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BENDING VIBRATION OF BEAM ELEMENTS UNDER

MOVING LOADS WITH CONSIDERING VEHICLE

BRAKING FORCES
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Da Nang University of Technology

Abstract. The study of fluctuations of structures in general and bridge structures in
particular under the influence of moving loads considering the impact of vehicle braking
forces draws the attention of many scientists. However, due to the complexity of this
problem a static method has been so far applied for approximate calculation in bridge
design standards. In this article the author introduces the equation of bending vibrations
of beam elements according to the model of dynamic interaction between beam elements
and moving vehicle loads considering vehicle braking forces.
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1. INTRODUCTION

The impact of vehicle braking forces on the bridge is huge and must be considered
in design. In the bridge design process of many countries it is imperative to audit vehicle
braking force bearing structures. Due to the complexity of this problem in the current
processes only vehicle braking force bearing structures have been audited in accordance
with a static method based on standard conventional loads. However, the neglecting of
dynamic effects of vehicle - bridge interaction may result in large errors [1, 2]. Today
modern bridges tend to use high - strength materials, their structure is very slender and
their hardness is small; therefore, they are very sensitive to cyclic impact loads, especially,
large ones of vehicles moving at high-speeds. As a result, the study of the vibrations of
bridge structures enduring/bearing moving loads has been interested by many scientists
[3] - [13], [15] - [18].

In reality, the fact that vehicles brake on bridges causes very large vibrations, so
the study of bridge structure vibrations enduring moving loads considering the impact
of vehicle braking forces is of great importance and urgency. In this paper, the author
introduces a model of dynamic interaction between beam elements and moving vehicle
loads, namely, a three-mass model considering vehicle braking forces. A corresponding
system of differential equations of bending vibrations of the beam element considering
vehicle braking forces is obtained.



28 Nguyen Xuan Toan

2. COMPUTATIONAL MODEL AND ASSUMPTIONS

The three - mass model of dynamic interaction between the beam elements and mov-
ing vehicle loads, considering vehicle braking forces and the coordinate axes on elements
are described as in Fig. 1 and Fig. 2.
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Fig. 1. Diagram of 2- axes vehicles on the beam element

Fig. 2. Interaction model between two axes and beam elements

One has

xi =







vi.(t− ti), when ti ≤ t ≤ thi.

vi.(thi − ti) +

[

ai.(t − thi)

2
+ vi

]

.(t − thi), when thi < t ≤ tei.
(1)

It is denoted (see Fig. 1 and Fig. 2): L - the length of the beam elements being considered
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xi - the ith vehicle coordinate axes at the time being considered
vi - the velocity of the ith axle before braking
ai - the acceleration of the ith axle when braking
ti - the time when the ith axle begins running on the beam elements
thi - the time when the ith axle begins braking
tei - the time when the ith axle was at the end of the element
t - the time being considered
P = G. sin(Ω.t+α) the conditioning stimulation force caused by the eccentric mass

of the engine
m - the mass of the entire vehicle and goods, excluding the mass of the axle
m21 - the mass of the 1st axle
m22 - the mass of the 2nd axle
k11, d11 - hardness and damping rate of the 1st cart spring
k21, d21 - hardness and damping rate of the 1st tire
k12, d12 - hardness and damping rate of cart spring 2nd

k22, d22 - hardness and damping rate of the 2nd tire
z11 - absolute displacement of the chassis at the 1st axle
z21- absolute displacement of the 1st axle, absolute coordinates of the mass m21

z12- absolute displacement of the chassis at the 2st axle
z22 absolute displacement of the 2t axle, absolute coordinates of the mass m22

y11 - relative displacement between the chassis and the 1st axle
y21 - relative displacement between the beam element and the 1st axle
y12 - relative displacement between the chassis and the 2st axle
y22 - relative displacement between the beam element and the 2st axle
u - absolute displacement of the chassis at heart block (absolute coordinate of the

mass m)
ϕ - the rotation angle of the vehicle tank
s - the stretch of road that vehicles move on
a, b - the distance from the center of mass O to the 1st and the 2st axles
T1, T2 - the friction forces between tyre and bridge surface when braking
Inertial forces, dray forces, elastic forces, exciting forces and braking forces affecting

the system as shown in Fig. 2 have conventional dimensions and sign in accordance with
the system of corresponding coordinate axes.

The following assumptions are adopted:

The mass of the entire vehicle and goods, excluding the mass of the axle is transferred
to the center of mass system. It is equivalent to the mass m and the rotational inertia J.

