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RAYLEIGH’S QUOTIENT FOR MULTIPLE CRACKED

BEAM AND APPLICATION

Nguyen Tien Khiem, Tran Thanh Hai
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Abstract. Rayleigh’s quotient for Euler-Bernoulli multiple cracked beam with different
boundary conditions has been derived from the governed equation of free vibration. An
appropriate choosing of approximate shape function in terms of mode shape of uncracked
beam and specific functions satisfying conditions at cracks and boundaries leads to an
explicit expression of natural frequencies through crack parameters that can simplify not
only the analysis of natural frequencies of cracked beam but also the crack detection
problem. Numerical analysis of natural frequencies of the cracked beam by using the ob-
tained expression in comparison with the well known methods such as the characteristic
equation and finite element method shows their good agreement. The analytical expres-
sion of natural frequencies applied to the crack detection problem allows the result of
detection to be improved.
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1. INTRODUCTION

Recently, a significant effort of researchers as well as engineers has been devoted to
solve forward and inverse problems in vibration of cracked beam. The most important tool
for solving the problems is so-called the characteristic equation relating implicitly natural
frequencies with crack parameters. It has been shown in several studies, for instance [1, 2]
that for a beam with single crack of extent γ at position xc the characteristic equation has
the form

F0(ω) + γF1(ω, xc) = 0 (1)

where F0 and F1 are functions given by boundary conditions of the beam. If the crack
extent γ is small, from the equation an explicit expression of natural frequencies through
crack parameters can be derived as

∆ωk = ωk − ωk0 = γg(ωk0, xc) (2)

with ωk, ωk0 are frequencies of cracked and uncracked beam respectively. This is an ap-
proximation available only for small extent of single crack [3, 4]. J. Fernandez-Saez, L
Rubio and C. Navarro [5] have obtained a formulae for fundamental frequency of sim-
ply supported beam using Rayleigh’s method without assumption on smallness of crack
depth. Comparison of the obtained analytical result [5] with numerical one shows that
both the results are almost identical for the crack depth reached 75% beam thickness.
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The characteristic equation (1) has been developed for multiple cracked Bernoulli-Euler
beam in [6, 7] by using the transfer matrix method and obtained explicitly in an ana-
lytical form in [8]. The author of reference [9] has developed the finite element model
of multiple cracked beam and established the characteristic equation accordingly to the
FEM. The approximate equations similar to the equation (2) for multiple cracked beam
was also established in [2, 7] assuming that the mode shapes of cracked beam remain the
same as those of uncracked one. An important idea arisen from [5] is to obtain an explicit
expression of natural frequencies of higher modes with other boundary conditions and for
multiple cracked beam based on the choosing mode shapes of cracked beam. This idea
has been developed in [10] to obtain higher frequencies (but not in analytical form) for
no uniform beam using Galerkin’s method. This paper is devoted to derive an analytical
expression for any natural frequency of multiple cracked beam with arbitrary boundary
conditions using Rayleigh method. Theoretical section is devoted to establish general form
of Rayleigh’s quotient for multiple cracked beam, that is applied in subsequent section to
obtain analytical expressions of natural frequencies of the cracked beam through crack pa-
rameters for different cases of the classical boundary conditions. Numerical investigation
is presented in the last section for comparison in order to validate the theory.

2. THEORY

Consider an uniform with the material and geometrical constants: Young’s modulus
E, mass density ρ, length L, cross section area and moment of inertia F , I and with given
arbitrarily boundary conditions at the ends x = 0 and x = L.

It is well known that for such the beam, the eigenparameters consisting of nat-
ural frequencies and corresponding mode shapes

{

ω2
k, φk(x), k = 1, 2, ....

}

satisfying the
equation

φ
(IV )
k (x)− λ4

kφk(x) = 0, λ4
k =

ρFω2
k

EI
, k = 1, 2, ... (3)

Suppose, furthermore, that the beam has been cracked at the positions (e1, . . . , eN)
and the cracks are modeled as rotational springs of stiffness K1, . . . , KN respectively.
Dividing the beam into N segments (xj−1, xj), j = 1, ..., N , each of those contains a crack
(ej, Kj) so that xj−1 ≺ ej ≺ xj , j = 1, ..., N and x0 = 0, xN = L.

