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Abstract. A new approach is proposed for calculating natural frequencies and crack
detection in a stepped cantilever beam with arbitrary number of cracks. This is based
an explicit expression of the natural frequencies in term of crack parameter derived in
the form similar to the so-called Rayleigh quotient for vibrating beam. The obtained
simple relationship between natural frequencies and crack parameters enables not only
accurate calculating the natural frequencies but also to develop an efficient procedure for
detecting multiple cracks from given natural frequencies. The proposed technique called
crack scanning method is illustrated and validated by numerical results.

Keywords : Multi stepped beam, Rayleigh quotient, multi-crack detection, frequency
based method, modal analysis.

1. INTRODUCTION

Early detecting damage in engineering structures such as cracks is vitally important
to prevent catastrophe that may lead to loss of either material or human lives. The task
helps also to extend the structure lifetime by prompt maintenance and repair. A lot of
methods have been proposed to detect cracks in structures and most of them are based on
the crack-induced change in the dynamic characteristics of structure under consideration.
This is because of the fact that crack in a structure member certainly modify the structure
dynamic properties that can be usually obtained as results of the dynamic testing. The
core of the vibration-based crack detection is the change in the structure modal parameters
as a function of crack parameters that is usually subject of the forward problem. Since
the natural frequencies are overall parameter of structure that can be most easily and
accurately measured or calculated, the change in natural frequencies due to cracks in
structures and its application to crack identification still nowadays are of interest.

Adams et al [1] first have shown that ratio of change in two natural frequencies
of a bar with single crack represented by a translation spring is dependent only on the
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crack position so that the ratio can be used for localization of single crack in bar. Later,
Liang et al [2] extended the result for beam with single crack represented by a rotational
spring. By using the perturbation method Morassi [3] demonstrated that the change in
eigenfrequency of a cracked beam is proportional to the curvature at the crack position
and this result has been then applied to crack identification in simply supported beam
from measured natural frequencies in Morassi and Rollo, [4] and Rubio, [5]. A compact
form of the characteristic equation, the most important relationship between natural fre-
quencies and crack parameters, has been obtained in Narkis, [6] for both the longitudinal
and bending vibration of simply supported beam. For small crack size the equation allows
obtaining analytical solution for crack position and this result has been later validated
by an experiment in Sayyad and Kumar, [7]. The characteristic equation for a rotating
cracked Timoshenko beam was then derived by Al-Said et al, [8], who have shown influence
of crack, rotating speed and shear deformation on the natural frequencies of the beam.
Ostachovicz and Krawczuk [9] accomplished an analysis of variation of natural frequencies
in cantilever beam with two cracks using derived characteristic equation. Bahera et al [10]
obtained fundamental frequency of a shaft with two cracks in viscous liquid. The natural
frequencies of beam with arbitrary number of cracks were investigated in dependence on
crack parameters by Shifrin and Ruotolo [11]; Li [12]; Zheng and Fan [13]; Khiem and
Lien [14]; Aydin [15] and Caddemi and Caliò [16]. However, in the foregoing works the
natural frequencies of multiple cracked beam are found from a complicated equation that
may contain singularities sometimes troubling numerical solving the equation. Though
the simplified characteristic equation obtained in Khiem and Lien, [14] has been used for
multi-crack detection in beam by Zhang et al [17], the implicit relationship between the
natural frequencies and crack parameters may cause serious problems for crack detection.
Therefore, a simple and explicit expression of natural frequencies in term of crack param-
eters for multiple cracked beam would be surely helpful for the crack detection problem.
Liang et al [18]; Patil and Maiti [19] and Li [20] have derived approximate systems of
linear algebraic equations relating the change in natural frequencies to damage magni-
tudes that provide an efficient tool for damage detection in beam. Fernandez-Saez et al
[21] obtained an explicit expression of fundamental frequency of beam with single crack
through crack position and size based on the classical Rayleigh formulae. Objective of this
paper is to develop an explicit expression of natural frequencies in term of crack position
and size for a multiple cracked beam and make use of the obtained expression for multi-
crack identification problem. First, a novel form of the Rayleigh quotient is derived for
multiple stepped beam with a number of cracks and arbitrary boundary conditions. Then,
the obtained Rayleigh quotient for multiple cracked uniform beam is applied to deter-
mine quantity, position and depth of multiple cracks from given natural frequencies. The
theoretical development is illustrated and validated by both numerical and experimental
results.

