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Abstract. This paper presents an analytical approach to investigate the nonlinear buck-
ling of imperfect eccentrically stiffened functionally graded thin circular cylindrical shells
subjected to axial compression and surrounded by an elastic foundation. Based on the
classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense,
initial geometrical imperfection, the smeared stiffeners technique and Pasternak’s two-
parameter elastic foundation, the governing equations of eccentrically stiffened function-
ally graded cylindrical shells are derived. The functionally graded cylindrical shells are
reinforced by homogeneous ring and stringer stiffener system on internal and (or) ex-
ternal surface. The resulting equations are solved by the Galerkin method to obtain the
explicit expression of static critical buckling load, post-buckling load-deflection curve
and nonlinear dynamic motion equation. The nonlinear dynamic responses are found by
using fourth order Runge-Kutta method. The dynamic critical buckling loads of shells
are considered for step loading of infinite duration and linear-time compression. The ob-
tained results show the effects of foundation, stiffeners and input factors on the nonlinear
buckling behavior of these structures.

Keywords: Static and dynamic buckling analysis, elastic foundation, stiffener, function-
ally graded material, stiffened circular cylindrical shell, critical buckling load.

1. INTRODUCTION

In recent years, the mechanic behavior of functionally graded (FGM) cylindrical shell
attracts special attention of many authors. In static buckling analysis of FGM cylindrical
shells without elastic foundation, many studies have been focused on the buckling and post-
buckling of shells under mechanic and thermal loading. Shen [1–3] and Shen and Noda [4]
presented the nonlinear postbuckling of perfect and imperfect FGM cylindrical thin shells
under axial compression, radial pressure and combined axial and radial loads. Huang and
Han [5–9] studied the buckling and postbuckling of un-stiffened FGM cylindrical shells
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under torsion load, axial compression, radial pressure, combined axial compression and
radial pressure based on the Donnell shell theory and the nonlinear strain-displacement
relations of large deformation. Shen [10] investigated the torsional buckling and postbuck-
ling of FGM cylindrical shells in thermal environments. The non-linear static buckling of
FGM conical shells which is more general than cylindrical shells, were studied by Sofiyev
[11, 12]. Zozulya and Zhang [13] studied the behavior of functionally graded axisymmetric
cylindrical shells based on the high order theory.

For dynamic buckling analysis of FGM cylindrical shells without elastic foundation,
Darabi et al. [14] presented respectively linear and nonlinear parametric resonance anal-
yses for un-stiffened FGM cylindrical shells. Sofiyev and Schnack [15] and Sofiyev [16]
obtained critical parameters for un-stiffened cylindrical thin shells under linearly increas-
ing dynamic torsional loading and under a periodic axial impulsive loading by using the
Galerkin technique together with Ritz type variation method. Sheng and Wang [17] pre-
sented the thermo-mechanical vibration analysis of FGM shell with flowing fluid. Sofiyev
[18–21] and Deniz and Sofiyev [22] were investigated the vibration and dynamic instability
of FGM conical shells. Hong [23] studied thermal vibration of magnetostrictive FGM cylin-
drical shells. Huang and Han [24] presented the nonlinear dynamic buckling problems of
un-stiffened functionally graded cylindrical shells subjected to time-dependent axial load
by using the Budiansky-Roth dynamic buckling criterion [25]. Various effects of the inho-
mogeneous parameter, loading speed, dimension parameters; environmental temperature
rise and initial geometrical imperfection on nonlinear dynamic buckling were discussed.

For FGM cylindrical shell surrounded by an elastic foundation, the postbuckling of
shear deformable FGM cylindrical shells surrounded by an elastic medium was studied
by Shen [26]. Shen et al. [27] investigated postbuckling of internal pressure loaded FGM
cylindrical shells surrounded by an elastic medium. Bagherizadeh et al. [28] investigated
mechanical buckling of FGM cylindrical shells surrounded by Pasternak’s elastic founda-
tion. Sofiyev [29] analyzed the buckling of FGM circular shells under combined loads and
resting on the Pasternak’s elastic foundation. Torsional vibration and stability of function-
ally graded orthotropic cylindrical shells on elastic foundations is presented by Najafov
et al. [30]. For the FGM conical shell-general case of FGM cylindrical shells, mechanic
behavior of shell on elastic foundation was studied in [31–33].

In engineering structures, the reinforcement by stiffener system provides the benefit
of added load carrying capability with a relatively small additional weight. Thus study on
nonlinear static and dynamic behavior of theses structures are significant practical prob-
lem. However, up to date, the investigation on this field has received comparatively little
attention. Recently, Najafizadeh et al. [34] have studied linear static buckling of FGM
axially loaded cylindrical shell reinforced by ring and stringer FGM stiffeners. Bich et al.
[35–38] have investigated the nonlinear static and dynamic analysis of FGM plates, cylin-
drical panels, shallow shells and circular cylindrical shells with eccentrically homogeneous
stiffener system. Dung and Hoa [39, 40] presented an analytical study of nonlinear static
buckling and post-buckling analysis of eccentrically stiffened functionally graded circu-
lar cylindrical shells under external pressure and torsional load with FGM stiffeners and
approximate three-term solution of deflection taking into account the nonlinear buckling
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shape. Dung et al. [41] studied the instability of eccentrically stiffened functionally graded
truncated conical shells under mechanical loads.