Considering equation (1) in j-th beam segment (xj−1, xj) and denoting the mode
shape for this segment by φkj(x), one will have

φ
(IV )
kj (x)− λ4

kφkj(x) = 0, x ∈ (xj−1, xj). (4)

Multiplying both sides of the equations by φkj(x), then taking integration along the
interval (xj−1, xj) yields

ω2
k = (EI/ρF )

N
∑

j=1

akj/

N
∑

j=1

bkj, k = 1, 2, 3, .... (5)
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where

akj =

xj
∫

xj−1

φ
(IV )
kj (x)φkj(x)dx, bkj =

xj
∫

xj−1

φ2
kj(x)dx. (6)

If functions φkj, φ
′

kj, φ
′′

kj, φ
′′′

kj are continuous in the interval (a, b), one has

b
∫

a

φ
(IV )
kj (x)φkj(x)dx =

b
∫

a

φ”2
kj(x)dx + Bkj(b)− Bkj(a) (7)

where

Bkj(x) = φ′′′

kj(x)φkj(x) − φ′′

kj(x)φ′

kj(x). (8)

Applying equations (7), (8) to two segments (xj−1, x̄j), (x̄j, xj) for arbitrary x̄j ∈

(xj−1, xj) leads the first integral in (6) to

akj =

xj
∫

xj−1

φ
′′2
kj (x)dx +

[

Bkj(x̄
−

j ) − Bkj(x̄
+
j )

]

+
[

Bkj(x
−

j ) − Bkj(x
+
j−1)

]

and, in consequence,

N
∑

j=1

akj =

N
∑

j=1

xj
∫

xj−1

φ
′′2
kj (x)dx +

N−1
∑

j=1

[Bkj(xj) − Bk,j+1(xj)]+

+
N

∑

j=1

[

Bkj(x̄
−

j ) − Bkj(x̄
+
j )

]

+ [BkN (xN) − Bk1(x0)] .

(9)

Because the beam is uniform (continuous) at the joints xj, j = 1, ..., N − 1, the
functions φkj(x) satisfy conditions

φk,j−1(x
−

j ) = φkj(x
+
j ); φ′

k,j−1(x
−

j ) = φ′

kj(x
+
j ); φ′′

k,j−1(x
−

j ) = φ′′

kj(x
+
j ); φ′′′

k,j−1(x
−

j ) = φ′′′

kj(x
+
j )

(10)
and following conditions at the crack position ej:

φkj(e
−

j ) = φkj(e
+
j ) = φkj(ej); EIφ′′′

kj(e
−

j ) = EIφ′′′

kj(e
+
j ) = EIφ′′′

kj(ej);

Kj

[

φ′

kj(e
+
j )− φ′

kj(e
−

j )
]

= EIφ′′

kj(e
+
j ) = EIφ′′

kj(e
−

j ) = EIφ′′

kj(ej).
(11)

It’s not difficult to verify that the conditions (8) lead to
N−1
∑

j=1
[Bkj(xj) − Bk,j+1(xj)] = 0

and due to conditions (11) one has

N
∑

j=1

[

B
(
kje

−

j ) − B
(
kje

+
j )

]

=

N
∑

j=1

[

γjφ”2
kj(ej)

]

, γj = EI/Kj.
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Therefore, the equation (9) can be rewritten as

N
∑

j=1

akj =

N
∑

j=1







xj
∫

xj−1

φ
′′2
kj (x)dx + γjφ

′′2
kj (xj)






+ [BkN (L)− Bk1(0)] ,

and the equation (5) gets the form

ω2
k =

EI

ρF

N
∑

j=1

[

xj
∫

xj−1

φ
′′2
kj (x)dx + γjφ

′′2
kj (xj)

]

+ [BkN (L)− Bk1(0)]

N
∑

j=1

[

xj
∫

xj−1

φ2
kj(x)dx

] . (12)