2. THE RAYLEIGH QUOTIENT

Consider a cantilever beam consisting of N spans with the material and geometrical
constants: Young’s modulus Ej, mass density ρj, length Lj, cross section area and moment
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of inertia Fj , Ij of j-th beam segment (xj−1, xj), j = 1, . . . , n; x0 = 0; xN = 1 = L1 + . . .+
Ln. Suppose furthermore that in the segment (xj−1, xj) there exist nj cracks of depth aji

at positions eji, i = 1, . . . , nj (xj−1 ≺ ej1 ≺ . . . ≺ ejnj
≺ xj).

It is well known that k-th mode shape in the beam segment (xj−1, xj) denoted by
φkj(x) satisfies the equation

−ω2
kmjφkj(x) + Sjd

4φkj(x)/dx4 = 0, x ∈ (xj−1, xj), (1)

with mj = ρjFj ; Sj = EjIj and ωk is k-th and the following conditions at cracks

φkj(e
−

ji) = φkj(e
+
ji); φ′′

kj(e
−

ji) = φ′′

kj(e
+
ji) = φ′′

kj(eji); φ′′′

kj(e
−

ji) = φ′′′

kj(e
+
ji);

[φ′

kj(e
+
ji)− φ′

kj(e
−

ji)] = γjiφ
′′

kj(eji); i = 1, . . . , nj

(2)

where γji = Ic(aji/hj), the function of depth of the crack at position eji, denotes the
crack magnitude and is determined accordingly to the Fracture Mechanics. Multiplying
both sides of Eqs. (1) by φkj(x) and taking integration along the interval (xj−1, xj), one
obtains

ω2
kmj

xj−1
∫

xj−1

φ2
kj(x)dx = Sj

xj−1
∫

xj−1

d4φkj(x)

dx4
φkj(x)dx; j = 1, . . . , N, k = 1, 2, . . . (3)

Note that for the functions φkj , φ
′

kj, φ
′′

kj, φ
′′′

kj continuous in the segment (a, b), it would be
easily to verify that

b
∫

a

d4φkj(x)

dx4
φkj(x)dx =

b
∫

a

φ′′

kj
2
(x)dx + [Bkj(b)− Bkj(a)] , (4)

where

Bkj(x) = φ′′′

kj(x)φkj(x) − φ′′

kj(x)φ′

kj(x). (5)

Therefore, one has

xj−1
∫

xj−1

d4φkj(x)

dx4
φkj(x)dx =

xj
∫

xj−1

φ′′

kj
2
(x)dx+[Bkj(xj)−Bkj(xj−1)]+

nj
∑

i=1

[Bkj(e
−

ji)− Bkj(e
+
ji)].

(6)
Taking account of the conditions (2) the latter equation can be rewritten as

xj−1
∫

xj−1

d4φkj(x)

dx4
φkj(x)dx =

xj
∫

xj−1

φ′′

kj
2
(x)dx + [Bkj(xj) − Bkj(xj−1)] +

nj
∑

i=1

γjiφ
′′

kj
2
(eji) (7)
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and, as consequence, one obtains

N
∑

j=1

Sj

xj−1
∫

xj−1

d4φkj(x)

dx4
φkj(x)dx =

N
∑

j=1

Sj











xj
∫

xj−1

φ′′

kj
2
(x)dx +

nj
∑

i=1

γjiφ
′′

kj
2
(eji)











+

+

N−1
∑

j=1

[SjBkj(xj) − Sj+1Bk,j+1(xj)] + [BkN (L)SN − Bk1(0)S1].