This paper investigates the nonlinear behavior of ES-FGM cylindrical shells sur-
rounded by an elastic foundation by an analytical approach. The nonlinear governing
equations of eccentrically stiffened FGM circular cylindrical shells surrounded by an elas-
tic foundation are derived based on the classical shell theory with the nonlinear strain-
displacement relation of large deflection, the smeared stiffeners technique and two-parameter
elastic foundation Pasternak. By using the Galerkin method, the closed-form relation of
static critical buckling load and load-deflection postbuckling curves are obtained. Nu-
merical nonlinear dynamic responses are found from Runge-Kutta method. The dynamic
buckling loads of shells under step loading of infinite duration are found correspondingly
to the load value of sudden jump in the average deflection and those of shells under
linear-time compression are investigated according to Budiansky-Roth criterion. The re-
sults show that the foundation, stiffener, volume-fractions index and initial imperfection
strongly influence to the behavior of shells.

2. ECCENTRICALLY STIFFENED FGM (ES-FGM) CIRCULAR
CYLINDRICAL SHELLS SURROUNDED BY

AN ELASTIC FOUNDATION

2.1. Functionally graded material

By applying a simple power law distribution, the volume fractions of metal and
ceramic are obtained as follows

Vm + Vc = 1,

Vc = Vc(z) =

(

2z + h

2h

)k

,

where h is thickness of shell; k ≥ 0 is volume-fraction index; z is thickness coordinate and
varies from −h/2 to h/2; the subscripts m and c refer to metal and ceramic constituents
respectively. According to the mentioned law, Young modulus and mass density can be
obtained in expressions

E(z) = EmVm + EcVc = Em + (Ec − Em)

(

2z + h

2h

)k

,

ρ(z) = ρmVm + ρcVc = ρm + (ρc − ρm)

(

2z + h

2h

)k

,

(1)

Poissons’s ratio ν is assumed to be constant.

2.2. Governing equations

Consider a FGM thin circular cylindrical shell with length L, mean radius R (Fig. 1).
This shell is assumed to be reinforced by closely spaced (Najafizadeh et al. [34]; Brush and
Almroth [42]; Reddy and Starnes [43]) homogeneous ring and stringer stiffener systems (see
Fig. 1). The shell is surrounded by a Pasternak’s two-parameter elastic foundation with
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K1 (N/m3) is Winkler foundation modulus and K2 (N/m) is the shear layer foundation
stiffness of Pasternak model.

Fig. 1. Geometry and coordinate system of an eccentrically stiffened cylindrical
shell surrounded by an elastic foundation

The origin of coordinate locates on the middle plane and at the left end of the shell,
x, y (y = Rθ) and z axes are in the axial, circumferential, and inward radial directions,
respectively.

This paper assume that stiffener is pure-ceramic if it is located at ceramic-rich side
and is pure-metal if is located at metal-rich side, such FGM stiffened circular cylindrical
shells provide continuity within shell and stiffeners and can be easier manufactured. Based
the von Karman nonlinear strain-displacement relations (Brush and Almroth [42]), the
strain components at the middle plane of shells are obtained by

ε0
x =

∂u

∂x
+

1

2

(

∂w

∂x

)2

+
∂w

∂x

∂w0

∂x
,

ε0
y =

∂v

∂y
−

w

R
+

1

2

(

∂w

∂y

)2

+
∂w

∂y

∂w0

∂y
,

γ0
xy =

∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
+

∂w

∂y

∂w0

∂x
+

∂w

∂x

∂w0

∂y
,

χx =
∂2w

∂x2
,χy =

∂2w

∂y2
,χxy =

∂2w

∂x∂y
,

(2)

where u = u (x, y), v = v (x, y) and w = w (x, y) are displacements along x, y and z
axes, respectively, and χx, χy, χxy are the changes of curvatures and twist of shell, re-
spectively, and w0 = w0 (x, y) denotes initial imperfection of shell, which is very small
compared with the shell dimensions, but may be compared with the shell wall thick-
ness. The strains across the shell thickness at a distance z from the mid-surface are
given by

εx = ε0
x − zχx,

εy = ε0
y − zχy,

γxy = γ0
xy − 2zχxy.

(3)
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From Eq. (2) the strains must be relative in the deformation compatibility equation

∂2ε0
x

∂y2
+

∂2ε0
y

∂x2
−

∂2γ0
xy

∂x∂y
= −

1

R

∂2w

∂x2
+

(

∂2w

∂x∂y
+

∂2w0

∂x∂y

)2

−

−

(

∂2w

∂x2
+

∂2w0

∂x2

)(

∂2w

∂y2
+

∂2w0

∂y2

)

.

