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Abstract. In the present investigation, free vibration analysis of functionally graded
material (FGM) plate is performed incorporating higher order shear deformation the-
ory in conjunction with Cy based finite element formulation. The cubic component of
thickness term is incorporated in in-plane fields and constant variation of thickness is
assumed for transverse component. The theory incorporates the realistic parabolic vari-
ation of transverse shear stresses thus eliminates the use of shear correction factor. Alu-
minium/Zirconia plate is considered for the analysis and the effective properties are
assumed to have smooth and gradual variation in the thickness direction and remain
constant in in-plane direction. The spatial variation of properties pertaining to homoge-
neous and FGM plate is estimated by means of power law, which is described by the four
parameters. With respect to dynamic analysis, it is vital for an analyst to know whether
the top of the plate is ceramic or metal rich, and inversely bottom of the plate is ceramic
or metal rich. This phenomenon can be described by choosing the appropriate values of
the parameters appears in the power law. In the study, prominence has been given to
study the influence of power law parameters on frequency response of FGM plates so as
to accomplish different combination of FGM profiles. Thin and moderately thick FGM
plates are analyzed to generate the frequency values of the FGM plate. The imperative
conclusions presented regarding the choice of parameter in the power law could be useful
for designer to arrive for particular material profile of FGM plate.

Keywords: Functionally graded plate, four parameter law, higher order shear deformation
theory, free vibration analysis.

1. INTRODUCTION

In view to eliminate the various shortcomings like, delamination, huge stiffness jump
and stress discontinuity across the layer interface proffer by conventional composite mate-
rials, a new class of materials are in demand by the research community to arrive for opti-
mum and accurate design of structural elements. With regard to this, advanced composite
materials with inhomogenous anatomy are discovered by Japan scientists and introduced
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to the engineering society to serve under different operating conditions. Typically, FGMs
are manufactured by using powder metallurgy techniques, where the two distinct materials
are combined to extract their individual superior properties. For the purpose, metal and
ceramics are usually united to form FGM structures, which are decidedly applicable in
thermal environments e.g., nuclear structures, space shuttles and automotive industries.
Moreover, tailoring of FGM material is probable to suit the various practical demands, by
virtue of their smooth and gradual variation of properties in the preferred direction. Due
to the aforementioned benefits, their vibration response becomes crucial for the safe and
optimum design of structure under consideration.

A wide range of publications are recorded in the scientific literature for dynamic
analysis of FGM plate and shells concerning various numerical and analytical tools. This
is evident from the review article by Jha et al. [1] where the studies related to thermo-
elastic static and vibration are discussed briefly based on the various literature data exists
since 1998. They noticed that most of the theories developed so far for the analysis of
FGM structures considers the transverse shear deformation and the obtained 2D results
are usually validated with 3D elasticity solutions. In spite of large number of vibration
studies available for FGM plate and shells, only the studies related to the current topic
is discussed for the sake of brevity of the presentation. Yang and Shen [2] analyzed the
effect of thermal field on free and forced vibration analysis of functionally graded plates. In
the study Reddy’s higher order shear deformation plate theory is combined with Galerkin
technique. They observed that the vibration response of homogeneous plate do not show
any intermediate sense, and this tendency is particular when material properties are tem-
perature dependent. Further the authors [3] extended their work to examine the free
vibration and stability analysis of FGM cylindrical shell panels under thermo-mechanical
environment. Reddy’s higher order theory, Galerkin technique and Blotin’s method are
applied to study the response of the FGM shell panels. Qian et al. [4] presented the static
and dynamic analysis of functionally graded plates incorporating higher order shear and
normal deformable plate theory. Isvandzibaei and Moarrefzadeh [5] performed the free
vibration analysis of FGM shells and influence of different material and geometric param-
eters on frequency characteristics of shell are discussed in the investigation. Free vibration
characteristics of functionally graded cylindrical shell using Reddy’s higher order shear
deformation theory is performed by Setareh and Isvandzibaei [6]. Static and free vibration
analysis of functionally graded material plate considering variation of transverse displace-
ment field is investigated by Talha and Singh [7]. They used variational approach to derive
the fundamental equations and considered traction free boundary conditions on the top
and bottom faces of the plate to solve for the unknown polynomial terms. Abrate [§]
carried out the static, buckling and free vibration analysis of functionally graded plates
and pointed out that, the natural frequencies of functionally graded plates are always
proportional to those of homogeneous isotropic plates. Uymaz and Aydogdu [9] carried
out vibration analysis of FGM plate and they used Chebyshev polynomials to express dis-
placement fields along with Ritz method. Ebrahimi and Rastgo [10] investigated the free
vibration behavior of functionally graded circular plates integrated with two uniformly
distributed actuator layers made of piezoelectric material based on classical plate theory.
In course of time meshless based method attained popularity due to the absence of mesh
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technique. In this connection, global collocation method in conjunction with the first and
the third-order shear deformation plate theories are used to analyze free vibrations of
functionally graded plates by Ferreira et al. [11]. Other studies include vibration analysis
of FGM structure under linear, non linear, dynamic and electrical field [12-17]. All the
research works so far discussed employs either power law or exponential law to derive the
effective properties of ceramic and metal as well. In recent times, Tornabene and his asso-
ciates [18, 19] incorporated the power law type equation modeled with four parameters for
the calculation of material properties. In the research, the author established that different
material profiles (metal at top and ceramic at bottom, both top and bottom ceramic, top
and bottom are occupied by 50 percent ceramic and 50 percent metal and perhaps other
combination also) are possible, by means of appropriate selection of variables. Generalized
differential quadrature technique is employed to decompose the governing equations of
the plate. A vast number of examples are presented along with the different mode shapes
for various types of FGM structures. The kinematic relations are based on the first order
shear deformation theory which assumes the linear variation of transverse displacement
through the thickness.

