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Abstract. A new technique is proposed to investigate the response of Van der Pol-
Duffing (V-D for short) oscillator to a combination of harmonic and random excitations
in the primary resonant frequency region. The analytical approach is based on the sto-
chastic averaging method and equivalent linearization method. The stochastic averaging
is applied to the original equation transformed into Cartesian coordinates. Then the re-
sulting nonlinear averaged equations are linearized by the equivalent linearization method
so that the equations obtained can be solved exactly by the technique of auxiliary func-
tion. Numerical results show that the proposed approximate technique is an effective
approach to solving the V-D equation. Although the technique has been used for the
V-D equation in the paper, however, it can also be used to solve many other nonlinear
oscillators.

Keywords: Van der Pol, Duffing, averaging method, equivalent linearization, harmonic
excitation, random excitation.

1. INTRODUCTION

Systems under combined harmonic and random excitations have received a flurry of
research effort in the past few decades. Since all natural or man-made systems are, more
or less, nonlinear and for those systems the exact solutions are known only for a number
of special cases, approximate techniques have been necessarily developed to determine the
response statistics of nonlinear systems [1–6]. In this paper, we propose an approximate
technique combining two well-known methods, namely, the stochastic averaging method
and equivalent linearization method to study V-D oscillator. Over years, the stochastic
averaging method has proved to be a powerful approximate technique for the prediction
of response of weakly nonlinear vibrations subjected to dampings and random excitations.
This method was originally given by Krylov and Bogoliubov [7] and then developed by
Mitropolskii [4, 8, 9], Stratonovich [10], and Khasminskii [11]. A comprehensive review
attesting the success of the stochastic averaging method in random vibration was done
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by Roberts and Spanos [12]. The success of the stochastic averaging method is mainly
due to its two advantages: the equations of motion of a system are much simplified and
the dimensions of the response coordinates are often reduced; the averaged response is a
diffusive Markov process and the method of Fokker-Planck (FP) equation, which is still
hard to solve analytically so far, can be applied. To solve Fokker-Planck equation, some
methods were proposed as in references [5, 6, 13–17].

Meanwhile, the equivalent linearization method, extended from the well known har-
monic linearization technique to stochastic problems, is one of the most popular approaches
in nonlinear random vibration problems. The method consists of optimally approximat-
ing the non- linearities in the given system by linear models so that the solution of the
resulting equivalent system is available. An original version of this method was proposed
by Caughey [18,19] and has been developed by many authors [20–25].

V-D oscillator is one of the typical mathematical models for dynamical systems
having a single unstable fixed point, along with a single stable limit cycle. Various aspects
of this problem have been studied up to recent years [26–33].

The objective of the present paper is to propose a technique combining the sto-
chastic averaging method and equivalent linearization method to study V-D oscillator
under combined harmonic and random excitations. By using the conventional equivalent
linearization method, the nonlinear averaged V-D equations can be replaced by linear
ones whose solution can be found exactly. The basic concept of this technique is that
the stochastic averaging of V-D equation is carried out in Cartesian coordinates. Finally,
the mean square responses of the V-D system obtained by the proposed technique are
validated by numerical simulation results, obtained by Monte-Carlo simulation.

The remainder of the present paper proceeds as follows: Section 2 gives the concepts
of proposed approximate technique; Section 3 compares responses of the system obtained
by proposed technique to ones of numerical simulation. Summary and conclusions are
given in Section 4.

