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Abstract. In our previous paper, we constructed bounds on the effective bulk modulus
of isotropic multicomponent composites using minimum energy principles and modi-
fied Hashin-Shtrikman polarization trial fields. In this paper, following the variational
approach, we construct more sophisticated bounds on the effective shear modulus. Ap-
plications to particular models are presented.
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1. INTRODUCTION

Macroscopic (effective) elastic moduli keff and µeff of isotropic multicomponent
materials are important mechanical properties of the materials. It is difficult to find ex-
actly these moduli because of complicated micro-geometries of composites. The most well-
known estimates are the volume-weighted arithmetic or harmonic average formulae of Voigt
and Reuss (Hill first order) bounds and Hashin-Shtrikman (second order) bounds [1–5].
Pham [3] extended Hashin-Shtrikmans inequalities to incorporate a number of coefficients
depending on the fluctuation fields to improve the bounds.

In [1] we had constructed new bounds for effective bulk elastic modulus of isotropic
multicomponent materials which involve three-point correlation parameters. Continuing
the research in this direction we will use more general multi-free parameter trial fields to
construct new tight bounds on effective shear elastic properties of isotropic multicompo-
nent materials. Applications of the bounds are performed for some representative material
models.

2. CONSTRUCTION OF NEW BOUNDS

The α-component of the multicomponent composite has elastic moduli kα, µα, α =
1, ..., N . The local elastic tensor C(x) is expressible as

C(x) =

N∑

α=1

T(kα, µα)Iα(x) , x ∈ V, (1)
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where Iα is the indicator function

Iα(x) =

{
1, x ∈ Vα

0, x /∈ Vα
(2)

T is the isotropic fourth rank tensor with components

Tijkl(k, µ) = kδijδkl + µ(δikδjl + δilδjk −
2

3
δijδkl), (3)

δij is Krönecker symbol. The effective elastic moduli Ceff = T(keff , µeff ) of the composite
can be defined via the minimum energy expression [1]

ε
0 : Ceff : ε

0 = inf
〈ε〉=ε0

∫

V

ε : C : εdx, (4)

while the strain field is expressible via the displacement field u(x)

ε(x) =
1

2
[∇u + (∇u)T ]. (5)

To find the best possible upper bound on µeff from the minimum energy principle
(4), we choose the following admissible compatible strain trial field

εij = ε̃0ij +

N∑

α=1

[aα
1

2
(ϕα,ikε̃

0
kj + ϕα,jk ε̃

0
ki) + bαψ

α
,ijklε̃

0
kl], i, j = 1, ..., 3; (6)

where ε0ij = ε̃0ij (ε̃0ii = 0) is a constant deviatoric strain; ϕα and ψα are the harmonic and
biharmonic potentials, Latin indices after comma designate differentiation with respective
Cartesian coordinates;

ϕα(x) =

∫

Vα

Γϕ(x− y)dy ; ∇2ϕα(x) = δαβ , x ∈ Vβ;

Γϕ(r) = −
1

4πr
, ∇2Γϕ = δ(r);

(7)

r =| x − y | ; δ(r) is the Delta Dirac function;

ψα(x) =

∫

Vα

Γψ(x− y)dy ; ∇4ψα(x) = δαβ , x ∈ Vβ ;

Γψ(r) = −
1

8π
r , ∇4Γψ = δ(r).

(8)

In [3] we have introduced the three-point correlation parameters

Aβγα =

∫

Vα

ϕβαij ϕ
γα
ij dx , ϕβαij = ϕβ,ij −

1

vα

∫

Vα

ϕβ,ijdx,

Bβγα =

∫

Vα

ψβαijklψ
γα
ijkldx , ψβαijkl = ψβ,ijkl −

1

vα

∫

Vα

ψβ,ijkldx.

(9)
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2N free scalars aα, bα in (6) are subjected to restrictions

N∑

α=1

vαaα = 0, (10)

N∑

α=1

vαbα = 0, (11)

for the trial field (6) to satisfy the restriction 〈ε〉 = ε
0 of Eq. (4). Substituting the trial field

(6) into the energy functional of Eq. (4) and taking into account (9) and the respective
expressions in [3–5], one gets

Wε =

∫

V

ε : C : εdx =

N∑

α=1

∫

vα

[
kαεiiεjj + µα

(
2εijεij −

2

3
εiiεkk

)]
dx

=

{

µV +

N∑

α=1

vαµα

[
2

3
aα +

4

15
bα +

1

9

(
aα +

2bα
5

)2
]

+

N∑

α,β,γ=1

[
Aβγα

(
1

10
(kα −

2

3
µα)(aβ + bβ)(aγ + bγ) +

11

60
µαaβaγ

+
4

15
µαaβbγ −

1

15
µαbβbγ

)
+

1

5
µαbβbγB

βγ
α

]}
2ε̃0ij ε̃

0
ij,

(12)

where µV =
N∑
α=1

vαµα is Voigt arithmetic average.