The mass of the 1st and 2nd axles is m21 and m22, which are regarded as a point
with concentrated mass at the center of the corresponding axle.

The chassis is hypothesised to be absolutely hard and undistorted when moving.
The vertical displacements of mass m, m21, m22 are smaller than the height from

their center to the centre of beam.
Beam materials work in the linear elastic stage.
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The bridge surface is flat, and has the friction coefficient homogeneous over the
entire bridge surface.

Brake forces of axles of vehicle are assumed to occur simultaneously. The direction
of the forces between bridge surface and tires are assumed to be in the opposite direction
of movement of vehicle as shown in Fig. 2.

According to this assumption, the brake forces between bridge surface and tires,
called T1, T2, make the vehicle decelerates uniformly and cause inertia forces −m21.s̈,
−m22.s̈, −m.s̈. These inertia forces which in turn produce longitudinal and vertical oscil-
lations of the whole system.

The most dangerous case is when an emergency brake is applied. In this case, the
forces T1, T2 are assumed to be directly proportional to loaded weight of vehicle:

T1 + T2 = (m + m21 + m22).g.τ (2)

τ - the friction factor between bridge surface and tires
g - the acceleration of gravity.

3. DIFFENTIAL EQUATIONS OF MOVING LOADS

Based on the calculation model and assumptions in Section 1, we consider the system
of mass m, m21, m22, viscous drag, elastic forces, inertial forces, stimulation forces, bridge
surface constraint forces, braking power, which are converted to frictional forces against
the bridge surface as shown in Fig. 2.

Applying the principle of d’Alembert, considering the balance of each mass m, m21,
m22 according to the vertical axis and the whole system according to the horizontal axis,
we have:

P − mü − F11 − F12 − mg = 0
F11 − F21 − m21z̈21 − m21g = 0
F12 − F22 − m22z̈22 − m22g = 0
T1 + T2 = − (m + m21 + m22) s̈

(3)

Similarly, considering the torque balance of the whole system with the 3rd points:

(mü + mg − P ) .a− (m.h+m21.h21 +m22.h22)s̈−Jϕ̈+(m22.z̈22 +m22.g+F22).(a+b) = 0
(4)

in which:

F11 = k11.y11 + d11.ẏ11, F12 = k12.y12 + d12.ẏ12

F21 = k21.y21 + d21.ẏ21, F22 = k22.y22 + d22.ẏ22

ϕ = (z11 − z12) / (a + b) , u = (b.z11 + a.z12) / (a + b)
z11 = y11 + y21 + w1, z12 = y12 + y22 + w2

z21 = y21 + w1, z22 = y22 + w2

(5)

Combining (2) with (3), (4) and (5) then having them transformed, we obtain a set
of equations:
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mJ z̈11 + (a2m + J)d11ż11 − (mba− J)d12ż12 − (a2m + J)d11ż21 + (mba− J)d12ż22+

(a2m + J)k11z11 − (mba− J)k12z12 − (a2m + J)k11z21+

+(mba− J)k12z22 − JP + Jmg + (m.h + m21.h21 + m22.h22) .ma.s̈ =0

mJ z̈12 + (mba + J)d11ż11 + (b2m + J)d12ż12 − (mba + J)d11ż21 − (b2m + J)d12ż22+

+ (mba + J)k11z11 + (b2m + J)k12z12 − (mba + J)k11z21−

−(b2m + J)k12z22 − JP + Jmg + (m.h + m21.h21 + m22.h22) .mb.s̈ =0

m21z̈21 − d11ż11 + (d11 + d21)ż21 − k11z11 + (k11 + k21)z21 + m21.g − d21.ẇ1 − k21.w1 =0

m22z̈22 − d12ż12 + (d12 + d22)ż22 − k12z12 + (k12 + k22)z22 + m22.g − d22.ẇ2 − k22.w2 =0

s̈ = −g.τ

(6)
The constraint forces F21 and F22 are as follows:

F21 = −m21z̈21 + (ż11 − ż21)d11 + (z11 − z21)k11

F22 = −m22z̈22 + (ż12 − ż22)d12 + (z12 − z22)k12

Having them rewritten in the form of distribution and adding a logic control signal
function, we have:

p1(x, z, t) = ξ1(t). [−m21z̈21 + (ż11 − ż21)d11 + (z11 − z21)k11] δ(x − x1)
p2(x, z, t) = ξ2(t). [−m22z̈22 + (ż12 − ż22)d12 + (z12 − z22)k12] δ(x − x2)

(7)

in which: ξi(t) =

{

1 when ti ≤ t ≤ ti + ∆Ti

0 when t < ti and t > ti + ∆Ti
is a logic control signal function,

δ(x − xi) is the Dirac delta function,
∆Ti is the period of time that the ith axle runs on the beam elements being considered.