2. APPROXIMATE TECHNIQUE

In this section we are concerned with an equation of motion of the V-D oscillator
under combined harmonic and random excitations

ẍ− ε
(
α− βx2

)
ẋ + εγx3 + ω2x = εP cos νt +

√
ε σξ (t) , (1)

where α, β, γ, ω, P, ν, σ are positive parameters, ε is a small positive parameter, and
function ξ (t) is a Gaussian white noise process of unit intensity with the correlation
function Rξ (τ) = 〈ξ (t) ξ (t + τ)〉 = δ (τ), where δ (τ) is the Dirac delta function, and
notation 〈.〉 denotes the mathematical expectation operator. We consider Eq. (1) in the
primary resonant frequency region, i.e. parameters ω and ν have the relation

ω2 − ν2 = ε∆, (2)

where ∆ is a detuning parameter. Substituting (2) into Eq. (1) yields

ẍ + ν2x = εf (x, ẋ, νt) +
√

εσξ (t) , (3)
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where
f (x, ẋ, νt) = −∆x +

(
α− βx2

)
ẋ− γx3 + P cos νt. (4)

We seek the solution of Eq. (3) in the form of [3,4].

x = b cos νt + d sin νt,
ẋ = −bν sin νt + dν cos νt,

(5)

where b and d are slowly varying random processes satisfying an additional condition

ḃ cos νt + ḋ sin νt = 0. (6)

Substituting (5) into Eq. (3) and then solving the resulting equation and Eq. (6)
with respect to the derivatives ḃ and ḋ yield

ḃ = −1
ν

(εf +
√

εσξ (t)) sin νt,

ḋ =
1
ν

(εf +
√

εσξ (t)) cos νt,
(7)

where
f = f (b cos νt + d sin νt, −bν sin νt + dν cos νt) . (8)

Solving the system (7) is a difficult problem. Thus, an approximate method is re-
quired for this system.

2.1. Stochastic averaging method

The system (7) can be simplified by using the stochastic averaging method [4]

ḃ = εH1 (b, d) +
√

εσ

ν
√

2
ξ1 (t) ,

ḋ = εH2 (b, d) +
√

εσ

ν
√

2
ξ2 (t) ,

(9)

where ξ1 (t) and ξ2 (t) are independent Gaussian white noises with unit intensity, and the
drift coefficients H1 (b, d) and H2 (b, d) are determined as follows

H1 (b, d) = −1
ν
〈f sin νt〉t , H2 (b, d) =

1
ν
〈f cos νt〉t , (10)

where 〈.〉t represents the time-averaging over one period defined by

〈.〉t =
1
T

T∫
0

(.) dt. (11)

Substituting (4) into (10), noting (5), yields the drift coefficients of the system (9)

H1 (b, d) =
α

2
b +

∆
2ν

d + g1 (b, d) ,

H2 (b, d) = −∆
2ν

b +
α

2
d +

P

2ν
+ g2 (b, d) ,

(12)
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where

g1 (b, d) = − 1
8ν

(
βνb3 − 3γb2d + βνbd2 − 3γd3

)
,

g2 (b, d) = − 1
8ν

(
3γb3 + βνb2d + 3γbd2 + βνd3

)
.

(13)

The solution of the FP equation written for the stationary probability density func-
tion (PDF) associated with the system (9) is still a difficult problem since H1 (b, d) and
H2 (b, d) are nonlinear functions. Thus, in order to overcome this difficulty, the equivalent
linearization method is employed.

2.2. Equivalent linearization method and technique of auxiliary function

Following the equivalent linearization method, the nonlinear terms (13) are re-
placed by

ḡ1 (b, d) = η11b + η12d + η13,
ḡ2 (b, d) = η21b + η22d + η23,

(14)

where coefficients ηij , i = 1, 2; j = 1, 2, 3 are to be determined by an optimization criterion.
Thus, the functions Hi, i = 1, 2 in (12) are replaced by linear functions H̄i, i = 1, 2 given
by

H̄1 (b, d) = α1b + β1d + λ1,
H̄2 (b, d) = α2b + α2d + λ2,

(15)

where

α1 =
α

2
+ η11, β1 =

∆
2ν

+ η12, λ1 = η13,

α2 = −∆
2ν

+ η21, β2 =
α

2
+ η22, λ2 =

P

2ν
+ η23,

(16)

or, equivalently, the system (9) is replaced by

ḃ = εH̄1 (b, d) +
√

εσ

ν
√

2
ξ1 (t) ,

ḋ = εH̄2 (b, d) +
√

εσ

ν
√

2
ξ2 (t) .