This is Rayleigh’s quotient generalized for multiple cracked uniform beam with arbitrary
boundary conditions, some particular cases of which have been given in [10]. The equations
(12), in fact, represent a relationship between unknown natural frequencies and corre-
sponding mode shapes that allows to calculate natural frequencies by given mode shapes.
However, as it is well known, finding an exact mode shape is strictly related to finding the
natural frequency. An exact expression of the mode shape for multiple cracked beam has
been obtained in [7], but it contains unknown natural frequency so that substituting the
exact mode shape into equation (12) leads the latter into an identity. The major idea of the
well known Rayleigh’s method is to choose a trial shape function satisfying only boundary
conditions instead of the unknown mode shape for calculating natural frequencies. Al-
though such calculated natural frequencies are approximate, it may be closely approached
to exact frequencies by a proper choosing the trial shape function. Furthermore, in the
case of cracked beam, the calculated from Rayleigh’s quotient natural frequencies give an
explicit expression of crack parameters that is useful not only for analysis of natural fre-
quencies but also to detect crack positions and depth. Below, a combination of mode shape
for uncracked beam with specially chosen functions satisfying both the conditions (11) at
cracks and arbitrary boundary conditions is developed to obtain an analytical expression
of any natural frequencies through crack parameters.

Based on most importance for cracked beam that only its slope is discontinuous at
the crack position, the mode shape functions are assumed to be chosen in the form

φkj(x) = φk0(x) + φc
kj(x), (13)

where φk0(x) are mode shapes of uncracked beam, continuous together with its derivatives
φ′

kj0(x), φ′′

kj0(x), φ′′′

kj0(x) in whole the beam (0, L) and linear functions

φc
kj(x) = Ckjx + Djk +

{

0, xj−1 ≤ x ≺ ej

γjφ
′′

k0(xj)S(x− ej), ej ≺ x ≤ xj
(14)

with constants Ckj , Dkj and function S(x) = [sinh λx + sinλx] /2λ, satisfying conditions:
S(0) = S ′′(0) = S ′′′(0) = 0, S ′(0) = 1. Substituting equations (13), (14) into equations
(10), (11) yields

Ck,j+1xj + Dk,j+1 = Ckjxj + Dkj + γjφ
′′

k0(xj)S(xj − ej),
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Ck,j+1 = Ckj + γjφ
′′

kj(ej)S
′(xj − ej), j = 1, 2, ..., N,

that in consequence lead to the expressions

Ckj = Ck1 +
j−1
∑

i=1
γiφ

′′

k0(ei)S
′(xi − ei), Dkj = Dk1 +

j−1
∑

i=1
γiφ

′′

k0(ei)S̄(xi − ei),

S̄(xi − ei) = [S(xi − ei)− xiS
′(xi − ei)] , ∀j = 1, ..., N.

(15)

with two arbitrary constants Ck1, Dk1 which would be determined from boundary condi-
tions.

To calculate frequencies by equation (12) with the chosen mode shapes (13)-(15),
at first, let’s consider the last term in numerator of equation (12) that can be expressed
as

[BkN (xN )− Bk1(x0)] = [BkN (L) − Bk1(0)] = B0
k + Bc

k −

N
∑

j=1

γjβkjφ”2
k0(ej), (16)

where

B0
k = φ′′′

k0(L)φk0(L) − φ′′

k0(L)φ′

k0(L)− φ′′′

k0(0)φk0(0) + φ′′

k0(0)φ′

k0(0), (17)

Bc
k =

[

φ′′′

k0(L)L − φ′′

k0(L) + φ′′

k0(0)
]

Ck0 +
[

φ′′′

k0(L) − φ′′′

k0(0)
]

Dk0, (18)

βkj =
[

φ′′′

k0(L)(ej − L) + φ′′

k0(L)
]

/φ′′

k0(ej). (19)

The equations (17) show that B0
k is derived from given boundary conditions at the

beam ends separately for uncracked beam, the determined by equations (18), (19) term Bc
k

and non-dimensional coefficient βkj express a combined effect of boundary conditions and
cracks on natural frequencies. In some particular cases shown below the terms B0

k , Bc
k,

βkj can be annulled by choosing the constants Ck0, Dk0 accordingly to given boundary
conditions of the beam. Thus, the complete numerator of of the equation (10) can be
written in general form