4. EQUATIONS OF BENDING VIBRATION OF BEAM ELEMENTS

UNDER MOVING LOADS

According to [16] the equation of bending vibrations of beam elements under dis-
tributed load p(x, z, t) considering the effects of internal and external friction can be
written as follows:

EJd.

(

∂4w

∂x4
+ θ.

∂5w

∂x4.∂t

)

+ ρFd.
∂2w

∂t2
+ β.

∂w

∂t
= p(x, z, t) = p1(x, z, t) + p2(x, z, t) (8)

in which p1(x, z, t) and p2(x, z, t) are determined by the formula (7),
EJd - the bending stiffness of beam elements,
ρFd - the mass of the beam element on a length unit,
θ and β - the coefficient of internal friction and coefficient of external friction, respectively.

Aggregating (6) with (8) we have systems of differential equations of bending vi-
brations of beam elements under the influence of moving loads taking into account the
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impact of vehicle braking forces:

EJd.

(

∂4w

∂x4
+ θ.

∂5w

∂x4.∂t

)

+ ρFd.
∂2w

∂t2
+ β.

∂w

∂t
= p(x, z, t) = p1(x, z, t) + p2(x, z, t)mJ z̈11+

+(a2m + J)d11ż11 − (mba− J)d12ż12 − (a2m + J)d11ż21 + (mba− J)d12ż22+

+ (a2m + J)k11z11 − (mba− J)k12z12 − (a2m + J)k11z21 + (mba− J)k12z22−

- JP + Jmg + (m.h + m21.h21 + m22.h22) .ma.s̈ =0

mJ z̈12 + (mba + J)d11ż11 + (b2m + J)d12ż12 − (mba + J)d11ż21 − (b2m + J)d12ż22+

+ (mba + J)k11z11 + (b2m + J)k12z12 − (mba + J)k11z21 − (b2m + J)k12z22−

- JP + Jmg + (m.h + m21.h21 + m22.h22) .mb.s̈ =0

m21z̈21 − d11ż11 + (d11 + d21)ż21 − k11z11 + (k11 + k21)z21 + m21.g − d21.ẇ1 − k21.w1 =0

m22z̈22 − d12ż12 + (d12 + d22)ż22 − k12z12 + (k12 + k22)z22 + m22.g − d22.ẇ2 − k22.w2 =0

s̈ = −g.τ
(9)

5. TRANSFORMATION OF THE EQUATION OF BENDING

VIBRATIONS OF BEAM ELEMENT TO THE MATRIX FORM

The bending vibration we can be approximately presented in the form [16, 19]:

w =
[

N1 N2 N3 N4

]

.















w1

ϕ1

w2

ϕ2















(10)

N1 =
1

L3
(L3 − 3Lx2 + 2x3), N2 =

1

L2
(L2x − 2Lx2 + x3)

N3 =
1

L3
(3Lx2 − 2x3), N4 =

1

L2
(x3 − Lx2)

(11)

where: w1, ϕ1 - the deflection and rotation angle of the left end of beam element,
w2, ϕ2 - the deflection and rotation angle of the right end of beam element.

Substituting (10), (11) into (9) and applying the Galerkin method in combination
with Green theory, we integrate each term by parts and obtain:

L
∫

0















N1

N2

N3

N4















.EJd.
∂4

∂x4

[

N1 N2 N3 N4

]















w1

ϕ1

w2

ϕ2















.dx = Kww.















w1

ϕ1

w2

ϕ2















(12)

L
∫

0















N1

N2

N3

N4















θ.EJd.
∂5

∂x4∂t

[

N1 N2 N3 N4

]















w1

ϕ1

w2

ϕ2















.dx = θ.Kww.
∂

∂t















w1

ϕ1

w2

ϕ2















(13)
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in which:

Kww =
EJd

L3









12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2









; (14)

L
∫

0















N1

N2

N3

N4















.ρFd.
∂2

∂t2
[

N1 N2 N3 N4

]















w1

ϕ1

w2

ϕ2















.dx = Mww

∂2

∂t2















w1

ϕ1

w2

ϕ2















; (15)