(8)

It can be easily verified that under the continuity conditions at step joints xj

φkj(xj) = φk,j+1(xj); φ′

kj(xj) = φ′

k,j+1(xj);

Sjφ
′′

kj(xj) = Sj+1φ
′′

k,j+1(xj); Sjφ
′′′

kj(xj) = Sj+1φ
′′′

k,j+1(xj),
(9)

the second sum in the right hand side of Eq. (8) would be vanished. So that one obtains

ω2
k =

N
∑

j=1
Sj

{

xj
∫

xj−1

φ′′

kj
2(x)dx +

nj
∑

i=1
γjiφ

′′

kj
2(eji)

}

+ [BkN (L)SN − Bk1(0)S1]

N
∑

j=1
mj

xj
∫

xj−1

φkj
2(x)dx

. (10)

This is Rayleigh’s quotient for multiple cracked and stepped beam with arbitrary boundary
conditions. Furthermore, for all the homogeneous classical boundary conditions (including
the simply supports, cantilever, fixed and free ends) the last term in numerator of quotient
(10) is vanish. In such the case one has

ω2
k =











N
∑

j=1

Sj







xj
∫

xj−1

φ′′

kj
2
(x)dx +

nj
∑

i=1

γjiφ
′′

kj
2
(eji)

















/











N
∑

j=1

mj







xj
∫

xj−1

φkj
2(x)dx

















. (11)

In particularity, if the beam is uniform the Eq. (14) becomes

ω2
k =

EI

ρF







L
∫

0

φ′′

k
2
(x)dx+

n
∑

j=1

γjφ
′′

k
2
(ej)







/







L
∫

0

φk
2(x)dx







, (12)

with n = n1 + . . . + nN . For multi-stepped undamaged beam the Rayleigh quotient is

ω2
k =











N
∑

j=1

Sj







xj
∫

xj−1

φ′′

kj
2
(x)dx

















/











N
∑

j=1

mj







xj
∫

xj−1

φkj
2(x)dx

















. (13)

As the classical Rayleigh quotient, the Eqs. (11)-(13) is simplest tool for calculating natural
frequencies by a properly chosen shape functions φkj(x). Moreover, the obtained Rayleigh
quotient can be engaged to develop a new procedure for multi-crack detection in stepped
beam by measurements of natural frequencies.
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3. CALCULATION OF NATURAL FREQUENCIES

The mode shape functions are chosen in the form

φkj(x) = ϕkj0(x) + Akjx
3 + Bkjx

2 + Ckjx + Dkj +

nj
∑

i=1

γjiφ
′′

kj(eji)K(x− eji), (14)

where ϕkj(x) is k-th mode shapes of undamaged beam in the segment (xj−1, xj), the
constants Akj, Bkj, Ckj , Dkj would be determined latter from boundary and step joint
conditions and

K(x) =

{

x, x ≥ 0;
0, x ≤ 0.

Obviously, substituting shape function (14) into first two conditions in (9) leads to

ϕk,j+1(xj) = ϕkj(xj), ϕ′

k,j+1(xj) = ϕ′

kj(xj) (15)

and

Ak,j+1 = Akj , Bk,j+1 = Bkj , Ck,j+1 = Ckj+

nj
∑

i=1

γjiφ
′′

kj(eji), Dk,j+1 = Dkj−

nj
∑

i=1

γjiφ
′′

kj(eji)eji

or

Akj = Ak, Bkj = Bk, Ckj = Ck +

j−1
∑

r=1

nr
∑

i=1

γriφ
′′

kr(eri), Dkj = Dk −

j−1
∑

r=1

nr
∑

i=1

γriφ
′′

kr(eri)eri.

(16)
The latter equations show that all the functions (14) would be completely determined
for j = 1, ..., N by choosing four constants Ak, Bk, Ck, Dk and functions φkj(x) which are
defined for different classical boundary conditions as follow.

Namely, the boundary conditions of both the cantilever, φk(0) = φ′

k(0) = φ′′

k(1) =
φ′′′

k (1) = 0 and beam with free ends, φ′′

k(0) = φ′′′

k (0) = φ′′

k(1) = φ′′′

k (1) = 0, would be
satisfied by choosing

Ak = Bk = Ck = Dk = 0, (17)

in combination respectively with

ϕk1(0) = ϕ′

k1(0) = ϕ′′

kN (1) = ϕ′′′

kN(1) = 0, (18)

and

ϕ′′

k1(0) = ϕ′′′

k1(0) = ϕ′′

kN (1) = ϕ′′′

kN(1) = 0. (19)

