
1 +

+

[
2Bm2n2π2λ2

A
−

n2λ2
(
λL− 4B∗

21m
2π2

)
4A∗

11

]
f1f2+

+
(

m4n4π4λ4

A
+

m4n4π4λ4

G

)
f1f

2
2 −m2π2L2hr0f1 − σ0yhn2L2λ2f1 = 0,

(26)

ρ1
d2f0

dt2
+ 2ρ1µ

df0

dt
+ ρ1

3
4

d2f2

dt2
+

3
2
ρ1µ

df2

dt
+

+
{[

4B∗
21

(mπ

L

)4
− 1

R

(mπ

L

)2
]

n2λ2

16A∗
11m

2π2
+

1
2

B

A

(mπ

L

)2 ( n

R

)2
}

f2
1 +

+
1
2
m2n2π2λ2

(mπ

L

)2 ( n

R

)2
(

1
A
− 1

G

)
f2
1 f2+

+
{

4D∗
11

(mπ

L

)4
−

[
4B∗

21

(mπ

L

)4
− 1

R

(mπ

L

)2
]

λL− 4B∗
21m

2π2

4A∗
11m

2π2

}
f2−

− r0h
(mπ

L

)2
f2 +

σ0yh

R
= q0.

(27)
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For circular cylindrical shell, the circumferential closed condition must be considered
as [29,39]

2πR∫
0

L∫
0

∂v

∂y
dxdy =

2πR∫
0

L∫
0

[
ε0
y +

w

R
− 1

2

(
∂w

∂y

)2
]
dxdy = 0. (28)

From Eqs. (11), (17), (21) and (22), this integral becomes

−2A∗
11σ0yh + 2A∗

12r0h +
1
R

(f2 + 2f0)−
1
4

( n

R

)2
f2
1 = 0. (29)

Eliminating σ0y from Eqs. (25)-(27) and the condition of closed form (29), lead to(
d2f0

dt2
+ 2µ

df0

dt

)
+

1
2

(
d2f2

dt2
+ 2µ

df2

dt

)
+ α11 (f2 + 2f0)− α12f

2
1 − α13q0 + α14r0 = 0,

(30)

α21f1

(
d2f0

dt2
+ 2µ

df0

dt

)
+

(
d2f1

dt2
+ 2µ

df1

dt

)
+

α21

2
f1

(
d2f2

dt2
+ 2µ

df2

dt

)
+

+ α22f1 + α23f1f2 + α24f
3
1 + α25f1f

2
2 − α26q0f1 − α27r0f1 = 0,

(31)

(
d2f2

dt2
+ 2µ

df2

dt

)
+ α31f

2
1 + α32f

2
1 f2 + α33f2 − α34r0f2 = 0, (32)

in which

α11 =
1

2A∗
11R

2ρ1
, α12 =

n2

8A∗
11R

3ρ1
, α13 =

1
ρ1

, α14 =
A∗

12h

A∗
11Rρ1

, (33)

α21 =
Rn2λ2

L2
, α22 =

1
L4ρ1

(
D +

B2

A

)
,

α23 =
1

L4ρ1

[
2Bm2n2π2λ2

A
−

n2λ2
(
λL− 4B∗

21m
2π2

)
4A∗

11

]
,

α24 =
1

L4ρ1

(
m4π4

16A∗
22

+
n4λ4

16A∗
11

)
, α25 =

1
L4ρ1

(
m4n4π4λ4

A
+

m4n4π4λ4

G

)
,

α26 =
Rn2λ2

L2ρ1
, α27 =

m2π2h

L2ρ1
,

(34)

α31 =
1
ρ1

{[
4B∗

21

(mπ

L

)4
− 1

R

(mπ

L

)2
]

n2λ2

4A∗
11m

2π2
+ 2

B

A

(mπ

L

)2 ( n

R

)2
}

,

α32 =
2
ρ1

m2n2π2λ2
(mπ

L

)2 ( n

R

)2
(

1
A
− 1

G

)
,

α33 =
1
ρ1

{
16D∗

11

(mπ

L

)4
−

[
4B∗

21

(mπ

L

)4
− 1

R

(mπ

L

)2
]

λL− 4B∗
21m

2π2

A∗
11m

2π2

}
,

α34 =
4
ρ1

h
(mπ

L

)2
.

(35)
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Simplifying Eqs. (30)-(32), we have(
d2f0

dt2
+ 2µ

df0

dt

)
+ β11f0 − β12f

2
1 − β13f

2
1 f2 + β14f2 + β15r0f2 − α13q0 + α14r0 = 0,

(36)(
d2f1

dt2
+ 2µ

df1

dt

)
+ α22f1 + β21f1f0 + β22f1f2 + α25f1f

2
2 + β23f

3
1 − β24f1r0 = 0, (37)(

d2f2

dt2
+ 2µ

df2

dt

)
+ α31f

2
1 + α32f

2
1 f2 + α33f2 − α34r0f2 = 0, (38)

where

β11 = 2α11, β12 =
1
2
α31 + α12, β13 =

1
2
α32, β14 = α11 −

1
2
α33, β15 =

1
2
α34, (39)

β21 = −β11α21, β22 = −β14α21 − α33
α21

2
+ α23,

β23 = β12α21 − α31
α21

2
+ α24, β24 = α27 + α14α21.