We minimize the expression (12) over variable aα, bα restricted by Eqs. (10), (11)
with the help of Lagrange multipliers λ and κ and get the equations

1

3
vαµα +

vα
9

(
aα +

2bα
5

)
µα +

N∑

β,γ=1

Aαβγ

[
kγ −

2
3µγ

10
(aβ + bβ)

+
11

60
µγaβ +

2

15
µγbβ

]
− λvα = 0, α = 1, ..., N ;

(13)

2vαµα
15

+
2vαµα

45

(
aα +

2bα
5

)
+

N∑

β,γ=1

{
Aαβγ

[kγ − 2
3µγ

10
(aβ + bβ)

+
2µγaβ

15
−
µγbβ
15

]
+Bαβγ

µγbβ
5

}
− κvα = 0, α = 1, ..., N.

(14)

Summing Eqs. (13) multiplied by µ−1
α on α from 1 to N and taking into account

Eq. (10), one gets

1

3
+

N∑

α=1

2bαvα
45

+

N∑

α,β,γ=1

Aαβγ µ−1
α

[
aβ

(
kγ
10

+
7µγ
60

)
+ bβ

(
kγ
10

+
µγ
15

)]
− λµ−1

R = 0, (15)
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where µR is Reuss harmonic average

µR =

(
N∑

α=1

vαµ
−1
α

)−1

. (16)

Also summing Eqs. (14) multiplied by µ−1
α on α from 1 to N and taking into account Eq.

(11), one obtains

2

15
+

N∑

α=1

2aαvα
45

+

N∑

α,β,γ=1

{
Aαβγ µ−1

α

[
aβ

(
kγ
10

+
µγ2

15

)

+bβ

(
kγ
10

−
2µγ
15

)]
+ Bαβγ µ−1

α

µγbβ
5

}
− κµ−1

R = 0.

(17)

Now substituting λ and κ from Eqs. (15) and (17) into Eqs. (13) and (14), finally
leads to equations containing only the unknown aα and bα

vµ + Aµ · a = 0. (18)

In (18) we have introduced vectors vµ, a and matrix Aµ in 2N -space

a = {a1, . . . , aN , b1, . . . , bN}
T , (19)

vµ =

{
v1
3

(µ1 − µR), . . . ,
vN
3

(µN − µR),
2v1(µ1 − µR)

15
, . . . ,

2vN(µN − µR)

15

}T
, (20)

Aµ =
{
Aµ
αβ

}
, α, β = 1, . . . , 2N ; (21)

where (in the following α, β = 1, ..., N ; α̂= N + α; β̂ = N + β)

Aµ
αβ =

vα
9
µαδαβ +

N∑

γ=1

(

Aαβγ − vαµR

N∑

δ=1

µ−1
δ Aδβγ

)[
kγ
10

+
7µγ
60

]
,

Aµ

bαbβ
=

4vα
225

µαδαβ +

N∑

γ=1

[(
Aαβγ − vαµR

N∑

δ=1

µ−1
δ Aδβγ

)(
kγ
10

−
2µγ
15

)

+

(

Bαβγ − vαµR

N∑

δ=1

µ−1
δ Bδβγ

)
µγ
5

]

,

A
αbβ

=Abαβ =
2vα
45

(µαδαβ − µRvβ) +

N∑

γ=1

(

Aαβγ − vαµR

N∑

δ=1

µ−1
δ Aδβγ

)[
kγ
10

+
µγ
15

]
.