N
∑

j=1







xj
∫

xj−1

φ
′′2
kj (x)dx + γjφ

′′2
kj (xj)






=

L
∫

0

φ
′′2
k0(x)dx+

N
∑

j=1

γj(1− βkj)φ
′′2
kj (xj)+ B0

k + Bc
k. (20)

Now let’s go to calculate the denominator of equation (10) using the mode shapes
(14), (15). First, it can be expressed as

N
∑

j=1







xj
∫

xj−1

φ2
kj(x)dx






=

N
∑

j=1







xj
∫

xj−1

φ̂2
k0(x)dx + Ψkj






=

L
∫

0

φ̂2
k0(x)dx+Ψ1 + Ψ2,

where

Ψ1 =
2EI

ρFω2
k0



Bc
k +

N
∑

j=1

γj(1 − βkj)φ
′′2
k0(ej)



 , (21)

Ψ2 = Ac
k +

N
∑

j=1

γ2
j fkjφ

′′2
k0(ej) +

N
∑

j=2

j−1
∑

i=1

γjγihjiφ
′′

k0(ei)φ
′′

k0(ej) (22)



6 Nguyen Tien Khiem, Tran Thanh Hai

with Bc
k, βkj given by (18), (19) and

Ac
k = C2

k0L
3/3 + Ck0Dk0L

2 + D2
k0L, (23)

hji = (L− ej)
[

(L − ei)
2 + (L− ei)(L − ej) − (ej − ei)

2
]

/3, (24)

fkj =
(L− ej)

3

3

[

1 +
(2L − ej)Ck0 + 3Dk0

(L− ej)γjφ
′′

k0(ej)

]

. (25)

Finally, generalized Rayleigh’s quotient (10) for multiple cracked beam with mode
shapes chosen in the form (14), (15) can be written in the form

ω2
k =

EI

ρF

L
∫

0

φ
′′2
k0(x)dx +

N
∑

j=1

[

γj(1− βkj)φ
′′2
k0(ej)

]

+ B0
k + Bc

k

L
∫

0

φ2
k0(x)dx + Ψ1

[

γjφ
2
k0(ej)

]

+ Ψ2

[

γjφ
′′2
k0(ej)

]

, (26)

that is an analytical expression of natural frequency of cracked beam through crack pa-
rameters for arbitrary boundary conditions and mode shape of uncracked beam. Note that
Ψ1, Ψ2 are linear and bilinear forms of crack extent vector (γ1, ..., γN) with coefficients
being functions of crack positions (e1, ..., eN). For uncracked beam, equation (26) leads to
the well known Rayleigh’s quotient

ω2
k0 =

EI

ρF





L
∫

0

φ
′′2
k0(x)dx + B0

k



 /

L
∫

0

φ2
k0(x)dx. (27)

At the end of this theoretical section, it has to emphasize that all equations ob-
tained above are free from any assumption on the boundary conditions at the beam ends.
Therefore, it provides a tool for investigation of either cracked or intact beam with differ-
ent cases of boundary supports. In the next section, some cases of the classical boundary
conditions are considered in more details.

3. APPLICATION

Before application of the developed theory to some particular cases, let’s consider the
classical boundary conditions applied for mode shape chosen in the form of (15) rewritten
as

φk(x) = φk0(x) + φ̂k(x)

with

φ̂k(x) = φ̂kj(x), for x ∈ [xj−1, xj], j = 1, ..., N ;

φ̂kj(x) = Ckjx + Dkj +

{

γj(ej − x)φ′′

k0(ej) for x ∈ [xj−1, ej);

0 for x ∈ (ej, xj],

that result in φ′′

k(x) = φ′′

k0(x); φ′′′

k (x) = φ′′′

k0(x), ∀x ∈ [0, L] and

φk(0) = φk0(0) + Dk0; φ
′

k(0) = φk0(0) + Ck0; φ
′

k(L) = φ′

k0(L) + Ck0 +

N
∑

j=1

γjφ
′′

k0(ej);
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φk(L) = φk0(L) + Ck0L + Dk0 +
N

∑

j=1

γj(L − ej)φ
′′

k0(ej).