(4)

Hooke’s stress-strain relation is applied for the shell

σsh
x =

E(z)

1 − ν2
(εx + νεy) , σsh

y =
E(z)

1− ν2
(εy + νεx) , τ sh

xy =
E(z)

2 (1 + ν)
γxy, (5)

and for stiffeners

σs
x = Esεx, σr

y = Erεy, (6)

where Es, Er are Young’s modulus of stringer and ring stiffeners, respectively.
The force and moment of an un-stiffened FGM circular cylindrical shell can be

determined by

{(Nx, Ny, Nxy) , (Mx, My, Mxy)} =

h/2
∫

−h/2

{σx, σy, σxy} (1, z) dz. (7)

According to the smeared stiffeners technique and omitting the twist of stiffeners,
the expressions for force and moment resultants are expressed in the form

Nx =

(

A11 +
EsAs

ss

)

ε0
x + A12ε

0
y − (B11 + Cs) χx − B12χy ,

Ny = A12ε
0
x +

(

A22 +
ErAr

sr

)

ε0
y − B12χx − (B22 + Cr)χy,

Nxy = A66γ
0
xy − 2B66χxy,

(8)

Mx = (B11 + Cs) ε0
x + B12ε

0
y −

(

D11 +
EsIs

ss

)

χx − D12χy,

My = B12ε
0
x + (B22 + Cr) ε0

y − D12χx −

(

D22 +
ErIr

sr

)

χy,

Mxy = B66γ
0
xy − 2D66χxy,

(9)

where Aij, Bij, Dij (i, j = 1, 2, 6) are extensional, coupling and bending stiffness of the un-
stiffened FGM cylindrical shell,

A11 = A22 =
E1

1 − ν2
, A12 =

E1ν

1 − ν2
, A66 =

E1

2 (1 + ν)
,

B11 = B22 =
E2

1 − ν2
, B12 =

E2ν

1 − ν2
, B66 =

E2

2 (1 + ν)
,

D11 = D22 =
E3

1 − ν2
, D12 =

E3ν

1 − ν2
, D66 =

E3

2 (1 + ν)
,

(10)
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with

E1 =

(

Em +
Ec − Em

k + 1

)

h, E2 =
(Ec − Em) kh2

2 (k + 1) (k + 2)
,

E3 =

[

Em

12
+ (Ec − Em)

(

1

k + 3
−

1

k + 2
+

1

4k + 4

)]

h3,

Is =
dsh

3
s

12
+ Asz

2
s , Ir =

drh
3
r

12
+ Arz

2
r ,

Cs = ±
EsAszs

ss
, Cr = ±

ErArzr

sr
,

zs =
hs + h

2
, zr =

hr + h

2
,

(11)

where coupling parameters Cs and Cr are negative for outside stiffeners and positive for
inside ones. The spacings of the stringer and ring stiffeners are denoted by ss and sr

respectively. The quantities As, Ar are cross-section areas of stiffeners and Is, Ir, zs, zr

are second moments of cross section areas and eccentricities of stiffeners with respect to
the middle surface of shell, respectively. The width and thickness of the stringer and ring
stiffeners are denoted by ds, hs and dr, hr respectively. Young modulus of stiffeners Es, Er

take the values, Em, if the full metal stiffeners are put at the metal-rich side of the shell
and conversely, and Ec, if the full ceramic ones are put at the ceramic-rich side.

From the constitutive relations (8), one can write inversely

ε0
x = A∗

22Nx − A∗

12Ny + B∗

11χx + B∗

12χy ,

ε0
y = A∗

11Ny − A∗

12Nx + B∗

21χx + B∗

22χy,

γ0
xy = A∗

66 + 2B∗

66χxy,

(12)

in which

A∗

11 =
1

∆

(

A11 +
EsAs

ss

)

, A∗

12 =
A12

∆
, A∗

22 =
1

∆

(

A22 +
ErAr

sr

)

,

A∗

66 =
1

A66
, ∆ =

(

A11 +
EsAs

ss

)(

A22 +
ErAr

sr

)

− A2
12.

B∗

11 = A∗

22 (B11 + Cs) − A∗

12B12, B
∗

22 = A∗

11 (B22 + Cr)− A∗

12B12,

B∗

12 = A∗

22B12 − A∗

12 (B22 + Cr) , B∗

21 = A∗

11B12 − A∗

12 (B11 + Cs) ,

B∗

66 =
B66

A66
,

(13)

Substituting Eq. (12) into Eq. (9) leads to

Mx = B∗

11Nx + B∗

21Ny − D∗

11χx − D∗

12χy ,

My = B∗

12Nx + B∗

22Ny − D∗

21χx − D∗

22χy,

Mxy = B∗

66Nxy − 2D∗

66χxy,

(14)
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in which

D∗

11 = D11 +
EsIs

ss
− (B11 + Cs) B∗

11 − B12B
∗

21,

D∗

22 = D22 +
ErIr

sr
− B12B

∗

12 − (B22 + Cr) B∗

22,

D∗

12 = D12 − (B11 + Cs)B∗

12 − B12B
∗

22,

D∗

21 = D12 − B12B
∗

11 − (B22 + Cr) B∗

21,

D∗

66 = D66 − B66B
∗

66.