L
∫

0















N1

N2

N3

N4















.β.
∂

∂t

[

N1 N2 N3 N4

]















w1

ϕ1

w2

ϕ2















.dx = β.
Mww

ρFd

∂

∂t















w1

ϕ1

w2

ϕ2















; (16)

in which:

Mww =
ρFdL

420









156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2









; Cww = β.
Mww

ρFd

+ θ.Kww; (17)

L
∫

0















N1

N2

N3

N4















.p(x, z, t).dx =
[−m21.z̈21 + (ż11 − ż21)d11 + (z11 − z21)k11] .P1+
+ [−m22.z̈22 + (ż12 − ż22)d12 + (z12 − z22)k12] .P2

(18)

in which:

Pi =















p1i

p2i

p3i

p4i















=
ξi(t)

L3
.















(L + 2xi)(L − xi)
2

L.xi(L − xi)
2

x2

i (3L − 2xi)
−L.x2

i (L − xi)















. (19)

Combining the results (12) - (19) with (9) and rewriting in matrix form, we obtain:

Me.q̈ + Ce.q̇ + Ke.q = fe (20)

q̈, q̇, q, fe - the mixed acceleration vector, mixed velocity vector, mixed displacement vector,
mixed forces vector, respectively:

{q̈} =







ẅ
z̈1

z̈2







; {q̇} =







ẇ
ż1

ż2







; {q} =







w
z1

z2







; {fe} =







fw

fz1

fz2







Me, Ce, Ke - the mixed quantity matrix, mixed damper matrix, mixed stiffness matrix,
respectively:

Me =





Mww 0 Mwz2

0 Mz1z1 0
0 0 Mz2z2



 ;Ce =





Cww Cwz1 Cwz2

0 Cz1z1 Cz1z2

Cz2w Cz2z1 Cz2z2



 ;
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Ke =





Kww Kwz1 Kwz2

0 Kz1z1 Kz1z2

Kz2w Kz2z1 Kz2z2



 ;

Mwz2
= P.

[

m21 0
0 m22

]

; Mz1z1
= P.

[

mJ 0
0 mJ

]

; Mz2z2
=

[

m21 0
0 m22

]

;

P =
[

P1 P2

]

, P1, P2 are determined by (19);

Cwz1
=

[

−d11 0
0 −d12

]

; Cwz2
=

[

d11 0
0 d12

]

;

Cz1z1
=

[

(a2m + J)d11 −(mba− J)d12

(mba + J)d11 (b2m + J)d12

]

; Cz1z2
=

[

−(a2m + J)d11 (mba− J)d12

−(mba + J)d11 −(b2m + J)d12

]

;

CT
z2w = Na

[

−d21 0
0 −d22

]

; Cz2z1
=

[

−d11 0
0 −d12

]

; Cz2z2
=

[

d11 + d12 0
0 d12 + d22

]

;

Kwz1
=

[

−k11 0
0 −k12

]

; Kwz2 =

[

k11 0
0 k12

]

;

Kz1z1
=

[

(a2m + J)k11 −(mba− J)k12

(mba + J)k11 (b2m + J)k12

]

;

Kz1z2
=

[

−(a2m + J)k11 (mba− J)k12

−(mba + J)k11 −(b2m + J)k12

]

;

KT
z2w = Na

[

−k21 0
0 −k22

]

+ Ṅa .

[

−d21 0
0 −d22

]

;

Kz2z1
=

[

−k11 0
0 −k12

]

; Kz2z2
=

[

k11 + k21 0
0 k12 + k22

]

;

Na =









N11 N12

N21 N22

N31 N32

N41 N42









; in which :















N1i = 1

L3 .(L3 − 3.L.x2

i + 2.x3

i );
N2i = 1

L2 .(L2.x−

i 2.L.x2

i + x3

i );
N3i = 1

L3 .(3.L.x2

i − 2.x3

i );
N4i = 1

L2 .(x3

i − L.x2

i );

xi is determined by the formula (1)

fe =







0
fz1

fz2







; fz1 =

{

JP − Jmg − (mh + m21h21 + m22h22)ma.s̈
JP − Jmg − (mh + m21h21 + m22h22)mb.s̈

}

; fz2 =

{

−m21g
−m22g

}

.

6. APPLICATION TO VIBRATION ANALYSIS OF BRIDGE

STRUCTURE UNDER MOVING LOADS

By digitizing bridge structures into basic elements, combining the research results
above with finite element method and utilizing algorithms generally used in finite element
method one can construct vibration differential equations for the whole system [19].