(17)

There are some criteria for determining the coefficients ηij , i = 1, 2; j = 1, 2, 3. The
most extensively used criterion is the mean square error criterion which requires that the
mean square of errors be minimum [18]. From (12)-(16), errors between Hi and H̄i, i = 1, 2
are

ei = gi (b, d)− (ηi1b + ηi2d + ηi3) , i = 1, 2. (18)

So, the mean square error criterion leads to〈
e2
i

〉
=

〈
[gi (b, d)− (ηi1b + ηi2d + ηi3)]

2
〉
→ min

ηij

. (19)

From
∂

∂ηij

〈
e2
i

〉
= 0, i = 1, 2; j = 1, 2, 3, (20)
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it follows that
〈b g1 (b, d)〉 −

〈
b2

〉
η11 − 〈bd〉 η12 − 〈b〉 η13 = 0,

〈d g1 (b, d)〉 − 〈bd〉 η11 −
〈
d2

〉
η12 − 〈d〉 η13 = 0,

〈g1 (b, d)〉 − 〈b〉 η11 − 〈d〉 η12 − η13 = 0,
〈b g2 (b, d)〉 −

〈
b2

〉
η21 − 〈bd〉 η22 − 〈b〉 η23 = 0,

〈d g2 (b, d)〉 − 〈bd〉 η21 −
〈
d2

〉
η22 − 〈d〉 η23 = 0,

〈g2 (b, d)〉 − 〈b〉 η21 − 〈d〉 η22 − η23 = 0,

(21)

where g1 (b, d) , g2 (b, d) are given by (13). Since the linear system (17) is under Gaussian
process excitation, one gets that b and d are jointly Gaussian. Hence, all higher moments
〈gi〉, 〈b gi〉, 〈d gi〉 can be expressed in terms of first and second moments of b and d by
below properties of a Gaussian random vector ~X = (X1, X2) = (b, d) [32]〈

Xn+1
i

〉
= 〈Xi〉 〈Xn

i 〉+ nσ2
Xi

〈
Xn−1

i

〉
,

〈XiX
n1
1 Xn2

2 〉 = 〈Xi〉 〈Xn1
1 Xn2

2 〉+ n1kXiX1

〈
Xn1−1

1 Xn2
2

〉
+ n2kXiX2

〈
Xn1

1 Xn2−1
2

〉
,

i = 1, 2.

(22)

Here σ2
Xi

is variance of Xi, kXiXj denotes covariance of Xi and Xj , and n, n1 and
n2 = 0, 1, 2, 3, . . . Thus, from (13) and (22) one gets

η11 = − 1
8ν

[
6γ 〈bd〉+ 3βν

〈
b2

〉
+ βν

〈
d2

〉]
,

η12 = − 1
8ν

(
2βν 〈bd〉+ 3γ

〈
b2

〉
+ 9γ

〈
d2

〉)
,

η13 =
1
4ν

(
〈b〉2 + 〈d〉2

)
(βν 〈b〉+ 3γ 〈d〉) ,

η21 =
1
8ν

(
−2βν 〈bd〉+ 9γ

〈
b2

〉
+ 3γ

〈
d2

〉)
,

η22 =
1
8ν

[
6γ 〈bd〉 − βν

〈
b2

〉
− 3βν

〈
d2

〉]
,

η23 = − 1
4ν

(3γ 〈b〉 − βν 〈d〉)
(
〈b〉2 + 〈d〉2

)
.

(23)

From (22), the relation (23) results in six algebraic equations for eleven unknowns:
ηij , i = 1, 2; j = 1, 2, 3, 〈b〉 , 〈d〉 , σ2

b , σ2
d, kbd. In order to close the system (23), it is noted

that the FP equation written for the stationary PDF W (b, d) associated with the system
(17) takes the form

∂

∂b

(
H̄1W

)
+

∂

∂d

(
H̄2W

)
=

σ2

4ν2

[
∂2

∂b2
W +

∂2

∂d2
W

]
, (24)

which can be solved exactly by the technique of auxiliary function. In order to integrate
Eq. (24), we introduce an auxiliary function u (b, d) with derivatives up to the second order
as follows (see [13] for details)

∂

∂b

{(
H̄1W

)
− σ2

4ν2

∂

∂b
W +

∂

∂d
(uW )

}
+

∂

∂d

{(
H̄2W

)
− σ2

4ν2

∂

∂d
W − ∂

∂b
(uW )

}
= 0.