(15)

The nonlinear equations of motion of a cylindrical thin shell based on the classical

shell theory and the assumption u � w and v � w, ρ1
∂2u

∂t2
→ 0, ρ1

∂2v

∂t2
→ 0 [14, 15, 44]

are given in Refs. [5, 15]

∂Nx

∂x
+

∂Nxy

∂y
= 0,

∂Nxy

∂x
+

∂Ny

∂y
= 0,

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ Nx

(

∂2w

∂x2
+

∂2w0

∂x2

)

+ 2Nxy

(

∂2w

∂x∂y
+

∂2w0

∂x∂y

)

+

+ Ny

(

∂2w

∂y2
+

∂2w0

∂y2

)

+
1

R
Ny − K1w + K2

(

∂2w

∂x2
+

∂2w

∂y2

)

= ρ1
∂2w

∂t2
,

(16)

where

ρ1 =

h/2
∫

−h/2

ρ(z)dz + ρs
As

ss
+ ρr

Ar

sr
=

(

ρm +
ρc − ρm

k + 1

)

h + ρs
As

ss
+ ρr

Ar

sr
, (17)

with

ρs = ρm; ρr = ρm for metal stiffeners,

ρs = ρc; ρr = ρc for ceramic stiffeners.

Considering the first two of Eqs. (16), a stress function ϕ may be defined as

Nx =
∂2ϕ

∂y2
, Ny =

∂2ϕ

∂x2
, Nxy = −

∂2ϕ

∂x∂y
. (18)

Substituting Eq. (12) into the compatibility Eq. (4) and Eq. (14) into the third of
Eq. (16), taking into account Eqs. (2) and (18) neglecting small terms of higher second
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order with respect to w0, yields

A∗

11

∂4ϕ

∂x4
+ (A∗

66 − 2A∗

12)
∂4ϕ

∂x2∂y2
+ A∗

22

∂4ϕ

∂y4
+ B∗

21

∂4w

∂x4
+

+ (B∗

11 + B∗

22 − 2B∗

66)
∂4w

∂x2∂y2
+ B∗

12

∂4w

∂y4
+

1

R

∂2w

∂x2
−

−

[

(

∂2w

∂x∂y

)2

−
∂2w

∂x2

∂2w

∂y2

]

− 2
∂2w

∂x∂y

∂2w0

∂x∂y
+

∂2w

∂x2

∂2w0

∂y2
+

∂2w

∂y2

∂2w0

∂x2
= 0,

(19)

ρ1
∂2w

∂t2
+ D∗

11

∂4w

∂x4
+ (D∗

12 + D∗

21 + 4D∗

66)
∂4w

∂x2∂y2
+ D∗

22

∂4w

∂y4
− B∗

21

∂4ϕ

∂x4
−

− (B∗

11 + B∗

22 − 2B∗

66)
∂4ϕ

∂x2∂y2
− B∗

12

∂4ϕ

∂y4
−

1

R

∂2ϕ

∂x2
−

∂2ϕ

∂y2

(

∂2w

∂x2
+

∂2w0

∂x2

)

+

+ 2
∂2ϕ

∂x∂y

(

∂2w

∂x∂y
+

∂2w0

∂x∂y

)

−
∂2ϕ

∂x2

(

∂2w

∂y2
+

∂2w0

∂y2

)

+ K1w − K2

(

∂2w

∂x2
+

∂2w

∂y2

)

= 0.

(20)
Eqs. (19) and (20) are a nonlinear equation system in terms of two dependent

unknowns w and ϕ. They are used to investigate the static and dynamic characteristics of
imperfect ES-FGM circular cylindrical shells surrounded by an elastic foundation.

3. NONLINEAR STATIC AND DYNAMIC BUCKLING ANALYSIS

Suppose that an imperfect ES-FGM cylindrical shell surrounded by an elastic foun-
dation is simply supported and subjected to axial compressive load r̄0 = r0h where
r0 = r0(t) is the average axial stress on the shell’s end sections, positive when the shells
subjected to axial compression (in N/m2). Thus, the boundary conditions considered in
the current study are

w = 0, Mx = 0, Nx = −r0h, Nxy = 0, at x = 0; L. (21)

The deflection of shell is satisfying the mentioned condition (21) is represented by

w = f (t) sin
mπx

L
sin

ny

R
, (22)

where f (t) is time dependent total amplitude, m is number of half waves in axial direction
and n is number of wave in circumferential direction.

The initial-imperfection w0 is assumed to be the same form of the deflection w as

w0 = f0 sin
mπx

L
sin

ny

R
, (23)

where f0 is the known imperfect amplitude.
Substituting Eqs. (22) and (23) into Eq. (19) and solving obtained equation for

unknown ϕ lead to

ϕ = ϕ1 cos
2mπx

L
+ ϕ2 cos

2ny

R
− ϕ3 sin

mπx

L
sin

ny

R
− r0h

y2

2
, (24)
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where denote

ϕ1 =
n2λ2

32m2π2A∗

11

f (f + 2f0) ,

ϕ2 =
m2π2

32n2λ2A∗

22

f (f + 2f0) ,

ϕ3 =

[

B∗

21m
4π4 + (B∗

11 + B∗

22 − 2B∗

66)m2n2π2λ2 + B∗

12n
4λ4 − L2

R m2π2
]

A∗

11m
4π4 + (A∗

66 − 2A∗

12) m2n2π2λ2 + A∗

22n
4λ4

f,

f = f (t) , λ =
L

R
.