(22)

From Eq. (18), we find the necessary solutions for aα, bα

a = −A
−1
µ · vµ . (23)
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From Eq. (12), with Eqs. (13), (14) and (23), one finds

Wε =

∫

V

ε : C : εdx =

[

µV +
1

3

N∑

α=1

vαµα

(
aα +

2bα
5

)]

2ε̃0ij ε̃
0
ij

=
(
µV + v′

µ · a
)
2ε̃0ij ε̃

0
ij =

(
µV − v′

µ ·A
−1
µ · vµ

)
2ε̃0ij ε̃

0
ij ,

(24)

where

v′
µ =

{
v1µ1

3
, . . . ,

vNµN
3

,
2v1µ1

15
, . . . ,

2vNµN
15

}T
. (25)

From Eqs. (2), (24), finally we obtain the upper bound on the effective shear modulus

µeff ≤MU
AB({kα, µα, vα}, {A

βγ
α , B

βγ
α }) = µV − v′

µ · A
−1
µ · vµ . (26)

To construct the lower bound on the effective shear modulus we use the minimum
complementary energy principle

σ
0 : (Ceff)−1 : σ

0 = inf
〈σ〉=σ0

∫

V

σ : C−1 : σdx , (27)

where σ
0 is a constant stress field, and the stress field σ should satisfy equilibrium equation

∇ · σ(x) = 0 , x ∈ V (28)

To find a lower bound on the effective shear modulus µeff from the minimum com-
plementary energy principle (27), we take the admissible equilibrated stress trial field

σij = σ̃0
ij +

N∑

α=1

[aα(ϕα,ikσ̃
0
kj + ϕα,jkσ̃

0
ki − Iασ̃

0
ij)

− (aα + bα)δijϕ
α
,klσ̃

0
kl + bαψ

α
,ijklσ̃

0
kl], i, j = 1, ..., 3;

(29)

where σ0
ij = σ̃0

ij(σ̃
0
ii = 0) is a constant deviatoric stress, the free scalars aα, bα are subjected

to the same restrictions (10) and (11). Substituting the trial field (29) into (27) and
following procedure similar to that form (12) to (26), one obtains the best possible lower
bound on µeff

µeff ≥ML
AB

(
{kα, µα, vα}, {A

βγ
α , B

βγ
α }
)

= (µ−1
R − v̄′

µ · Ā
−1
µ · v̄µ)

−1 , (30)

where

v̄µ =

{
−
v1
3

(µ−1

1
− µ−1

V ), . . . ,−
vN

3
(µ−1

N − µ−1

V ),
2v1(µ

−1

1
− µ−1

V )

15
, . . . ,

2vN (µ−1

N − µ−1

V )

15

}T

, (31)

v̄
′

µ =

{
−
v1µ

−1

1

3
, . . . ,−

vNµ
−1

N

3
,
2v1µ

−1

1

15
, . . . ,

2vNµ
−1

N

15

}
, (32)

Āµ =
{
Āµ

αβ

}
, α, β = 1, . . . , 2N ; (33)
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[in (34) α, β = 1, . . . , N ; α̂= N + α; β̂ = N + β]

Āµ
αβ =

vα

9
µ−1

α δαβ +

N∑

γ=1

(
Aαβ

γ −
vα

µV

N∑

δ=1

µδA
δβ
γ

)[
2k−1

γ

45
+

7

15
µ−1

γ

]
,

Āµ

bαbβ
=

4vα

225
µ−1

α δαβ +

N∑

γ=1

[(
Aαβ

γ −
vα

µV

N∑

δ=1

µδA
δβ
γ

)(
8k−1

γ

45
−

2µ−1

γ

15

)

+

(
Bαβ

γ −
vα

µV

N∑

δ=1

µδB
δβ
γ

)
µ−1

γ

5

]
,

Āµ

αbβ
= Āµ

bαβ
= −

2vα

45

(
µ−1

α δαβ − µ−1

V vβ

)
+

N∑

γ=1

(
Aαβ

γ −
vα

µV

N∑

δ=1

µδA
δβ
γ

)[
4k−1

γ

45
+

2µ−1

γ

15

]
.

(34)

3. APPLICATIONS

In the case of symmetric cell material without distinct inclusion and matrix phases

[4] (Fig. 1a), the three-point correlation parameters A
βγ
α , B

βγ
α have particular forms [4, 5]

(α 6= β 6= γ 6= α)

Aβγα = vαvβvγ(f1 − f3) , Aααα = vα(1 − vα)[(1− vα)f1 + vαf3] ,

Aαβα = vαvβ [(vα − 1)f1 − vαf3] , Aββα = vαvβ [(1− vβ)f3 + vβf1] ,

Bβγα = vαvβvγ(g1 − g3) , Bααα = vα(1 − vα)[(1− vα)g1 + vαg3] ,

Bαβα = vαvβ [(vα − 1)g1 − vαg3] , Bββα = vαvβ [(1− vβ)g3 + vβg1] ,

(35)

which depend on just 4 shape parameters f1, f3, g1, g3. One also has

6

7
f1 +

8

35
≥ g1 ≥

6

7
f1

f1 + f3 =
2

3
, 0 ≤ f1, f3 ≤

2

3
,

g1 + g3 =
4

5
, 0 ≤ g1, g3 ≤

4

5
.