It was noticed that some practical design requirements often demands combination
of FGM material profiles to meet certain design criteria. Such a demand can be fulfilled by
use of suitable general power law distribution reported in the literature that comprises of
four parameters to describe the material profile along the thickness direction. The studies
so far performed on this topic are based on first order shear deformation theory. For the
realistic analysis, it is important to incorporate the actual transverse stress profile in the
displacement field. Such an analysis will predict the accurate global response of the plate
under loading conditions, in exact sense. To fill this gap, an attempt has been exerted by
the authors to study the free vibration analysis of FGM plates using higher order shear
deformation theory. A four parameter power law reported in the literature is adopted
to estimate the volume fraction of ceramic and metal constituents. Further, the effect of
parameters exists in the power law distribution has been studied by performing different
numerical examples. Thin and moderately thick plates with different boundary conditions
are incorporated in the developed MATLAB (R2011b) code. Conclusions regarding choice
of various parameters exist in the power law, type of boundary conditions and thickness
ratio could serve as crucial date for researchers involved in FGM analysis. Section 2 elabo-
rates the assumed kinematics field incorporating transverse deformation mode along with
the constitutive relationship of FGM material. In Section 3, various numerical examples
performed are briefed and to finish, the important key points with respect to the free
vibration analysis of four parameter FGM plate are arranged in conclusion part.

2. MATHEMATICAL FORMULATION AND MATERIAL PROPERTIES

2.1. Four parameter power law and constitutive relationship

In general FGM are characterized by their gradual and continuous variation of
material properties along the chosen direction (usually thickness direction), hence it is
prime factor to capture the accurate particle size distribution in spatial direction. To
incorporate this phenomena many methods were addressed and subsequently employed
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in the literature by various researchers. Self consistent scheme [20], Mori-Tanaka scheme
[21], power law [22], exponential law [23] and sigmoid function [24] are few to cite. Each
method has is own superiorities to define the material distribution in a FGM plate. Most
of the researchers prefer the power law function to estimate the given material properties
[7, 11, 13]. In recent times, Tornabene and his associates [18, 19] established a simple
four-parameter power-law and it is given by

FGM-I(a,b,c,p): V. = <1 —a <0.5 + %) + b<0.5 + %>C>p (1a)
FGM-II(a, b, ¢, p) : Vi = <1 . <0.5 _ %) n b<0.5 _ %))p (1b)