Also, for simply supported beam, to satisfy the conditions φk(0) = φ′′

k(0) = φk(1) =
φ′′

k(1) = 0, it is simply to choose

Ak = Bk = Dk = 0; Ck =

N
∑

j=1

nj
∑

i=1

γjiφ
′′

kj(eji)(eji − 1); (20)

ϕk1(0) = ϕ′′

k1(0) = ϕkN (1) = ϕ′′

kN(1) = 0. (21)
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Finally, the clamped ends conditions would be fulfilled if

Ck =Dk =0; Bk =
N

∑

j=1

nj
∑

i=1

γjiφ
′′

kj(eji)(3eji − 2); Ak = −
N

∑

j=1

nj
∑

i=1

γjiφ
′′

kj(eji)(2eji − 1); (22)

ϕk1(0) = ϕ′

k1(0) = ϕkN (1) = ϕ′

kN(1) = 0. (23)

Such chosen constants Ak, Bk, Ck, Dk lead the functions {ϕkj(x), j = 1, . . . , N} to be
chosen as mode shape of undamaged beam satisfying the given boundary conditions for
cracked beam under consideration. It can be seen that trivial values of the constants
Ak = Bk = 0 including three cases of boundary conditions for simply supports, cantilevered
and free-free ends lead to much simplified calculation. By the reason, only beam with the
listed above boundary conditions is investigated in this paper except the case of clamped
ends that requires a special study.

For the cases of boundary conditions, because of φ′′

kj(x) = ϕ′′

kj(x); φ′′′

kj(x) = ϕ′′

kj(x),

the two last conditions in (9) are equivalent to

Sjϕ
′′

kj(xj) = Sj+1ϕ
′′

k,j+1(xj); Sjϕ
′′′

kj(xj) = Sj+1ϕ
′′′

k,j+1(xj). (24)

Thus, the problem now remained to construct the mode shape of intact stepped beam
{ϕkj(x), j = 1, . . . , N} that is accomplished by using the transfer matrix method as follows.
It was well known that the mode shape of a multiple stepped beam in a uniform segment
(xj−1, xj), j = 1, . . . , N and boundary conditions at the beam ends can be expressed as

ϕj(x) = dj1 coshλjx + dj2 sinhλjx + dj3 cosλjx + dj4 sinλjx; (25)

x ∈ (xj−1, xj); λ
4
j = mjω

2/Sj; (26)

[B0] · {d11, d12, d13, d14}
T = 0; [B1] · {dN1, dN2, dN3, dN4}

T = 0, (27)

where B0, B1 are given (2 × 4)-dimensional matrices. The continuity conditions at step
joints xj can be represented as

[Tj] · {dj1, dj2, dj3, dj4}
T = [Tj+1] · {dj+1,1, dj+1,2, dj+1,3, dj+1,4}

T ,

or

{dj+1,1, dj+1,2, dj+1,3, dj+1,4}
T = [Tj+1]

−1 · [Tj] · {dj1, dj2, dj3, dj4}
T , (28)

where Tj = T(xj, Sj, λj) = Tj(xj), Tj+1 = T(xj , Sj+1, λj+1) = Tj+1(xj) and

T(x, S, λ) =









cosh λx sinhλx cosλx sinλx
λ sinhλx λ coshλx −λ sinλx λ cosλx

λ2S cosh λx λ2S sinh λx −λ2S cosλx −λ2S sin λx
λ3S sinh λx λ3S cosh λx λ3S sinλx −λ3S cosλx









.

Based the recurrent relationship (28) one obtains

{dj1, dj2, dj3, dj4}
T = [Hj] · {d11, d12, d13, d14}

T , (29)

where [Hj] = [Tj(xj−1)]
−1[Tj−1(xj−1)] . . . [T2(x1)]

−1[T1(x1)] and

{dN1, dN2, dN3, dN4}
T = [H] · {d11, d12, d13, d14}

T ; H = HN(x1, x2, . . . , xN−1). (30)



Multiple crack identification in stepped beam by measurements of natural frequencies 125

Combining (27) with (30) yields

[B] · {d11, d12, d13, d14}
T = 0, (31)

where

B =

[

B0

B1H

]