The following classical boundary conditions for a beam are well known:
- Simple supports: φk(0) = φ′′

k(0) = φk(L) = φ′′

k(L) = 0;
- Cantilever: φk(0) = φ′

k(0) = φ′′′

k (L) = φ′′

k(L) = 0;
- Free ends: φ′′′

k (0) = φ′′

k(0) = φ′′′

k (L) = φ′′

k(L) = 0;
- Clamped ends: φk(0) = φ′

k(0) = φk(L) = φ′

k(L) = 0.
If the mode shape of uncracked beam φk0(x) satisfying the given above classical

boundary conditions has been used, one has two constants Ck0, Dk0 to be chosen from the
conditions

- Simple supports:

φk(0) = Dk0 = 0, φk(L) = Ck0L + Dk0 +

N
∑

j=1

γj(L − ej)φ
′′

k0(ej) = 0

- Cantilever:

φk(0) = Dk0 = 0, φ′

k(0) = Ck0 = 0

- Free ends:

φ′′′

k (0) = φ′′′

k0(0) = 0; φ′′

k(0) = φ′′

k0(0) = 0; φ′′′

k (L) = φ′′′

k0(L) = 0; φ′′

k(L) = φ′′

k0(L) = 0.

- Clamped ends:

φk(0) = Dk0 = 0, φk(L) = Ck0L + Dk0 +

N
∑

j=1

γj(L − ej)φ
′′

k0(ej) = 0;

φ′

k(0) = Ck0 = 0; φ′

k(L) = Ck0 +

N
∑

j=1

γjφ
′′

k0(ej) = 0.

From the latter equations it can be seen that in the case of simple supports and
cantilever the constants Ck0, Dk0 will be chosen uniquely. For the free-free ends beam, the
constants Ck0, Dk0 may be chosen arbitrary. For clamped end beam, the choosing of two
constants is inadequate to satisfy four conditions φk(0) = φ′

k(0) = φk(L) = φ′

k(L) = 0.
Because of this uncertainty that requires a separated study, only the simply supported
and cantilevered beams are considered in this work.

3.1. Simply supported beam

For simple supports at the beam ends, the boundary conditions would be satisfied
if it is chosen φk0(x) = sin(kπx/L), k = 1, 2, ... and

Dk0 = 0, Ck0 =

N
∑

j=1

(
ej

L
− 1)γjφ

′′

ki0(ej),
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i.e.

Ckj =

N
∑

j=1

ej

L
γjφ

′′

ki0(ej) +

N
∑

i=j+1

γiφ
′′

k0(ei); Dkj = −

j
∑

i=1

eiγiφ
′′

k0(ei), j = 1, ..., N. (28)

Substituting (28) into (26) and taking account of (27) yield

ω2
k =

ω2
k0

[

1 + 2
N
∑

j=1
γ̄j sin2 kπēj

]

[

1 + 4
N
∑

j=1
γ̄j sin2 kπēj +

2(kπ)4

3

N
∑

i,j=1
qij γ̄i sinkπēi · γ̄j sinkπēj

] , (29)

where ωk0 = (kπ/L)2
√

EI/ρF and

γ̄j = γj/L; ēj = ej/L; qij = 0, i � j ;
qjj = ē2

j (1 − ēj)
2; qij = ēi(1 − ēj)

[

1 − e2
i − (1− ēj)

2
]

, i ≺ j.

If the crack extents are small, i.e. γj = εηj, in the first order with respect to the
small parameter ε, the equation (29) is simplified to

ω2
k = ω2

k0



1 − 2

N
∑

j=1

γ̄j sin2 kπēj



 . (30)

In a particularity, for a beam with single crack, equations (29), (30) become

ω2
k =

ω2
k0

[

1 + 2γ̄ sin2 kπē
]

1 + 4γ̄ sin2 kπx̄c + 2γ̄2 [(ē2(1 − ē)2)/3] (kπ)4 sin2 kπē
, (31)

ω̂2
k = ω2

k0

[

1 − 2γ̄ sin2 kπē
]

. (32)

Formulas similar to the equation (32) have been given in [2, 3, 4] and a particular
case of the equation (31) when k = 1, i. e. for the fundamental frequency, was obtained
by J. Fernandez-Saez, L Rubio and C. Navarro [5].