It is to be noted that, unlike the conventional distribution, the present power law distribu-
tion is described by the three parameters a, b, c and power law variable p in the expression.
Such a representation would enable the designer to opt for different material profiles such
as ceramic at top and metal at bottom, similarly, metal at top and ceramic at bottom
and many others. The power law exponent p in the formula assumes the value between
zero and infinity to represent different cases of FGM plates. For instance, the value of
p =zero, represents homogenous case of ceramic plate, while in other hand the value of
p = infinity resembles the FGM plate occupied by metal segment. The user can vary the
range of power law exponent in between zero and infinity to get the plate with gradation
properties. Different material combinations of FGM distributions are probable by Egs.
(1a) and (1b), and the type of material distribution depends on choice of the parameters
a,b and c. However, the difference of frequency parameters obtained by FGM-I and FGM-
IT distributions are insignificant and shows deviation after third decimal point (refer the
work [18]). Hence in the present work, FGM-I distribution is incorporated to solve the free
vibration problem of Al/Zros plate. Several representations of volume fraction of ceramic
are exhibited in Fig. 1. Classical FGM can be achieved by means of choosing ¢ = 1 and
b = 0. Other profiles are obtained by suitably assuming the values of the three parameters
a,b and ¢ in the power law formula.
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Fig. 1. Different profiles of FGM for several ranges of power law parameters (a) a = 1,b
(classical profile) (b) a =b=1,c= 2.0 (symmetric profile) (c) a =1,b=0.5,c¢= 2.0

The constitutive relationship of functionally graded plate assuming plane stress
condition (0., = 0) may be written as,
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Ozx ’V Qi1 Q2 0 0 0 —| Exx
Tyy Q21 Q2 0 0 0 Eyy
Oyz = 0 0 Q33 0 0 Vyz (2)
Ogxz 0 0 0 Qa4 0 Yz
Oy 0 0 0 0 Q55 Yy
Qu =Q2 = %?2, Q2= Q21 = Z?—(j;, Q33 = Qua = Q55 = %

where stiffness co-efficient (Q;;) contains the terms Young’s modulus (£) and Poisson’s
ratio (), in which F alone is the function of depth since the properties are assumed as
temperature in-dependent.

Utilizing the available expression from Eqs. (1a) and (1b), one can arrive at the
material properties of the FGM plate in the following manner.

E(z) = By + (B, — By) (0-5 + %)p (3)
p(2) = py + (e = pb) (0-5 + %)p

The subscripts ‘b’ and ‘t’ represent the bottom and top portion of the FGM plate which
are usually represented by metal and ceramic, respectively. In the present study, Young’s
modulus (F) and density (p) and treated as position dependent and Poisson’s ratio (v)
is assumed to be constant of 0.3. Throughout the analysis, the functional relationship of
V. + V,, = 1.0 between the ceramic and metal has to be maintained.

2.2. Displacement function

A Reddy’s higher order theory [25] has been implemented in the present study
which accounts for the parabolic distribution of transverse shear stresses in the plate. In
the theory, the in-plane displacement fields (v and v) are expanded as cubic functions
of the thickness coordinate (z), while the transverse displacement (w) variable has been
assumed to be constant through the thickness. Any other choice of displacement field
would either not satisfy the stress-free boundary conditions or lead to a theory that would
involve more dependent unknowns than those in the first-order shear deformation theory
[25]. Since the theory assumes the accurate profile of the transverse stress components,
the use of shear correction factor could be avoided efficiently. According to Reddy’s higher
order shear deformation theory [25], the in-plane displacements (u and v) and transverse
displacement (w) are expressed in terms of corresponding displacements at the mid surface
(ug, vo and wp) by the following expression.

u(w,y, 2) = uo(a,y) + 20:(z, y) + 2°Eu(@,y) + 2° G2, y)
,U(:Ev yv Z) = ,UO(:Ev y) + zey(:Ev y) + szy(:E, y) + z3Cy($’ y) (4)
w($7y) = wO(:Evy)

where the parameters ug, vg and wq are the displacements of points which are in the mid-
surface (i.e., reference surface) of the plate and 6,, 6, are the bending rotations about the
y and x axes respectively. &, &y, (; and (, are higher order terms appears in Taylor’s series
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expansion and are solved by the condition of zero transverse shear stains (v,.(z,y, £h/2) =
Yyz(x,y, £h/2) = 0) at the top and bottom of the plate. After incorporating the necessary
boundary conditions the final displacement field turns into following form.