. (32)

The condition for existence of nontrivial solution of Eq. (31) is

det B(ω) = 0, (33)

that is the characteristic equation allowing finding the natural frequencies of multi-stepped
beam (ωk0, k = 1, 2, 3, . . .). Every natural frequency ωk0 is associated with a nontrivial
solution of Eq. (31) {d11, d12, d13, d14}

T = dk{a11, a12, a13, a14}
T that contains an arbitrary

constant dk. Hence, mode shape in segment (xj−1, xj), j = 2, 3, . . . can be found through
the vector

{dj1, dj2, dj3, dj4}
T = dk[Hj] · {a11, a12, a13, a14}

by using expression (25). Thus, the undamaged mode shape functions {φkj(x), j = 1, . . . , N}
are constructed.

Now we can calculate the natural frequencies of multiple cracked and stepped beam
by using Eq. (11) and shape function (14) reduced to

φkj(x) = ϕkj(x) + Ckjx + Dkj +

nj
∑

i=1

γjiϕ
′′

kj(eji)K(x− eji).

Note first that the numerator of quotient (11) in the cases is

RN =

N
∑

j=1

Sj







xj
∫

xj−1

ϕ′′

kj
2
(x)dx +

nj
∑

i=1

γjiϕ
′′

kj
2
(eji)







=

N
∑

j=1

Sj

xj
∫

xj−1

ϕ′′

kj
2
(x)dx +

N
∑

j=1

Sj

nj
∑

i=1

γjiϕ
′′

kj
2
(eji)

(34)

and the denominator can be calculated as follows.

RD =

N
∑

j=1

mj

xj
∫

xj−1

φ2
kj(x)dx

=

N
∑

j=1

mj







xj
∫

xj−1

ϕ2
kj(x)dx +

xj
∫

xj−1

2ϕkj(x)(Ckjx + Dkj)dx +

xj
∫

xj−1

(Ckjx + Dkj)
2dx






+

+

N
∑

j=1

mj











nj
∑

i=1






2γjiϕ

′′

kj(eji)

xj
∫

eji

[ϕkj(x) + Ckjx + Dkj](x − eji)dx

















+
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+

N
∑

j=1

mj











nj
∑

i,`=1






γjiγj`ϕ

′′

kj(eji)ϕ
′′

kj(ej`)

xj
∫

eji`

(x− eji)(x − ej`)dx

















=

N
∑

j=1

mj







xj
∫

xj−1

ϕ2
kj(x)dx






+ 2Ψ1 + ω−2

k0 Ψ2,

(35)

where eji` = eji for i ≥ ` or ej` if i ≤ `,

Ψ1 =

N
∑

j=1

mj











xj
∫

xj−1

ϕkj(x)(Ckjx+Dkj)dx +

nj
∑

i=1






γjiϕ

′′

kj(eji)

xj
∫

eji

ϕkj(x)(x− eji)dx

















= ω−2
k0

N
∑

j=1

nj
∑

i=1

Sjγjiϕ
′′

kj
2
(eji);

(36)

Ψ2=

N
∑

j=1

mj

{

P 3
j C2

kj +2P 2
j CkjDkj +P 1

j D2
kj+

nj
∑

i=1

[Ckjαj(eji)+Dkjβj(eji)]γjiϕ
′′

kj(eji)

+

nj
∑

i=1

nj
∑

`=1

γjiϕ
′′

kj(eji)γj`ϕ
′′

kj(ej`)qj(eji, ej`)

}

=

N
∑

j=1

N
∑

p=1

N
∑

q=1

np
∑

i=1

nq
∑

`=1

mjQj(epi, eq`)γpiγq`ϕ
′′

kp(epi)ϕ
′′

kq(eq`)

(37)

with Pn
j =(xn

j −xn
j−1)/n, n=1, 2, 3;αj(eji)=(xj−eji)

2(2xj+eji)/6;βj(eji)=(xj−eji)
2/2 and

coefficients Qj(epi, eq`) given below for different boundary conditions under consideration.
Namely, for cantilever and beam with free ends one has

Qj(epi, eq`) =































1

3

{

(xj − eji)
3 : i ≥ `;

(xj − ej`)
3 : i ≤ `;

p = q = j;

[αj(eji)− eq`βj(eji)]/2 : q ≺ p = j;
0 : p, q � j;
[αj(ej`) − epiβj(ej`)]/2 : p ≺ q = j;
P 3

j − P 2
j (epi + eq`)/2 + P 1

j epieq` : p, q ≺ j.