3.2. Cantilevered beam

For a cantilever beam, choosing Ck0 = Dk0 = 0, i. e.

Ckj =

j
∑

i=1

γiφ
′′

ki0(ei); Dkj = −

j
∑

i=1

eiγiφ
′′

ki0(ei), j = 1, ..., N. (33)

and mode shape

φk0(x) = Ak [cosh(λk0x/L) − cos(λk0x/L)]− [sinh(λk0x/L) − sin(λk0x/L)] ;
ω2

k0 = λ4
k0EI/ρFL4; Ak = [sinh λk0 + sinλk0] / [cos λk0 + coshλk0] .

λ10 = 1.8751, λ20 = 4.6941, λ30 = 7.8747, λ40 = 10.9955, λ50 = 14.1372, . . .
(34)
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satisfying the boundary conditions φk(0) = φ′

k(0) = φ′′′

k (L) = φ′′

k(L) = 0, results in the
equations

ω2
k =

ω2
k0

[

1 +
N
∑

j=1
γ̄jΦ̄

2
k(ēj)

]

1 + 2
N
∑

j=1
γ̄jΦ̄

2
k(ēj) + (λ4

k0/3)

[

N
∑

i,j=1
qjiγ̄j γ̄iΦ̄k(ēj)Φ̄k(ēi)

] (35)

with the notations ωk0 = λ2
k0

√

EI/ρF and

Φ̄k(x) = [cosh(λk0x) + cos(λk0x)]− A−1
k [sinh(λk0x) + sin(λk0x)] ; (36)

γ̄j = γj/L, ēj = ej/L; qij = 0, i � j,

qjj = (1− ēj)
3, qij = (1− ēj)

[

(1 − ēi)
2 + (1− ēi)(1− ēj) − (ēj − ēi)

2
]

, i ≺ j.
(37)

The first order approximation with respect to small crack depth of the equation (35)
is

ω2
k = ω2

k0



1 −

N
∑

j=1

γ̄jΦ̄
2
k(ej)



 . (38)

For a cantilever beam with a single crack, equations (35) and (37) are reduced to

ω̄k =
ωk

ωk0
=

[

[

1 + γ̄Φ̄2
k(ē)

]

1 + 2γ̄
[

1 + λ4
k0γ̄(1− ē)3/6

]

Φ̄2
k(ē)

]1/2

(39)

and

ω̃k =
[

1 − γ̄Φ̄2
k(ē)

]1/2
. (40)

In the case of two cracks, corresponding equations are

ω̄k =

[

[

1 + γ̄1Φ̄
2
k(ē1) + γ̄2Φ̄

2
k(ē2)

]

1 + 2
[

γ̄1Φ̄2
k(ē1) + γ̄2Φ̄2

k(ē2)
]

+ Ψ(γ̄1, γ̄2, ē1, ē2)

]1/2

, (41)

where Ψ =
λ4

k0

3

[

γ̄2
1(1− ē1)

3Φ̄2
k(ē1) + γ̄2

2(1− ē2)
3Φ̄2

k(ē2) + γ̄1γ̄2g(ē1, ē2)Φ̄k(ē1)Φ̄k(ē2)
]

with

g(ē1, ē2) = (1 − ē2)
[

(1 − ē1)
2 + (1 − ē1)(1− ē2)− (ē2 − ē1)

2
]

and

ω̃k =
[

1 − γ̄1Φ̄
2
k(ē1) − γ̄2Φ̄

2
k(ē2)

]1/2
. (42)

Thus, an explicit expression of natural frequencies through crack positions and ex-
tents for multiple cracked beam has been obtained in a form convenient for frequency
analysis as well as multi-crack detection of beam. To validate applicability of the obtained
above analytical formulas to practice, numerical calculation will be carried out below and
results will be compared with those obtained by using the characteristic equation and
experimental ones.
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4. NUMERICAL INVESTIGATION AND COMPARISON

Numerical investigation carried out in this section for illustration and validating the
theory is devoted to a cantilevered beam with a single and double cracks. In all the cases,
the crack extent is calculated as function of crack depth a by the formulae

γ̄ =
EI

LK
= (5.346h/L)I(δ), (43)

with δ = a/h ( h is beam thickness) and

I(δ) = 1.8624δ2 − 3.95δ3 + 16.375δ4 − 37.226δ5 + 76.81δ6−

−126.9δ7 + 172δ8 − 143.97δ9 + 66.56δ10.