4 3
(e, g, 2) = gl y) + 20, — (e +a“’>

3h2 0
423 o) 5
v(z,y, z) = vo(z,y) + 20, — 322 (9 + OZ> 5)

’LU(:E, y) = ’LU(](ZE, y)
It is important to mention here that the above form of displacement components rep-
resented by Eqgs. (5) may invite the problem of C; formulation, due to the existence of
first order derivatives of transverse components appears in the in-plane field. To overcome
the difficulties associated with the C; formulation, in the present work, the derivatives of
transverse displacement in in-plane displacement fields are replaced by the separate field

variables, thus ensuring the Cjy formulation i.e., v, = (Hm + ?9_1;) and v, = <9y + %—’;’). In

practice, Cy elements are preferred rather than C; elements and for further details re-
garding the C1 and Cj formulation the reader can refer any standard text book of finite
element method [26]. A nine noded Lagrangian element modeled in the study is depicted
in Fig. 2. Hence the displacement vector corresponding to each node can be represented
as {X} = {u,v,w, 0,0y, 7z, 7y} Each node has seven nodal unknowns and thus a total of
sixty three unknowns are estimated at element level.

Fig. 2. Lagrangian isoparametric element

The derivations regarding strain-displacement relations and equilibrium equations
are briefly discussed by the authors elsewhere [27-29], and not discussed here for the sake
of space management.

The governing equation for free vibration analysis is given by,

([K] - w? [M]) {X} = {0} (6)
where [M], [K] and w are mass matrix, stiffness matrix and frequency parameter derived
at element level. The detailed expressions for mass [M] and stiffness matrix [K] are given
below.

/ / Cldzdy where [L] = / o (P17 [F] dz (7)
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where matrix [C] and [F] represent the shape functions and thickness co- ordinate terms,
respectively, and given in Appendix A.

K] = / / (B)” (D] [B] dedy (8)

where [B] is the strain-displacement matrix and [D] represent the rigidity matrix depends
on material constitutive properties in Eq. (2). The corresponding strain-displacement re-
lation is given in Appendix B.

The right hand side zero of the Eq. (6) represents the problem of free vibration
analysis. The mass and stiffness matrices formed at element level are assembled to get
stiffness matrix at global domain. This can be achieved by taking the contribution of all
the plate elements. The skyline storage scheme is used to store the elements in global
stiffness matrix. A standard eigen value algorithm is utilized to extract the mode shapes
of the FGM plate. The detailed steps involved in the algorithm are given in Appendix C.

3. NUMERICAL RESULTS AND DISCUSSION

A computer code is developed in MATLAB environment based on the above formu-
lation that accounts for the realistic parabolic variation of transverse stresses through the
thickness. For the purpose of generating results, Aluminium/Zirconia plate is considered
for all the numerical examples performed, unless otherwise specified. It is to be noted that,
the bottom of the plate is enriched with Aluminium, while the top of the plate is made of
Zirconia. The material properties of the FGM plate are: E = 168 GPa, p = 5700 kg/m? for
Zirconia (ceramic), and E = 70 GPa, p = 2707 kg/m? for Aluminium (metal). Since the
effect of Poisson’s ratio on deflection is insignificant [26], a constant value of 0.3 is assumed
for both the materials. A square plate (a = b = 1 m) is considered with different boundary
conditions (simply supported, clamped and simply supported-clamped) to tabulate the
results. To study the influence of parameters a, b, c and p that appears in Eq. (1a), thin
(h =0.01) and moderately thick (h = 0.1) plates are assumed in the numerical part. The
present formulation has been validated for number of analyses with respect to rectangular
and skew FGM plates and reported by authors in their earlier works [27-29]. In the present
study, the prominence has been exerted to study the influence of parameters a, b, c and p
on frequency of FGM plate. Such a topic could able the designer to choose the appropriate
value of power law parameters to solve for real time applications.

The values of first six natural frequencies for simply supported thin and moderately
thick FGM plate is furnished in Tabs. 1 and 2, respectively. Three types of power law
profiles are considered for each case for example, classic, symmetric and asymmetric. The
exact values of power law parameters (a,b and ¢) chosen for each case are furnished
in Fig. 1. The value of power law exponents ranges from p (0 < p < 20). The case of
p = 0, represents the homogenous case of ceramic plate. In both Tab. 1 and Tab. 2, it
is manifested that the elevation of power law exponent from homogeneous to FGM plate
increases the frequency of FGM plate. This trend is observed as common phenomenon in
all the three profiles (classical, symmetric and asymmetric). The reason attributed is that
the increase in metal content corresponds to low stiffness thus reducing the frequency as
the power law exponent rises. Further for all the three profiles considered, the value of
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p = 0, produces the same frequency, due to the isotropic property of plate. In Tab. 1,
the symmetric profile exhibits high frequency value followed by asymmetric and classical
profiles, when the power law exponent ranges from 0 to 1. Beyond the linear range (p >
1), the classical FGM plates produces higher frequency, thus ensuring the high stiffness
of the plate under consideration. The low values of frequencies are recorded for thin plate
compared to moderately thick plates as expected, considering different values of power
law exponent. The observations regarding the influence of chosen profile on frequency
extracted from Tab. 1 are analogous for Tab. 2 also. Since the symmetric profile of FGM
plate ensures the ceramic segment at top and bottom of the plate (refer Fig. 1(a)) having
high stiffness, shows better performance compared with other two cases of FGM profiles.