(25)
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We will choose the function u(b, d) so that the equalities below are fulfilled

H̄1W − σ2

4ν2

∂

∂b
W +

∂

∂d
(uW ) = 0,

H̄2W − σ2

4ν2

∂

∂d
W − ∂

∂b
(uW ) = 0.

(26)

With the notation
Φ (b, d) = lnW (b, d) , (27)

the system (26) now reads

H̄1 −
σ2

4ν2

∂Φ
∂b

+
∂u

∂d
+ u

∂Φ
∂d

= 0,

H̄2 −
σ2

4ν2

∂Φ
∂d

− ∂u

∂b
− u

∂Φ
∂b

= 0,

(28)

In [13], the author showed that under some particular types of u (b, d) the exact
non-trivial solution of the FP Eq. (25) can be found in quadratures. Thus, for Eq. (25),
we consider the simple case where the auxiliary function u (b, d) is a constant

u (b, d) = u0 = const. (29)

Substituting (15) and (29) into (28) and solving the system in (28) in
∂Φ
∂b

and
∂Φ
∂d

yields
∂Φ
∂b

= M (b, d, u0) ,

∂Φ
∂d

= N (b, d, u0) ,

(30)

where

M (b, d, u0) =

σ2

4ν2
(α1b + β1d + λ1) + u0 (α2b + β2d + λ2)

u2
0 +

σ4

16ν4

,

N (b, d, u0) =

σ2

4ν2
(α2b + β2d + λ2)− u0 (α1b + β1d + λ1)

u2
0 +

σ4

16ν4

.

(31)

Eliminating Φ (b, d) from the system (30) gives the equation for the constant u0

∂M (b, d, u0)
∂d

=
∂N (b, d, u0)

∂b
. (32)

Substituting (31) into Eq. (32) one gets

σ2

4ν2
β1 + β2u0 =

σ2

4ν2
α2 − α1u0. (33)
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Hence, under the condition (33), the solution W (b, d) of (24) can be found from
(27), (30) and (31) by the quadrature

W̄ (b, d) = C exp
{∫

M (b, d, u0) db +
∫

N (b, d, u0) dd

}
, (34)

where C is a normalization constant. In case of α1 + β2 6= 0, the constant u0 can be
determined from Eq. (33) as follows

u0 =
σ2

4ν2

(α2 − β1)
α1 + β2

. (35)

Substituting (31) and (35) into (34), one obtains the solution of FP equation (24)

W (b, d) = C exp
{
−ζ1b

2 − ζ2d
2 + ζ3bd + ζ4b + ζ5d

}
, (36)

where coefficients ζi, i = 1, 5 are determined as follows

ζ1 = −Ψ
((α

2
+ η11

)
(α + η11 + η22) +

(
−∆

2ν
+ η21

) (
−∆

ν
+ η21 − η12

))
,

ζ2 = −Ψ
(

(α + η11 + η22)
(α

2
+ η22

)
− (η21 + η12)

(
∆
2ν

+ η12

))
,

ζ3 = 2Ψ
((

−∆
2ν

+ η21

) (α

2
+ η22

)
+

(
∆
2ν

+ η12

) (α

2
+ η11

))
,

ζ4 = 2Ψ
(

η13 (α + η11 + η22) +
(

P

2ν
+ η23

) (
−∆

ν
+ η21 − η12

))
,

ζ5 = 2Ψ
((

∆
ν

+ η21 − η21

)
η13 + (α + η11 + η22)