(38)

For the case of simply supported beam

Qj(epi, eq`)=































P 3
j (1− epi)(1− eq`)+(epi + eq`)/2+

1

3

{

(xj − eji)
3 : i ≥ `;

(xj − ej`)
3 : i ≤ `;

p = q = j;

(P 2
j − P 3

j )(1− epi)eq` + [αj(eji) − eq`βj(eji) + eq` − 1]/2 : q ≺ p = j;

P 3
j (1 − epi)(1 − eq`) : p, q � j;

(P 2
j − P 3

j )(1− eq`)epi + [αj(ej`) − epiβj(ej`) + epi − 1]/2 : p ≺ q = j;

(P 3
j − 2P 2

j + P 1
j )epieq` + P 2

j (epi + eq`)/2 : p, q ≺ j.

(39)
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Thus, Rayleigh quotient for multiple cracked and stepped beam with simply supported,
fixed-free and free-free ends is expressed as

ω2
k = RN/RD =







N
∑

j=1

Sj

xj
∫

xj−1

ϕ′′

kj
2
(x)dx + ωk0

2Ψ1






/







N
∑

j=1

mj

xj
∫

xj−1

ϕkj
2(x)dx + 2Ψ1 + Ψ2






.

(40)
Obviously, natural frequencies of undamaged beam can be obtained

ω2
k0 =







N
∑

j=1

Sj

xj
∫

xj−1

ϕ′′

kj
2
(x)dx






/







N
∑

j=1

mj

xj
∫

xj−1

ϕkj
2(x)dx






. (41)

Selecting ϕkj(x) = dkϕ̄kj(x) with ϕ̄kj0(x) being the undamaged mode shape normalized by

N
∑

j=1

mj







xj
∫

xj−1

ϕ2
kj(x)dx






= 1, (42)

one obtains

ωk0
2 =

N
∑

j=1

Sj







xj
∫

xj−1

ϕ̄′′
2
kj(x)dx






(43)

and

ω2
k

ω2
k0

=

1 + ωk0
−2

N
∑

j=1

nj
∑

i=1
Sjγjiϕ̄′′

2
kj(eji)

1 + 2ωk0
−2

N
∑

j=1

nj
∑

i=1
Sjγjiϕ̄′′

2
kj +

N
∑

j=1

N
∑

p=1

N
∑

q=1

np
∑

i=1

nq
∑

`=1

mjQj(epi, eq`)γpiγq`ϕ̄
′′

kp(epi)ϕ̄′′

kq(eq`)

.

(44)
This is an explicit expression of natural frequencies for a stepped beam with arbitrary
number of cracks that can be used not only for modal analysis of the multiple cracked
stepped beam but also provides an important tool for crack identification in the beam.

4. CRACK IDENTIFICATION PROCEDURE

Assuming that m natural frequencies (ω̄1, . . . , ω̄m) of an N -stepped beam have been
given, the problem is to predict position and size of cracks probably occurred in the beam.

To solve the problem the so-called crack scanning method (CSM) proposed by Khiem
and Tran [22] is used. Accordingly to the method a mesh (0 ≤ e1 ≺ e2 ≺ . . . . ≺ en ≺ L) of
multiple crack positions is initialed for determining unknown depths (a1, . . . , an). For the
evaluated crack depth vector the positions of probable cracks could be determined by the
peaks on the map of estimated crack depth versus scanning crack positions. The desired
depth of the cracks detected to appear at the positions may be corrected by repeating the
crack depth assessment with the new mesh consisting from the detected crack positions.
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Introducing the notations

γr = γji, er = eji;

r = n1 + . . . + nj−1 + i = 1, . . . , n = n1 + . . . + nN ; j = 1, . . . , N, i = 1, . . . , nj,

the quotient (47) can be rewritten as

ω2
k/ω2

k0 =

[

1 +

n
∑

r=1

akrγr

]