Table 1. Natural frequencies of four-parameter FGM plate for first six modes
(simply supported, h = 0.1)

p 0 0.2 0.4 1 5 10 20

324.1771 | 323.3509 | 322.4659 | 319.5509 | 287.9179 | 200.7168 | 64.20281
. 810.0952 | 808.0331 | 805.8241 | 798.5465 | 719.5333 | 501.6757 | 160.5009
Classic 1295.472 [ 1292.178 | 1288.65 | 1277.022 | 1150.724 | 802.4174 | 256.7668
1619.64 | 1615.526 | 1611.117 | 1596.589 | 1438.734 | 1003.339 | 321.1017
324.1771 | 324.9004 | 325.5331 | 326.7571 | 282.8979 | 138.2552 | 23.62688
_ ['810.0952 | 811.9001 | 813.4788 | 816.5307 | 706.9492 | 345.567 | 59.06632
Symmetric 954517577998 354 | 1300.875 | 1305.744 | 1130.537 | 552.74 | 94.49552
1619.64 | 1623.24 | 1626.388 | 1632.467 | 1413.444 | 691.1558 | 118.1739
324.1771 | 323.6979 | 323.145 | 321.0901 | 287.5848 | 187.9573 | 51.54532
~ | 810.0952 | 808.8992 | 807.5188 | 802.3878 | 718.6918 | 469.7836 | 128.8586
Asymmetric (950575 17593 561 | 1291.356 | 1283.157 | 1149.364 | 751.4057 | 206.1462
1619.64 | 1617.253 | 1614.498 | 1604.253 | 1437.022 | 939.5536 | 257.798

Table 2. Natural frequencies of four-parameter FGM plate for first six modes
(simply supported, h = 0.01)

p 0 0.2 0.4 1 5 10 20

3132.852 | 3125.462 | 3117.48 | 3090.867 | 2793.455 | 1963.022 | 635.5957
) 7481.315 | 7465.368 | 7447.947 | 7388.901 | 6703.212 | 4757.477 | 1565.769
Classic 10577.5 | 10575.27 | 10574.15 | 10577.09 | 10339.33 | 7397.019 | 2469.472
10577.5 | 10575.27 | 10574.15 | 10577.09 | 10755.76 | 9086.254 | 3059.584
3132.852 | 3139.264 | 3144.812 | 3155.066 | 2735.686 | 1354.249 | 234.2482
[ 7481.315 [ 7494.977 | 7506.619 | 7526.66 | 6537.607 | 3287.879 | 578.2702
Symmetric 58575 T70580.63 | 10584.62 | 10601.7 | 10049.83 | 5118.174 | 913.7849
10577.5 | 10580.63 | 10584.62 | 10601.7 | 10853.49 | 6290.415 | 1133.513
3132.852 | 3128.547 | 3123.524 | 3104.584 | 2788.14 | 1838.044 | 510.3354
| 7481.315 | 7471.966 | 7460.891 | 7418.333 | 6684.272 | 4453.685 | 1257.335
Asymmetric 6 5T 70576.15 | 10575.84 | 10580.93 | 10302.35 | 6922.942 | 1983.135
10577.5 | 10576.15 | 10575.84 | 10580.93 | 10773.04 | 8502.296 | 2457.191
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Table 3. Natural frequencies of four-parameter FGM plate for first six modes
(clamped, h = 0.1)