(
P

2ν
+ η23

))
,

(37)

where

Ψ =
2ν2 (α + η11 + η22)

σ2

[(
−∆

ν
+ η21 − η12

)2

+ (α + η11 + η22)
2

] . (38)

It is noted that the coefficients ζ1 and ζ2 must be positive so that the PDF W (b, d)
(37) has a finite integral. Thus, from the stationary PDF (36), moments 〈b〉 , 〈d〉 , σ2

b , σ2
d, kbd

can be derived in terms of ζi, i = 1, 5

〈b〉 =
2ζ2ζ4 + ζ3ζ5

4ζ1ζ2 − ζ2
3

, 〈d〉 =
2ζ1ζ5 + ζ3ζ4

4ζ1ζ2 − ζ2
3

,

σ2
b =

2ζ2

4ζ1ζ2 − ζ2
3

, σ2
d =

2ζ1

4ζ1ζ2 − ζ2
3

, kbd =
ζ3

4ζ1ζ2 − ζ2
3

.

(39)

Hence, relations (23), (37) and (39) give us a closed system. After being found
by solving system (23), with noting (37) and (39), the numerical results of coefficients
ηij , i = 1, 2; j = 1, 2, 3 are substituted into (36) to obtain the approximate stationary
PDF in b and d of V-D equation (1).
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3. NUMERICAL RESULTS

By squaring both sides of the first equation in (5) and then taking mathematical
expectation, one obtains〈

x2 (t)
〉

=
〈
b2

〉
cos2 νt +

〈
d2

〉
sin2 νt + 〈bd〉 sin 2νt. (40)

Thus, in this approach the mean square response is time varying. Taking averaging
Eq. (40) with respect to time yields the following expression〈〈

x2 (t)
〉〉

t
=

1
2

(〈
b2

〉
+

〈
d2

〉)
=

1
2

(
〈b〉2 + σ2

b + 〈d〉2 + σ2
d

)
. (41)

Substituting (39) into (41) and reducing the obtained result yield the time-averaging
of mean square response to be

〈〈
x2 (t)

〉〉
t
=

(2ζ2ζ4 + ζ3ζ5)
2 + (2ζ1ζ5 + ζ3ζ4)

2

2
(
4ζ1ζ2 − ζ2

3

)2 +
ζ1 + ζ2

4ζ1ζ2 − ζ2
3

, (42)

where ζi, i = 1, 5 are given by (37). It is noted from (42) that the approximate time-
averaging value of mean square response of V-D oscillator is calculated algebraically. In
order to check the accuracy of the present technique, the various values of response of
V-D equation (1) are compared to the numerical simulation results versus the particular
parameter. The numerical simulation of the mean square response, denoted by

〈
x2

〉
sim

, is
obtained by 10,000-realization Monte Carlo simulation. In Tab. 1, time-averaging values
of mean-square response of the system is performed for computation with various val-
ues of the parameter ε. The system parameters are chosen to be α = 1, β = 4, ω = 1,
P = 2, γ = 1, σ2 = 0.1, ε = 0.05. Tab. 2 presents time-averaging values of mean-square re-
sponse of the system evaluated versus the parameter ν in the primary resonant region with
the system parameters chosen to be α = 1, β = 4, ω = 1, P = 2, γ = 1, σ2 = 0.1, ν = 1.01.
The two tables show that the proposed technique gives a good prediction when the pa-
rameter ε is small and the frequency ν of the periodic excitation is near to the nat-
ural frequency ω of the system. In Tab. 3, time-averaging values of mean square re-
sponse for various values of are performed with the system parameter chosen to be
α = 1, β = 4, ω = 1, P = 2, γ = 0.05, σ2 = 0.1, ν = 1.01. The responses are evaluated
versus the amplitude P of the periodic excitation and the parameter σ2 of the random
excitation in Tab. 4 and in Tab. 5, respectively. Tab. 3 and Tab. 4 show that the proposed
technique gives a good prediction. Meanwhile, Tab. 5 shows that the error of the present
technique, in general, increases when random intensity σ2 increases. For small values of
σ2, however, the proposed technique gives a good prediction. The error in the tables is
defined as