/



1 + 2

n
∑

r=1

akrγr +

n
∑

r1,r2=1

bkr1r2
γr1

γr2



 (45)

where

akr = ω−2
k0 Sjϕ̄′′

2
kj(er); bkr1r2

=

N
∑

j=1

mjQj(er1
, er2

)ϕ̄′′

kp(er1
)ϕ̄′′

kq(er2
) (46)

with






n1 + n2 + . . . + nj−1 ≺ r ≤ n1 + n2 + . . . + nj ;
n1 + n2 + . . . + np−1 ≺ r1 ≤ n1 + n2 + . . . + np;
n1 + n2 + . . . + nq−1 ≺ r2 ≤ n1 + n2 + . . . + nq.

(47)

Using the given natural frequencies (ω̄1, . . . , ω̄m) the Eq. (45) can be rewritten in the form
n

∑

j=1

[Akj +

n
∑

`=1

Bkj`γ`]γj = dk, k = 1, . . . , m

or
[A + B(γ)]{γ}= {d} (48)

with

A = [(2δk − 1)akj, k = 1, . . . , m; j = 1, . . . , n]; B = [δkbkj`, k = 1, . . . , m; j, ` = 1, . . . , n];

dk = 1 − δk; δk = ω̄2
k/ω2

k0. (49)

Eqs. (47) can be solved with respect to unknowns (γ1, . . . , γn) by using the iteration method

[A + B(γ(i−1))]{γ(i)} = {b}, {γ(0)} = {0}. (50)

5. NUMERICAL RESULTS

First, for comparison, especially, with the experimental results the model studied
in Ruoloto and Surace, 1997 is adopted here. That is a cantilever beam of length L = 0,8
m; cross section H × B = 0.02 m × 0.02 m; material constants E = 1.81 × 1011 Pa; ρ =
7860 kg/m3. Double crack have been made at the positions ē1 = e1/L = 0.3175; ē2 =
e2/L = 0.6812 with various scenarios of relative crack depth C1 (20% and 20%); C2 (20%
and 30%) and C3 (30% and 20%). Tab. 1 shows ratio (damaged to undamaged) of the
first five frequencies obtained by (a) solution of the characteristic equation established in
Khiem and Tran, [22]; (b) the experiment accomplished by Ruotolo and Surace [23] and
(c) calculation using the Rayleigh Quotient (29). The measured (b) and calculated (c)
frequency ratios compared to the theoretical ones (a) give rise to discrepancies presented
in the adjacent columns. Obviously, the discrepancies are all insignificant (less than one
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percent) so that usefulness of the Rayleigh Quotient derived above for calculating natural
frequencies of multiple cracked beam is thus validated.

Table 1. Comparison with the theoretical and experimental results

Frequency Characteristic(a) Experiment (b) Rayleigh Quotient (c)

Number Equation Measured Deviation (%) Calculated Deviation (%)

Scenario C1: a1/h = 0.2, a2/h = 0.2 (ē1 = e1/L = 0.3175 ; ē2 = e2/L = 0.6812)

First 0.9929 0.9924 0.05 0.9945 0.16

Second 0.9908 0.9907 0.01 0.9927 0.19

Third 0.9804 0.9814 0.10 0.9846 0.36

Fourth 0.9965 0.9966 0.01 0.9970 0.42

Fifth 0.9942 N/A N/A 0.9950 0.08

Scenario C2: a1/h = 0.2, a2/h = 0.3(ē1 = e1/L = 0.3175 ; ē2 = e2/L = 0.6812)

First 0.9901 0.9945 0.40 0.9940 0.39

Second 0.9810 0.9813 0.03 0.9864 0.55

Third 0.9668 0.9642 0.25 0.9746 0.80

Fourth 0.9942 0.9926 0.16 0.9950 0.08

Fifth 0.9907 N/A N/A 0.9921 0,15

Scenario C3: a1/h = 0.3, a2/h = 0.2 (ē1 = e1/L = 0.3175 ; ē2 = e2/L = 0.6812)