p 0 0.2 0.4 1 5 10 20

5351.332 | 5340.513 | 5328.595 | 5287.73 | 4800.356 | 3412.43 | 1129.664
) 10228.3 | 10210.51 | 10190.54 | 10120.19 | 9231.368 | 6643.842 | 2248.666
Classic 14361.95 | 14339.35 | 14313.63 | 14221.47 | 13013.22 | 9442.17 | 3246.746
16951.14 | 16926.57 | 16898.25 | 16795.22 | 15401.39 | 11234.82 | 3903.099
5351.332 | 5360.513 | 5368.242 | 5380.771 | 4667.175 | 2355.196 | 417.5748
- [ 102283 [ 10243.06 | 10255.12 | 10271.63 | 8927.615 | 4593.57 | 833.7104
Symmetric 367 957438041 | 14305.17 | 14412.54 | 12546.16 | 6535.852 | 1206.544
16951.14 | 16970.9 | 16986.37 | 17001.59 | 14812.36 | 7780.121 | 1452.583
5351.332 | 5344.962 | 5337.332 | 5307.609 | 4783.676 | 3192.332 | 907.0319
- | 102283 [ 10217.71 | 10204.7 | 10152.5 | 9188.311 | 6212.726 | 1805.685
Asymmetric T e 0571348 30 | 14331.45 | 14262.16 | 12943.47 | 8327.05 | 2607.327
16951.14 | 16936.28 | 16917.44 | 16839.1 | 15310.54 | 10499.89 | 3134.476

Table 4. Natural frequencies of four-parameter FGM plate for first six modes
(clamped, h = 0.01)

p 0 0.2 0.4 1 5 10 20
590.5254 | 589.0234 | 587.4141 | 582.1116 | 524.5195 | 365.718 | 117.0151
) 1203.612 | 1200.557 | 1197.284 | 1186.493 | 1069.19 | 745.6393 | 238.6523
Classic 1773.148 | 1768.657 | 1763.843 | 1747.97 | 1575.276 | 1098.792 | 351.7923
2157.098 | 2151.64 | 2145.789 | 2126.494 | 1916.483 | 1336.935 | 428.1054
590.5254 | 591.84 | 592.9895 | 595.2106 | 515.3173 | 251.9106 | 43.06357
- [1203.612 | 1206.285 | 1208.622 | 1213.131 | 1050.323 | 513.6197 | 87.83163
Symmetric | rsTae T 777,077 | 1780.51 | 1787.127 | 1547.327 | 756.0030 | 129.4750
2157.098 | 2161.872 | 2166.043 | 2174.078 | 1882.394 | 920.9689 | 157.5654
590.5254 | 589.6541 | 588.6485 | 584.9095 | 523.9001 | 342.465 | 93.94575
[ 12036127 1201.84 | 1199.794 | 1192.183 | 1067.903 | 698.2254 | 191.6026
Asymmetric [ Fers 1T 7770 543 | 1767.533 | 1756.334 | 1573.345 | 1028.915 | 282.4378
2157.098 | 2153.931 | 2150.273 | 2136.658 | 1914.115 | 1251.913 | 343.7065

The free vibration results of Aluminium/Zirconia thin and moderately thick plate
with clamped boundary is furnished in Tabs. 3 and 4, respectively. Because of the high
bending nature of the clamped boundary, the higher values of frequency are reported for
both the cases. The observations regarding the profile type on natural frequencies drawn
from Tabs. 1 and 2 holds true for Tabs. 3 and 4 also, except the frequency values are
higher for the later case. In Tabs. 5 and 6, the simply supported-clamped FGM plates are
considered to generate the frequency values. Intermediate values of frequency are recorded,
since two of the edges correspond to simply-supported boundary, thereby reducing the
total stiffness of the plate. Once again, symmetric profile is turned to be a better choice
compared with classical and asymmetric profiles, by virtue of high stiffness at top and
bottom of the plate. Further to show the influence of each parameter on frequency, three
examples are illustrated. In all the cases, one of the parameter is varied, whilst remaining



154 Gulshan Taj M. N. A., Anupam Chakrabarti, Mohammad Talha

two parameters are treated as constant. The value of power law exponent is varied from 0
to 100.

Table 5. Natural frequencies of four-parameter FGM plate for first six modes
(simply supported- clamped, h = 0.1)