(25)

Substituting the expressions (22-24) into Eq. (20) and applying Galerkin method to
the resulting equation yield

ρ1L
4f̈ +

(

D +
B2

A

)

f + Gf (f + f0) (f + 2f0)

− L2m2π2hr0 (f + f0) + L4K1f + L2
(

m2π2 + n2λ2
)

K2f = 0,

(26)
where

A = A∗

11m
4π4 + (A∗

66 − 2A∗

12)m2n2π2λ2 + A∗

22n
4λ4,

B = B∗

21m
4π4 + (B∗

11 + B∗

22 − 2B∗

66) m2n2π2λ2 + B∗

12n
4λ4 −

L2

R
m2π2,

D = D∗

11m
4π4 + (D∗

12 + D∗

21 + 4D∗

66)m2n2π2λ2 + D∗

22n
4λ4,

G =

(

n4λ4

16A∗

11

+
m4π4

16A∗

22

)

.

(27)

Introducing parameters

D̄ =
D

h3
, B̄ =

B

h
, Ā = Ah, Ḡ =

G

h
, ξ =

f

h
, ξ0 =

f0

h
, (28)

the non-dimension form of Eq. (26) is written as

ρ1L
4

h3
ξ̈ +

(

D̄ +
B̄2

Ā

)

ξ + Ḡξ (ξ + ξ0) (ξ + 2ξ0)−

−

(

L

h

)2

m2π2 (ξ + ξ0) r0 +
L4

h3
K1ξ +

L2

h3

(

m2π2 + n2λ2
)

K2ξ = 0.

(29)

3.1. Static buckling and post-buckling analysis

Omitting the term of inertia, Eq. (29) leads to

r0 =
h2

L2m2π2

(

D̄ +
B̄2

Ā

)

ξ

(ξ + ξ0)
+

L2K1 +
(

m2π2 + n2λ2
)

K2

m2π2h

ξ

(ξ + ξ0)
+

h2

L2m2π2
Ḡξ (ξ + 2ξ0) .

(30)
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Putting ξ0 = 0 in Eq. (30), yields

r0 =
h2

L2m2π2

(

D̄ +
B̄2

Ā

)

+
L2K1 +

(

m2π2 + n2λ2
)

K2

m2π2h
+

h2

L2m2π2
Ḡξ2. (31)

By taking ξ → 0 the buckling stress of perfect ES-FGM cylindrical shells can be
determined from Eq. (31)

rsbu =
h2

L2m2π2

(

D̄ +
B̄2

Ā

)

+
L2K1 +

(

m2π2 + n2λ2
)

K2

m2π2h
. (32)

The static critical buckling stress of perfect ES-FGM cylindrical shells are deter-
mined by condition rscr = min rsbu vs. (m, n) and the static post-buckling curves of per-
fect and imperfect shells may be traced by using Eqs. (30 and 31) with the same buckling
mode shape of critical buckling stress for evaluate static behavior.

3.2. Dynamic buckling analysis

The dynamic buckling analysis will be considered for two load types.
Firstly, the axial compression linearly varying on time r0 = ct in which c is a loading

speed. By using the Runge-Kutta method, the dynamic responses of ES-FGM cylindrical
shells can be determined from Eq. (29). The dynamic critical time tcr can be obtained by
Budiansky-Roth criterion (Budiansky and Roth [25]): For large value of loading speed, the
amplitude-time curve of obtained displacement response increases sharply and this curve
obtain a maximum by passing from the slope point and at the corresponding time t = tcr
the stability loss occurs. Here, tcr is called critical time and the corresponding dynamic

critical buckling stress rdcr = ctcr and dynamic coefficient τcr =
rdcr

rscr
.

Secondly, the shell is conducted for step loading of infinite duration r0 = const, ∀ t.
The dynamic critical load is found based on the criterion mentioned by Ganapathi [45].
The load corresponding to a sudden jump in the maximum average deflection in the time
history of the shell is taken as the critical buckling step load.

4. NUMERICAL RESULTS

To validate the present approach, two comparisons on critical buckling load are
considered. Firstly, Tab. 1 shows the dynamic buckling of perfect un-stiffened FGM cylin-
drical shells without foundation under linear-time compression, which was also analyzed by
Huang and Han [24] by using classical thin shell theory and applying the energy method.
Secondly, the present critical static buckling load (see Tab. 2) of stiffened homogeneous
cylindrical shells without foundation under axial compression is compared with results in
the monograph of Brush and Almroth [42] (based on equations in page 180) where the
smeared stiffeners technique, equilibrium path and classical shell theory are used. As can
be seen, the very good agreements are obtained in two comparisons.

To illustrate the proposed approach of eccentrically stiffened FGM cylindrical shells
surrounded by an elastic foundation, the stiffened and un-stiffened FGM cylindrical shells
are considered with R = 0.5 m, L = 0.75 m, R/h = 250. The combination of materials
consists of Aluminum Em = 7×1010 N/m2, ρm = 2702 kg/m3 and Alumina Ec = 38×1010
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N/m2, ρc = 3800 kg/m3. The compressive stress of dynamic analysis is taken to be r0 =
1010t. The Poisson’s ratio ν is chosen to be 0.3. The height of stiffeners is equal to 0.005 m,
its width 0.002 m. The material properties are Es = Ec and Er = Ec, ρs = ρc and ρr = ρc

with internal stringer stiffeners and internal ring stiffeners; Es = Em, Er = Em, ρs = ρm

and ρr = ρm with external stringer stiffeners and external ring stiffeners, respectively. The
stiffener system includes 15 ring stiffeners and 63 stringer stiffeners regularly distributed
in the axial and circumferential directions, respectively.