First 0.9844 0.9895 0.52 0.9880 0.36

Second 0.9873 0.9893 0.20 0.9897 0.24

Third 0.9698 0.9692 0.06 0.9755 0.58

Fourth 0.9945 0.9952 0.07 0.9947 0.02

Fifth 0.9907 N/A N/A 0.9906 0.01

To demonstrate also applicability of the Rayleigh Quotient to the multi-crack de-
tection problem the crack detection procedure proposed above is running by using the
measured natural frequencies given by Ruotolo and Surace [23] (the second column in
Tab. 1). Results of the crack magnitude estimation obtained as solution of the Eq. (34)
with number of scanning crack points N = 25 from the clamped end to the free one are
plotted and shown in Figs. 1-3. The three plots give rise consistently the same peaks at
the positions ê1 = 0.04; ê2 = 0.32; ê3 = 0.68 where cracks may occur. Following the crack
scanning method, the first estimated crack positions would be taken as a new scanning
mesh for correcting crack size. This correction has been accomplished and one obtains in
result the following corrected crack magnitude

Scenario C1: γ̂1 = 0.0; γ̂2 = 0.0105; γ̂3 = 0.00935;

Scenario C2: γ̂1 = 0.0; γ̂2 = 0.0124; γ̂3 = 0.0289;

Scenario C3: γ̂1 = 0.0; γ̂2 = 0.0252; γ̂3 = 0.0103.
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Fig. 1. Estimated crack magnitude from the natural frequencies measured by Ruotolo and
Surace in the case of actual cracks are at 0.3175 (depth 20%) and 0.6812 (depth 30%)
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Fig. 2. Estimated crack magnitude from the
natural frequencies measured by Ruotolo and
Surace in the case of actual cracks are at 0.3175
(depth 20%) and 0.6812 (depth 20%)
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Fig. 3. Estimated crack magnitude from the
natural frequencies measured by Ruotolo and
Surace in the case of actual cracks are at 0.3175
(depth 30%) and 0.6812 (depth 20%)

The latter allow us to make a conclusion that the number of cracks detected equal
to two and the crack positions are ē1 = 0.32; ē2 = 0.68. Final results of crack identification
and its accuracy are presented in Tab. 2.

Table 2. Results of crack detection

Actual crack scenarios Identified crack position and depth (error in %)

C1: a1= a2= 0.02 a1= 0.2218 (10.9%) a2= 0.2105 (5.25%)

C2: a1= 0.2; a2= 0.3 a1= 0.2427 (21.3%) a2= 0.3588 (19.6%)

C3: a1= 0.3; a2= 0.2 a1= 0.3416 (13.8%) a2= 0.2218 (10.9%)

e1= 0.3175; e2= 0.6812 e1= 0.32 (0.78%) e2= 0.68 (0.17%)

Tab. 2 shows that the proposed herein procedure enables exact crack localization
(within accuracy of frequency measurement error) and error in crack extent estimation
can be within 10% for the cracks depth less than 20% beam thickness.
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6. CONCLUSION

In the present study the well known Rayleigh Quotient has been developed for
multi-stepped beam with arbitrary number of cracks and boundary conditions. This is
an explicit expression of natural frequencies in term of crack parameters that provides a
simplified method for calculating natural frequencies of the beam. Moreover, the Rayleigh
Quotient obtained in more generalized form can be usefully applied also for identifica-
tion of multi-stepped beam and boundary condition evaluation from measured natural
frequencies. Specifically, based on the explicit expression there has been conducted a sim-
ple procedure for multiple crack detection of uniform Euler-Bernoulli beam that allows
determining not only the crack parameters but also the amount of cracks in a beam from
measured natural frequencies. The procedure is a further development of the so-called
crack scanning method for the case of available natural frequencies. The theoretical de-
velopment has been illustrated and validated by either numerical or experimental results.
Namely, the natural frequencies calculated by the Rayleigh Quotient very well agreed
with those computed from the characteristic equation and measured from an experiment.
The proposed herein crack detection procedure applied with the aforementioned measured
natural frequencies allow exact localization of double cracks in beam and estimating also
crack depth with error less than 20%. The further study is intended to develop the crack
detection procedure in the case of stepped beam with unknown boundary conditions.
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