p 0 0.2 0.4 1 5 10 20

4156.973 | 4147.89 | 4137.986 | 4104.511 | 3718.128 | 2628.357 | 860.5396
) 8792.393 | 8775.471 | 8756.735 | 8692.041 | 7908.192 | 5654.128 | 1887.878
Classic 12051.01 | 12048.47 | 12047.17 | 12050.42 | 11642.45 | 8391.26 | 2844.406
12893.85 | 12871.23 | 12845.91 | 12757.06 | 12251.44 | 10163.68 | 3476.406
4156.973 | 4164.77 | 4164.77 | 4183.034 | 3627.797 | 1813.751 | 317.6164
- [8792.393 8806.671 | 8806.671 | 8837.217 | 7678.918 | 3908.736 | 698.6065
Symmetric 5557 57 [ 1205458 | 12054.58 | 12078.47 | 11268.46 | 5807.666 | 1054.814
12893.85 | 12912.67 | 12912.67 | 12949.89 | 12360.48 | 7037.288 | 1290.834
4156.973 | 4151.655 | 4145.37 | 4121.291 | 3708.067 | 2459.947 | 690.9498
| 8847.72 | 8837.613 | 8825.438 | 8777.686 | 7926.335 | 5319.885 | 1523.394
Asymmetric 55 G7 [ 72049.47 | 12049.1 | 12054.70 | 11589.07 | 7848.985 | 2284.263
12893.85 | 12880.4 | 12863.95 | 12798.19 | 12270.74 | 9504.534 | 2791.885

Table 6. Natural frequencies of four-parameter FGM plate for first six modes
(simply supported-clamped, h = 0.01)

p 0 0.2 0.4 1 5 10 20
444.1443 | 443.0135 | 441.802 | 437.8109 | 394.4827 | 275.0275 | 87.98444
) 993.2975 | 990.7727 | 988.0675 | 979.1529 | 882.3082 | 615.2365 | 196.8725
Classic 1522.186 | 1518.323 | 1514.183 | 1500.538 | 1352.21 | 943.0533 | 301.8472
1878.978 | 1874.214 | 1869.109 | 1852.276 | 1669.238 | 1164.262 | 372.7016
4441443 | 445.1342 | 446.000 | 447.6739 | 387.5844 | 189.4415 | 32.37916
~ [993.2975 [ 995.5071 | 997.4393 | 1001.171 | 866.8104 | 423.7926 | 72.45336
Symmetric 5507861595 566 | 1528.52 | 1534.222 | 1328.358 | 649.6201 | 111.0807
1878.978 | 1883.147 | 1886.79 | 1893.817 | 1639.73 | 802.0132 | 137.1686
444.1443 | 443.4884 | 442.7314 | 439.9176 | 394.0218 | 257.5425 | 70.63843
~ [7993:2975 | 991.833 | 990.1423 | 983.856 | 881.2617 | 576.1202 | 158.0596
Asymmetric 555785 T7510.045 | 1517.357 | 1507.733 | 1350.583 | 883.0014 | 242.3302
1878.978 | 1876.215 | 1873.023 | 1861.15 | 1667.216 | 1090.233 | 299.2252

Fig. 3 depicts the free vibration results of FGM plate in which the parameters b and
c are kept constant and the parameter a is varied from 0 to 1.2. In all the cases, a ceramic
line is established which contributes high stiffness to the plate. A fast descending behavior
of frequency is discerned as the plate turned from isotropic to FGM case. Because the
increase in value of power law exponent tends to reduce the stiffness of the plate further
for all cases. In some cases, the natural frequency of FGM plate exceeds the limit case of
ceramic plate. For particular, in frequency mode 5 and 6, lower value of the parameter
a (0.2 to 22 0.8) exceeds the maximum frequency of the plate. This is due to the choice
of parameter b and ¢ to decide the frequency value. In particular, the types of vibration
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Fig. 5. First six natural frequencies of FGM plate (1 < ¢ < 11)

mode that ensures this type of monotone decrease of frequency are torsional, bending and
axisymmetric mode shapes. In Fig. 4, the parameter b is varied from 0 to 1.2 while other
two parameters are kept constant. A convex type of descending behavior is discerned in all
the type of frequency modes. For homogeneous case of plate, all the cases merge at same
frequency value. Beyond certain value of power law exponent (say p = 25), the frequency
of plate considering different values of the parameter b establishes stable path. Hence it
can be inferred that change in value of the parameter b has no significant effect beyond
certain value of p. The first six mode shapes of FGM plate for several ranges of the power
law parameter c is exhibited in Fig. 5. The value of ¢ = 1, establishes the ceramic line
corresponds to high stiffness of the plate. For further value of ¢ (¢ = 3,7,9 and 11), a
steep tendency of frequency value is noticed. Exceeding the power law exponent beyond
40, shows stable point for all the cases of ¢ considered, except for the case ¢ = 1. Further
in mode 5, the value of the parameter ¢ corresponds to 3, exceeds the limit case of ceramic
plate due to the choice of the other parameters ¢ and b. This behavior depends on the
type of vibration mode and value of the parameter c.