Table 1. Comparison of dynamic critical buckling stress rdcr (MPa) and dynamic
coefficient τcr = rdcr

rscr
of perfect un-stiffened FGM cylindrical

shells under linear-time compression

Present Huang and Han [24]
rdcr (m, n) τcr = rdcr

rscr
rdcr (m, n) τcr = rdcr

rscr

R/h = 500, L/R = 2, c = 100 MPa/s
k = 0.2 194,94(2,11) 1.030 194,94(2,11) 1.030
k = 1.0 169,94(2,11) 1.034 169,94(2,11) 1.034
k = 5.0 149,98(2,11) 1.041 150,25(2,11) 1.040
R/h = 500, L/R = 2, k = 0.5
c = 100 MPa/s 181,68(2,11) 1.032 181,67(2,11) 1.032
c = 50 MPa/s 179,38(2,11) 1.019 179,37(2,11) 1.019
c = 10 MPa/s 177,02(2,11) 1.006 177,97(1,8) 1.009
L/R = 2, k = 0.2, c = 100 MPa/s
R/h = 800 124,67(2,12) 1.049 124,91(2,12) 1.051
R/h = 600 162,18(3,14) 1.026 162,25(3,14) 1.027
R/h = 400 239,56(5,15) 1.013 239,18(5,15) 1.011

Table 2. Comparison of static critical buckling load per unit length r̄scr = rscrh
(×106 N/m) of perfect stiffened homogeneous cylindrical

shells under axial compression

Present Brush and Almroth [42] Difference (%)

50 rings, 50 stringers, L = 1 m, R = 0.5 m, E = 7 × 1010 N / m2, υ = 0.3,

dr = ds = 0.0025 m, hr = hs = 0.01 m.

Internal stiffeners

R/h = 100 3.0725(6,7) 3.0906(6,7) 0.59

R/h = 200 1.4147(6,7) 1.4328(6,7) 1.28

R/h = 500 0.6924(5,6) 0.7057(5,6) 1.92

External stiffeners

R/h = 100 3,9529(9,3) 3.9551(9,2) 0.06

R/h = 200 2.1410(9,4) 2.1469(9,4) 0.28

R/h = 500 1.2764(6,6) 1.2897(6,6) 1.04
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In Figs. 2-4, the static post-buckling curves of un-stiffened and stiffened shells with
elastic foundation are traced by Eqs. (30) and (31) of perfect (ξ0 = 0) and imperfect
(ξ0 = 0.1) cases versus three different values of volume fraction index k (= 0.2, 1, 5). As
can be seen, the post-buckling curves are lower with increasing values of k. Furthermore,
the post-buckling curves of imperfect shells are lower than those of perfect shells when
deflection is small and post-buckling curves of imperfect shells is higher than that of perfect
shells when the deflection is large.

Fig. 2. Effect of k on the static postbuckling
of un-stiffened shells (K1 = 5 × 108 N/m3 and

K2 = 105 N/m)

Fig. 3. Effect of k on the static postbuckling
of external ring and stringer stiffened shells
(K1 = 5 × 108 N/m3 and K2 = 105 N/m)

By using the fourth order Runge-Kutta method, the Eq. (29) is solved to obtain
the dynamic responses of perfect (ξ0 = 0) shells under step loading of infinite duration.
Dynamic responses of external stiffened shell are presented in Fig. 5. As can be seen, there
is a sudden jump in the value of the average deflection when the axial compression reaches
the critical value r0 = 9, 356× 108 N/m2.

Fig. 4. Effect of k on the static postbuckling
of internal ring and stringer stiffened shells
(K1 = 5 × 108 N/m3 and K2 = 105 N/m)

Fig. 5. Dynamic response of external rings and
stringers stiffened shell under step loading of
infinite duration (K1 = 5 × 108 N/m3 and

K2 = 105 N/m)

Figs. 6-8 show the effect of k on the dynamic responses of perfect and imperfect
un-stiffened and stiffened shells under linear-time compression. These figures also show
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that there is no definite point of instability as in static analysis. Rather, there is a region
of instability where the slope of ξ vs t curve increases rapidly for perfect shell. According
to the Budiansky-Roth criterion, the critical time tcr can be taken as an intermediate value
of this region. This figures also shows that a sudden jump in the value of deflection occurs
earlier when k increases and it corresponds a smaller dynamic buckling load.