Error =

∣∣∣〈x2
〉
sim

−
〈
x2

〉
present

∣∣∣
〈x2〉sim

× 100%, (43)

where
〈
x2

〉
present

denotes the time-averaging values of mean square response by the present
technique.
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Table 1. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter ε(

α = 1, β = 4, ω = 1, P = 2, γ = 1, σ2 = 0.1, ν = 1.01
)

ε
〈
x2

〉
sim

〈
x2

〉
present

Error (%)
0.05 0.9374 0.9736 3.86
0.1 0.9100 0.9248 1.63
0.2 0.8996 0.8989 0.08
0.3 0.9025 0.8900 1.38

Table 2. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter ν(

α = 1, β = 4, ω = 1, P = 2, γ = 1, σ2 = 0.1, ε = 0.05
)

ν
〈
x2

〉
sim

〈
x2

〉
present

Error (%)
1.01 0.9371 0.9736 3.89
1.02 1.0098 1.0546 4.44
1.03 1.0602 1.1107 4.76
1.04 1.0834 1.1343 4.70
1.05 1.0669 1.1088 3.93

Table 3. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter γ(

α = 1, β = 4, ω = 1, P = 2, ε = 0.05, σ2 = 0.1, ν = 1.01
)

γ
〈
x2

〉
sim

〈
x2

〉
present

Error (%)
0.1 1.0997 1.1428 3.92
0.5 1.0687 1.1217 4.96
1 0.9373 0.9736 3.87
2 0.6769 0.6851 1.21
5 0.3696 0.3562 3.63

Table 4. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter P(

α = 1, β = 4, ω = 1, σ2 = 0.1, ε = 0.05, γ = 0.5, ν = 1.01
)

P
〈
x2

〉
sim

〈
x2

〉
present

Error (%)
0.1 0.5140 0.5259 2.32
0.5 0.6457 0.6926 7.26
1 0.8037 0.8546 6.33
2 1.0692 1.1217 4.91
5 1.6905 1.7455 3.25
10 2.5013 2.5564 2.20
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Table 5. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter σ2(

α = 1, β = 4, ω = 1, P = 2, σ2 = 0.1, γ = 1, ν = 1.01
)

σ2
〈
x2

〉
sim

〈
x2

〉
present

Error (%)
0.1 0.9376 0.9736 3.84
0.5 0.9349 0.9616 2.86
1.0 0.9348 0.9429 0.87
1.5 0.9461 0.9238 2.36
2.0 0.9659 0.9086 5.93
2.5 0.9885 0.9022 8.73
3.0 1.0177 0.9073 10.85

4. CONCLUSIONS

Using the stochastic averaging method to investigate a nonlinear vibration leads to
solve a FP equation whose solution is still a difficult problem. To overcome this, the present
paper proposes a new approximate approach to find the response of the V-D oscillator
by combining two typical methods, namely, stochastic averaging method and equivalent
linearization method. As shown, the stochastic averaging of V-D equation is carried out in
Cartesian coordinates. It is obtained that the drift coefficients of the averaged equations
in the system (9) are polynomial forms in b and d which give an advantageous context
to apply stochastic equivalent linearization method. The FP equation associated with
the equivalent linearized system (17) can be solved exactly by the technique of auxiliary
function. Numerical result shows that, for the V-D oscillator, the present technique gives
a good prediction when the frequency ν of the periodic excitation is near to the natural
frequency ω of the system; nonlinear coefficient γ and value of random intensity σ2 are
small.

It is noted that although the proposed technique is used to solve the V-D equa-
tion only, it is applicable to other nonlinear systems with weak nonlinearity and weak
excitations. Further, since the accuracy of the proposed technique depends on criterion
of equivalence adopted, the technique can be improved by using advanced optimization
criteria (e.g., [22, 25, 33]) during the equivalent linearization procedure. These notes will
be studied in future.
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