Beam with single crack

The first frequency ratio calculated by using equation (39) and those obtained from
the characteristic equation [6, 7, 8] as functions of crack position with different relative
crack depth δ = 0.1-0.6 (i. e. crack depth of 10-60% beam thickness) are shown in Fig. 1.
Graphics in the figure show that the equation (39) is almost equivalent to the characteristic
equation in calculating the fundamental frequency of cracked beam. For higher frequencies
the equation (40) gives better results than the equation (39) in comparison with solution
of the characteristic equation.

Fig. 1. Comparison of first frequency ratio computed by equation (39) with that
obtained from the characteristic Equation for crack depth ratios from 0.1 to 0.6

Fig. 2 shows the second frequency ratio computed from equation (40) and charac-
teristic equation for relative crack depth running from 0.1 to 0.4. It can be seen from the
figure that difference between frequencies calculated from equation (40) and characteristic
equation has been visible only when crack depth reaches 40% beam thickness.

Beam with double cracks

First, three natural frequencies ratios (cracked to uncracked) computed from equa-
tions (41) and (42) are compared with the experimental results obtained in [12] for a
cantilever with two cracks ē1 = 0.3175, γ1 = 0.2, ē2 = 0.6812, γ2 = 0.3and shown in Table
1. From the table it can be seen that equation (41) results in frequencies really more close
to the experimental ones than the equation (42) and error of both the equations for all
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Fig. 2. Comparison of second frequency ratio computed by Eq. (40) with solution
of Characteristics Eq. for crack depth ratios from 0.1 to 0.4

three frequencies does not exceed 1%. This fact confirms validity of the formulas derived
above.

Table 1. Comparison of three frequencies ratios with experimental results [11]

Frequencies Eq. (42) Eq. (41) Exp. [12] Err. of (41)(%) Err. of (42)(%)
First 0.993866 0.993938 0.994581 0.064637 0.07188

Second 0.98574 0.982846 0.981361 -0.15133 -0.44621
Third 0.971835 0.9696 0.964265 -0.5533 -0.78511

After comparing frequencies computed by FEM with the experimental results ob-
tained by the authors of J. Lee [11] has suggested in [12] a correction of the formulae
(43) to get numerical results more close to the measured one. Of course, crack model has
a considerable effect on numerical analysis of cracked structures, but disagreement be-
tween predicted and measured data can arose also from the inaccurate model parameters
such as material constants (E, ρ, ν) or geometrical one (A, I, b, h) and from the non-ideal
boundary conditions in experiments. Therefore, only crack model correction is insufficient
to agree prediction with experiments. In this study, numerical results are in good agree-
ments with experiments with no crack model correction because they have been obtained
in non-dimensional form that are free from inaccuracy of the model parameters.

5. CONCLUSION

The main result of this study is the Rayleigh’s quotient developed for multiple
cracked beam in an analytical expression relating directly the frequencies to crack param-
eters, which can be used to calculate natural frequencies of all modes with different cases
of boundary conditions. The improvement has been made based on the special choosing
the mode shape of cracked beam consisting of mode shape of uncracked beam and linear
functions satisfying the continuity conditions at cracks. In the case of multiple cracked
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beam with simple supports, general formulae has been derived for calculating natural fre-
quencies that contains as a particularity the formulae obtained by J. Fernandez-Saez, L
Rubio and C. Navarro [5] for fundamental frequency. Asymptotic approximations of the
obtained herein formulas are similar to those given by former authors as R.Y. Liang and
his coworkers [2], A. Morassi [3] and Y. Narkis [4]. The corresponding formulas have been
obtained also for a cantilever beam and are applied to numerical investigation of natural
frequencies in comparison with solutions of the characteristic equation given in [6, 7, 8].
Further study should be carried out in developing formulas for a nonuniform beam with
different boundary conditions and using the direct relationship between frequencies and
crack parameters to multi-crack detection for beam.
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