Fig. 6. Effect of k on the dynamic responses of
un-stiffened shells under linear-time
compression (K1 = 5 × 108 N/m3

and K2 = 105 N/m)

Fig. 7. Effect of k on the dynamic responses
of external ring and stringer stiffened shells

under linear-time compression (K1 = 5 × 108

N/m3 and K2 = 105 N/m)

Fig. 8. Effect of k on the dynamic responses of internal ring and stringer stiffened shells
under linear-time compression (K1 = 5 × 108 N/m3 and K2 = 105 N/m)

Tab. 3 shows the critical static and dynamic buckling stresses of stiffened and un-
stiffened cylindrical shells with elastic foundation (K1 = 5 × 108 N/m3 and K2 = 105

N/m) vs. four different values of volume fraction index k = (0.2, 1, 5, 10). With the same
input parameters, the effectiveness of stiffeners are obviously proven; the critical buckling
stress of stiffened shell is greater than one of un-stiffened shell. Tab. 3 also shows that the
dynamic critical stress decreases with the increase of the volume fraction index k and the
buckling modes (m, n) seem smaller for stiffened shells. The critical parameter τcr is larger
than 1, it denotes that the dynamic critical buckling stress of linear time compression case
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is larger than static buckling stress. The largest value of and τcr is equal to 1.072 for
the un-stiffened shell with k = 10 and the smallest τcr = 1.029 corresponds to external
rings and stringers stiffened shell with k = 0.2. The dynamic critical buckling compression
of step loading of infinite duration is approximately equal to the static critical buckling
compression (like a remark given by Bich et al. [38] for ES-FGM cylindrical shell without
foundation).

Table 3. Effect of k on critical static and dynamic buckling stress r0 (×108 N/m2)

k 0.2 1 5 10

Unstiffened

Static 8.968(15,1) 6.153(15,1) 4.175(15,1) 3.776(15,1)

Dynamic r0 = const 8.968(15,1) 6.154(15,1) 4.175(15,1) 3.776(15,1)

Dynamic r0 = ct 9.242(15,1) 6.494(15,1) 4.447(15,1) 4.049(15,1)

τcr 1.031 1.055 1.065 1.072

External Rings and Stringers

Static 11.916(12,6) 9.356(11,9) 7.138(11,3) 6.528(11,1)

Dynamic r0 = const 11.917(12,6) 9.357(11,9) 7.138(11,3) 6.528(11,1)

Dynamic r0 = ct 12.256(12,6) 9.709(11,9) 7.490(11,3) 6.908(11,1)

τcr 1.029 1.038 1.049 1.058

Internal Rings and Stringers

Static 16.696(7,11) 13.331(7,11) 10.414(7,10) 9.831(7,10)

Dynamic r0 = const 16.696(7,11) 13.332(7,11) 10.415(7,10) 9.831(7,10)

Dynamic r0 = ct 17.259(7,11) 13.830(7,11) 10.904(7,10) 10.323(7,10)

τcr 1.034 1.037 1.047 1.050

Tab. 4 shows effect of elastic foundation parameters on critical static and dynamic
buckling stress for stiffened and un-stiffened shells with and without foundation. Clearly,
the critical buckling load of stiffened shells is larger than one of un-stiffened shells and
critical buckling load of internal stiffened shells is the largest. In addition, the critical
static and dynamic loads of shells increase when the values of foundation parameters K1

and K2 increase. It seems that effect of foundation of stiffened shells is larger than one of
un-stiffened shells and it attains the largest value with internal stiffened shells.

Effects of the type and position of stiffeners on the nonlinear critical buckling stress
of ES-FGM without and with elastic foundation (K1 = 5×108 N/m3 and K2 = 105 N/m)
are given in Tab. 5. The obtained results show that the ring or stringer stiffeners lightly
influence to the critical buckling stress of shells. Conversely, the combination of ring and
stringer stiffeners has a considerable effect on the stability of shell. Especially, the critical
buckling stress of internal rings and stringers stiffened shell is greatest and the critical
buckling stress of internal rings stiffened shell is smallest. For ES-FGM cylindrical shell
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with elastic foundation, it seems that effect of stringer stiffeners is more considerable than
one of ring stiffeners.

Table 4. Effect of elastic foundation parameters on critical static and dynamic
buckling stress r0 (×108 N/m2)

K1 K2 Un-stiffened External stiffeners Internal stiffeners

(N/m3) (N/m) Static Dynamic Static Dynamic Static Dynamic

0 0 4.998(7,15) 5.310(7,15) 7.089(6,13) 7.636(6,13) 8.996(5,11) 9.632(5,11)

5.107

0 5.071(14,4) 5.368(14,4) 7.385(8,13) 7.850(8,13) 9.512(6,11) 10.096(6,11)

5.104 5.325(14,3) 5.624(14,3) 7.780(8,12) 8.235(8,12) 9.954(6,11) 10.510(6,11)

105 5.576(14,1) 5.860(14,1) 8.138(9,11) 8.553(9,11) 10.395(6,11) 10.953(6,11)

5.105 7.578(14,1) 7.860(14,1) 10.471(11,5) 10.835(11,5) 13.751(6,10) 14.308(6,10)

5.108

0 5.653(15,1) 5.928(15,1) 8.779(11,9) 9.152(11,9) 12.549(7,11) 13.112(7,11)

5.104 5.703(15,1) 6.175(15,1) 9.067(11,9) 9.424(11,9) 12.940(7,11) 13.383(7,11)

105 6.153(15,1) 6.494(15,1) 9.356(11,9) 9.709(11,9) 13.331(7,11) 13.830(7,11)

5.105 8.155(15,1) 8.431(15,1) 11.389(12,1) 11.756(12,1) 16.276(8,11) 16.726(8,11)

5.109

0 9.718(20,1) 9.941(20,1) 15.373(16,1) 15.639(16,1) 26.153(12,12) 26.498(12,12)