(40)

Denoting f = wmax, from Eq. (21), the maximal deflection of the shells

f = f0 + f1 + f2, (41)

locates at x =
iL

2m
, y =

jπR

2n
where i, j are odd integer numbers. Note that f0 = f0(t),

f1 = f1(t), f2 = f2(t) and f = f(t) in Eq. (41).
From Eqs. (36)-(38) and (41), the effects of input parameters on the dynamic re-

sponse of shells are investigated.

3.1. Nonlinear vibration analysis

This section considers an ES-FGM cylindrical thin shell under uniformly lateral
pressure q0 = Q sinΩt and r0 = 0, Eqs. (36)-(38) become(

d2f0

dt2
+ 2µ

df0

dt

)
+ β11f0 − β12f

2
1 − β13f

2
1 f2 + β14f2 − α13Q sinΩt = 0, (42)(

d2f1

dt2
+ 2µ

df1

dt

)
+ α22f1 + β21f1f0 + β22f1f2 + α25f1f

2
2 + β23f

3
1 = 0, (43)(

d2f2

dt2
+ 2µ

df2

dt

)
+ α31f

2
1 + α32f

2
1 f2 + α33f2 = 0, (44)

where Q is excitation force and Ω is excitation frequency. From these equations, nonlinear
response of ES-FGM shell is investigated by using the fourth order Runge-Kutta iteration
method.

It is difficult to determine the fundamental frequencies of natural vibration, frequency-
amplitude relation of nonlinear vibration of shell. In this paper, ones can be investigated
by ignoring the uniform buckling shape and nonlinear buckling shape, Eq. (31) becomes(

d2f1

dt2
+ 2µ

df1

dt

)
+ α22f1 + α24f

3
1 − α26f1Q sinΩt = 0. (45)
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For the free and linear vibration without damping, the Eq. (45) becomes

d2f1

dt2
+ α22f1 = 0. (46)

The fundamental frequency of natural vibration can be determined by

ωmn =
√

α22. (47)

where ωmn is fundamental frequency of natural vibration of shell.
Using the solution f1(t) = η sin (Ωt) and applying the procedure like Galerkin

method to Eq. (45), the frequency-amplitude relation of nonlinear vibration is obtained

Ω2 − 4
π

µΩ = α22 +
3
4
α24η

2 − 8
3π

α26Q. (48)

By introducing the non-dimension frequency parameter ξ =
Ω

ωmn
, Eq. (48) becomes

ξ2 − 4µ

πωmn
ξ = 1 +

3
4

α24

ω2
mn

η2 − 8
3π

α26

ω2
mn

Q. (49)

The frequency-amplitude relation of nonlinear free vibration Q = 0 is determined by

ξ2 − 4µ

πωmn
ξ = 1 +

3
4

α24

ω2
mn

η2. (50)

3.2. Buckling analysis

3.2.1. Linear static buckling analysis of ES-FGM cylindrical shells

Omitting the linear damping, uniform buckling shape, nonlinear buckling shape and
putting ḟ1 = 0, f̈1 = 0, and taking f1 6= 0 Eq. (31) becomes

α22 + α24f
2
1 − α26q0 − α27r0 = 0. (51)

By ignoring the nonlinear term of f1 and r0 = 0 in Eq. (51), the linear upper static buckling
load of ES-FGM cylindrical shells under only external pressure can be determined by

qsbu =
α22

α26
. (52)

Similarly, the linear upper static buckling load of ES-FGM cylindrical shells under only
axial compression (q0 = 0) leads to

rsbu =
α22

α27
. (53)

From Eqs. (52)-(53), the linear static critical buckling loads of shells are determined by
rscr = min rsbu ∀ (m,n) and qscr = min qsbu ∀ (m,n).
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3.2.2. Dynamic buckling analysis of ES-FGM cylindrical shells

The nonlinear dynamic critical buckling analysis of ES-FGM circular cylindrical
shells based on Eqs. (36)-(38), is investigated for two load types as follows.

Firstly, ES-FGM cylindrical shell is subjected to only lateral pressure varying as
linear function of time q0 = cqt in which cq (N/m2s) is the loading speed of external
pressure.

Secondly, ES-FGM cylindrical shell is subjected to only axial compression varying as
linear function of time r0 = crt where cr (N/m2s) is the loading speed of axial compression.

Eqs. (36)-(38) are the nonlinear second-order differential three equations system.
This equation system may be numerically solved.

4. CONCLUSIONS

A formulation of governing equations of eccentrically stiffened functionally graded
circular cylindrical thin shells subjected to time dependent axial compression and external
pressure based upon the classical shell theory and the smeared stiffeners technique with
von Karman-Donnell nonlinear terms is proposed in this paper. An approximate three-
term solution of deflection taking into account the nonlinear buckling shape is used. The
nonlinear dynamic equations of ES-FGM circular cylindrical shells are obtained by using
the Galerkin method. Fundamental frequency of natural vibration, frequency-amplitude
relation of nonlinear vibration and upper static buckling loads are obtained in explicit
forms. Dynamic responses will be numerically investigated and nonlinear dynamic buckling
loads will be determined by applying Budiansky-Roth criterion in next part.
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