4. CONCLUSIONS

An efficient Cjy based finite element formulation is presented for free vibration re-
sponse of four-parameter functionally graded plates in conjunction with higher order shear
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deformation theory. Four parameter based power law function is utilized in order to esti-
mate the volume fraction of ceramic and metal components. The four parameters exists
in the power law expression describes the various material profile of functionally graded
plate along the thickness direction. To perform the numerical examples various combina-
tion of parameters are considered. Natural frequencies of free vibration of FGM plate are
presented in the form of tables and figures.

Classical, symmetric and asymmetric profiles are generated by the suitable assump-
tion of value of power law parameters. It was noticed symmetric profiles exhibits maximum
frequency value for certain value of power law exponent (p > 1) and this tendency is irre-
spective of the plate thickness and boundary condition. Variation of single parameter in
a power function leads to fall-off in frequency parameter when the power law exponent
rises. Due to the choice of other two parameters in the power function, for certain types
of modes, the plate with gradation properties records frequency greater than homogenous
ceramic plate. For a designer it is vital to acquire the knowledge about the material dis-
tribution of plate (either ceramic or metal) at the top and bottom to meet the practical
demands. Henceforth, the free vibration of FGM plate based on four-parameter power law
could serve as key topic from dynamic point of view.
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APPENDIX A

C(1,1) = Ny; C(1,8) = Ny; C(1,15) = Na; C(1,22) = Ny C(1,29) = N33 C(1, 36) =
Ng; C(1,43) = N7; C(1,50) = Ng; C(1,57) = Ng and all other terms of the row one will be
zero. Similarly, all other row values are obtained according to each degree of freedom. The
detailed expression for shape functions for the assumed Lagrangian element is presented
below.

Ni= (-1 -1)en No= 7 (€+1)(n—1)&n, Ny= 1 (€+ 1) (n+1) €,
Ni= (€104 1) Ns=—5 (1-&) (1 —mm No=—3 (1+6) (1 ~ 1) &, (A1)

M=—§@—nu+mmmz—§&4ﬂﬁ—n@%=@—éﬂrm%.

where £ and 7 represents the natural co-ordinate system of the element (Fig. 2).

10020 5 0
[Fl=]o0o 1002 0 & (A.2)
00100 0 0

APPENDIX B

By utilizing the displacement components given in Eqgs. (5) the mechanical strain
at a point can be represented as

Ou Quy | 00, 42°0a
or or | “9r 3hZ Oz
i ow , 0y 120,
? 5 oy ¥ Oy 3h§ Oy ,
U v Jug 00,  4z2° 0y, = O 00y 4z° Oy,
D R Y L L 9oy 0 22 Dy L (B
{em} Oy * ox Oy tz Oxr  3h? Ox * Oy : Oy  3h?% Oy (B-1)
Ou I ow Owy 422
3z ga oy Tl
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Mechanical strain in terms of total strain can be rewritten as {e,,} = [H]{e}

The strain matrix {¢} can be written in terms of nodal displacement vector {X } by
means of strain-displacement matrix [B]. The components of matrix [B] involve derivatives
of shape function terms and having the matrix order of 15 x 63.

APPENDIX C

The stiffness matrix [K] in Eq. (6) is positive definite and can be decomposed into
Cholesky factors as
(K] = [L][T]" (C.1)
where [L] is the lower triangular matrix. Using Eq. (6), Eq. (C.1) is rewritten for the free
vibration analysis as:

{[L] ML L X} = —[L]T{X} (C.2)

1
w?
The Eq. (C.2) represents standard eigen value problem and this has been solved to extract
the eigen values and the eigen vectors. The term 1/w? appear in Eq. (C.2) is the eigen
value. The eigen value corresponding to the lowest natural frequency is obtained using the
simultaneous iteration technique. The detailed methodology is explained as follows:

(i) Set a trial vector [U] and ortho-normalize.
(ii) Back substitute [L][X] = [U]

(iii) Multiply [Y] = [M][X]

(iv) Forward substitute [L]T[V] = [Y]

(v) Form [B] = [U]T[V]

(vi) Construct [T] so that t;; =1 and t;; =

Of (bm — bZJ)
(vii) Multiply [W] = [V][T] B
(viii) Perform Schmidt ortho-normalization to derive [U]
(
(

[bii — bij + s(bii — bij)?]

where s is the sign

ix) Check tolerance [U] — [U]
x) If not satisfactory, go to step (ii).
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