5.104 9.968(20,1) 10.201(20,1) 15.624(16,1) 15.893(16,1) 26.454(12,11) 26.798(12,11)

105 10.218(20,1) 10.4367(20,1) 15.874(16,1) 16.159(16,1) 26.752(12,11) 27.129(12,11)

5.105 12.219(20,1) 12.437(20,1) 17.876(16,1) 18.158(16,1) 29.135(12,11) 29.467(12,11)

Table 5. Effects of number, type and position of stiffeners on critical static and
dynamic buckling stress r0 (×108 N/m2)

Without elastic foundation With elastic foundation

Static Dynamic (r0 = ct) Static Dynamic (r0 = ct)

Unstiffened 4.998(7,15) 5.310(7,15) 6.153(15,1) 6.494(15,1)

ER 5.085(14,1) 5.379(14,1) 6.225(15,1) 6.545(15,1)

IR 5.053(13,10) 5.378(13,10) 6.370(15,8) 6.657(15,8)

ES 5.205(1,8) 7.028(1,8) 9.078(10,12) 9.466(10,12)

IS 5.099(2,10) 6.301(2,10) 11.941(7,15) 12.426(7,15)

IR and IS 8.996(5,11) 9.632(5,11) 13.331(7,11) 13.830(7,11)

ER and ES 7.089(6,13) 7.636(6,13) 9.356(11,9) 9.709(11,9)

IR and ES 7.072(9,11) 7.523(9,11) 9.156(11,10) 9.528(11,10)

ER and IS 7.077(3,11) 7.966(3,11) 12.797(7,13) 13.297(7,13)

where: ER-External rings, IR-Internal rings, ES-External stringers, IS-Internal stringers
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Figs. 9-11 show the effects of foundation parameters on the static postbuckling of
un-stiffened and stiffened shells. The results show that the postbuckling curves of shell
with foundation is upper than one of without foundation shells.

Figs. 12 and 13 show effects of foundation parameters K1 and K2 on the static
postbuckling of external stiffened shells. These examples show that for various values of
K2, increasing tendency of postbuckling curve is quite similar (Fig. 12). Conversely, the
unsimilar tendency is obtained for various values of K1. There is a small difference between
curves as ξ is small. In contrast, this difference becomes considerable when ξ ratio to be
larger.

Fig. 9. Effect of foundation on the static
postbuckling of un-stiffened FGM

cylindrical shell

Fig. 10. Effect of foundation on the static
postbuckling of internal stiffened FGM

cylindrical shell

Fig. 11. Effect of foundation on the static
postbuckling of external stiffened FGM

cylindrical shell

Fig. 12. Effect of foundation parameter K2 on
the static postbuckling of perfect external

stiffened FGM cylindrical shell

Figs. 14-16 show effect of foundation on the dynamic response of external stiffened
shells. Clearly, the maximal amplitude of dynamic response of instability region of with-
out foundation shell is larger than one of with foundation shell and it decreases when
foundation parameters increase.

Finally, Figs. 17 and 18 show effect of foundation parameter K1 and K2 on the dy-
namic response of external stiffened shells. The obtained results show the small difference
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Fig. 13. Effect of foundation parameter K1 on
the static postbuckling of perfect external

stiffened FGM cylindrical shell

Fig. 14. Effect of foundation on the dynamic
response of un-stiffened FGM cylindrical shell

Fig. 15. Effect of foundation on the dynamic
response of internal stiffened FGM

cylindrical shell

Fig. 16. Effect of foundation on the dynamic
response of external stiffened FGM

cylindrical shell

Fig. 17. Effect of foundation parameter K2 on
the dynamic response of perfect external

stiffened FGM cylindrical shell

Fig. 18. Effect of foundation parameter K1 on
the dynamic response of perfect external

stiffened FGM cylindrical shell
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of maximal amplitude of dynamic response of instability region with various value of K2

(Fig. 17) and the considerable difference is obtained with various value of K1 (Fig. 18).

5. CONCLUSIONS

This paper presentes an analytical approach on the global buckling and postbuck-
ling behavior of eccentrically stiffened functionally graded circular cylindrical thin shells
reinforced by closely spaced stiffener system and surrounded by an elastic foundation
based upon the classical shell theory, smeared stiffeners technique with von Karman-
Donnell nonlinear terms and two-parameter elastic foundation Pasternak. By using the
Galerkin method the explicit expressions of static buckling compression, postbuckling load-
deflection curve and nonlinear dynamic equation of ES-FGM circular cylindrical shells are
obtained. The later is solved by using the Runge-Kutta method and the criteria for deter-
mining critical dynamic compressions are used.

Some conclusions can be obtained:
i). Foundation and stiffeners strongly enhance the static and dynamic stability and

load-carrying capacity of FGM cylindrical shells.
ii). Ring stiffeners lightly influence on the stability of shell. But effect of stringer

stiffeners is considerable, especially for shell with elastic foundation.
iii). For static postbuckling, the increasing tendency of postbuckling curve is quite

similar when K2 varies. Conversely, the unsimilar tendency is obtained for various values of
K1. For dynamic response, the small difference of maximal amplitude of dynamic response
of instability region with various value of K2 and the considerable difference is obtained
with various values of K1.
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