M.Q̈ + C.Q̇ + K.Q = F (21)
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M, C, K, which is the mixed quantity matrix, the mixed damper matrix, and the mixed
stiffness matrix of the total system,
Q̈, Q̇, Q, F , which is the mixed acceleration vector, the mixed velocity vector, the mixed
displacement vector, and the mixed forces vector of the total system.

After inserting corresponding boundary conditions and initial conditions to (21), we
can solve the set of equations (21) by the Runge- Kutta-Merson method on the computer.

An application in analyzing vibration of a three-span continuous steel girder bridge
structure (40m+60m+40m) can be condidered as follows:

Providing results QQQ ,, &&&

- Node data, join data
- Beam element data

- Load data, moving vehicle data
…

i=1

Establishing matrix Mww , Cww , Kww , fww

for beam element ith

- Establishinh axis moving matrix.
- Moving axis, locating and arranging it

in the overall matrices: M, C, K, F.

i=i+1

i=1

Assinging the boundary conditions of the problem

0,0,0 === QQt &&&

Establishing matrix M z1z1, Mz2z2 , Mwz2 ,
Cz1z1, Cz2z2 , Cz1z2, Cz2z1, Cz2w , Kz1z1, Kz2z2 ,

Kz1z2, Kz2z1, Kz2w , fwt , fz1t , fz2t .

i ³ SPTL.

+

i=i+1

Determining coefficients: K1,K2,K3,K4,K5 ; Calculating

QQQ ,, &&&

t ³ Th

+

t=t+h

End

Start

i³ SPTD

+

- Establishinh axis moving matrix

- Moving axis, locating and arranging it
in the overall matrices: M, C, K, F.

Fig. 3. The general algorithm in analyzing vibration of girder bridge structure
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Elastic module of steel E = 2.1x107 T/m2, moment of inertia of area of steel girder
Jd = 0.0261 m4, and mass of the beam element on a length unit ρFd =1.237 T/m, friction
factors θ = 0.027; β = 0.01; τ = 0.5, acceleration of gravity g = 9.81 m/s2, and SPTD=14;
SPTL=14, where SPTD is the number of beam elements of the whole structure, SPTL is
the number of lane elements on the carriage-way, Th is the time period of analysis , h is
time step (about 10−3s).

IFA-W50 trucks with following parameters: m = 9.838 T, m21=0.107 T, m22 =
0.055T, P = 0, a = 1.035 m, b = 2.415 m, h = 1.5 m, h21 = 0.5 m, h22 = 0.5 m, k11 =200
T/m, k12 = 30.2 T/m, k21 = 260 T/m, k22 = 120 T/m, d11 = 0.7344 Ts/m, d12 = 0.3672
Ts/m, d21 = 0.8 Ts/m, d22 = 0.4 Ts/m.

The general algorithm in analyzing vibration of girder bridge structure is shown in
Fig. 3, where K1, K2, K3, K4, K5 are coefficients calculated by using the Runge-Kutta-
Mersion method.

Results of displacement calculation with velocity 3.6 km/h are given in Figs. 4 - 7

Fig. 4. At node 3, when not brake, µ = 1.383

Fig. 5. At node 3, when not brake, µ = 1.507
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Fig. 6. At node 3, when not brake, µ = 1.039

Fig. 7. At node 3, when not brake, µ = 1.097

Results of displacement calculation with velocity 10.8 km/h are given in Figs. 8 - 11

Fig. 8. At node 3, when not brake, µ = 1.663
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Fig. 9. At node 3, when not brake, µ = 1.975

Fig. 10. At node 3, when not brake, µ = 1.229

Fig. 11. At node 3, when not brake, µ = 1.358
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In Figs 4 - 11, the follwings are denoted:

— - the static displacement of girder,

— - the dynamic displacement of girder,
µ - the dynamic factor.
Calculation results show that the dynamic coefficient of deflection considering vehi-

cle braking forces is bigger than that obtained without considering vehicle braking forces.
Dynamic coefficient is significant and need to be considered in design calculations.

7. CONCLUSIONS

This paper introduces research results of building differential equations of bending
vibrations of beam elements bearing moving loads considering vehicle braking forces and
the way to build the combined stiffness matrices, combined mass matrices, mixed block
matrices, equivalent force vector of beam elements bearing moving loads considering brak-
ing forces in accordance with a three-mass model. This research result is the basis for
the study of bridge vibrations under the effect of moving loads of three - mass models
considering the impact of vehicle braking force on the bridge.
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