(36)

The three-point correlation bounds (26), (30) are specialized to

MU
fg ≥ µeff ≥ML

fg, (37)

where

MU
fg({kα, µα, vα}, f1, g1) = MU

AB({kα, µα, vα}, {A
βγ
α , Bβγα } ∈ (35)),

ML
fg({kα, µα, vα}, f1, g1) = ML

AB({kα, µα, vα}, {A
βγ
α , Bβγα } ∈ (35));

(38)

and then the shape-unspecified bounds for all symmetric cell materials read

MU
sym ≥ µeff ≥ML

sym , (39)
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(b)

Fig. 1. The bounds on the effective shear modulus of three-component symmetric
cell materials (SYM), compared to bounds for the specific symmetric spherical
cell materials (SPHE) and Hashin-Shtrikman (HS) bounds. (a) A symmetric cell
mixture; (b) The bounds

where

MU
sym({kα, µα, vα}) = max

f1,g1∈(36)
MU
fg({kα, µα, vα}, f1, g1),

ML
sym({kα, µα, vα}) = min

f1,g1∈(36)
ML
fg({kα, µα, vα}, f1, g1).

(40)

Numerical result for the shape-unspecified bounds on the effective shear modulus
of three-phase symmetric cell materials with same data of [1] at the range v1 = 0.1 →
0.9, v2 = v3 = 1

2(1 − v1) with k1 = 1, µ1 = 0.3, k2 = 12, µ2 = 8, k3 = 30, µ3 = 15 , are
presented in Fig. 1b, which fall inside Hashin-Shtrikman bounds for the larger class of
isotropic composites. The bounds µUs , µLs (with f1 = g1 = 0) for the specific spherical cell
materials are also presented, which lie inside both presented bounds.

The next examples involve two-phase random suspensions of equisized hard spheres

(Fig. 2a ) and overlaping spheres (Fig. 3a). The parametersAβγα , Bβγα are expressed through
just two parameters ζ1 (or ζ2) and η1 (or η2) introduced earlier by Milton and Torquato
[6–9]

A11
α = A22

α = −A12
α =

2

3
v1v2ζα , α = 1, 2;

B11
α = B22

α = −B12
α =

3

10
v1v2ηα +

1

2
v1v2ζα .

(41)

The bounds (26) and (30) for the models at ranges of v2, with k1 = 1, µ1 = 0.3, k2 =
20, µ2 = 10, together with Hashin-Shtrikman bounds are projected in Figs. 2b, 3b.
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(b)

Fig. 2. Hashin-Strikman bounds (HS) and the bounds (HARD) on the elastic
shear modulus of the random suspension of equisized hard spheres. (a) A random
suspension of equisized hard spheres; (b) The bounds
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(b)

Fig. 3. Hashin-Strikman bounds (HS) and the bounds (OVERLA) on the elastic
shear modulus of the random suspension of equisized overlapping spheres. (a) A
random suspension of equisized overlapping spheres; (b) The bounds

4. CONCLUSION

In this paper the authors have constructed three-point correlation bounds on the
effective shear elastic modulus of statistically isotropic N -component materials from min-
imum energy principles, using multi-free-parameter trial fields. The bounds are specified
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to the practical class of symmetric cell materials and random suspensions of equisized
spheres, with numerical illustrations.

The trial polarization fields (6), (29) used in this paper depend on 2N − 2 free pa-
rameters [i.e., 2N parameter aα, bα restricted by 2 constraints (10), (11)], hence are more
general than the Hashin-Shtrikman ones used [3–5], which contain just 2 free parameters.
Therefore the new bounds are more restricting in the cases N ≥ 3. We remind the particu-

lar example of three-phase double-coated-sphere composite [1], where the parameters Aβγα
have been determined analytically, our new bounds converge to the exact effective bulk
modulus, while the old bounds in [3, 5] do not. Note also that the trial fields (6), (29) for
the shear modulus containing 2N −2 free parameters are also more sophisticated than the
respective trial fields for the bulk modulus in [1] containing just N − 1 free parameters.
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