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Abstract. Dynamical behaviors of functionally graded material shallow shells with ge-
ometrical imperfections are studied in this paper. The material properties are graded
in the thickness direction according to the power-law distribution in terms of volume
fractions of the constituents of the material. The motion, stability and compatibility
equations of these structures are derived using the classical shell theory. The non-linear
equations are solved by the Newmark’s numerical integration method. The non-linear
transient responses of cylindrical and doubly-curved shallow shells subjected to excited
external forces are obtained and the dynamic critical buckling loads are evaluated based
on the displacement responses using the criterion suggested by Budiansky and Roth.
Obtained results show the essential influence of characteristics of functionally graded
materials on the dynamical behaviors of shells.

1. INTRODUCTION

Functionally graded materials (FGM) as a new class of advanced inhomogeneous
composite materials have received considerable attention in many engineering applications
for improved structural efficiency in space structures and nuclear reactors since they were
first reported in Japan [1].

In recent years important studies have been researched about the stability and vibra-
tion of functionally graded plates and cylindrical shells. Birman [2] presented a formulation
of the stability problem for functionally graded hybrid composite plates subjected to uniax-
ial compression. Elastic bifurcation of functionally graded plates acted on by compressive
loading was studied by Feldman and Aboudi [3]. Reddy et al [4] gave bending solution for
functionally graded circular plates and annular plates. Woo and Meguid [5] presented an
analytical solution for non-linear analysis of FGM plates and shallow cylindrical shells. Naj
et al. [6] investigated FGM truncated conical shells under external pressure. Concerning
with initial imperfections Sasam Shariat et al. [7] studied buckling problem of imperfect
FGM plates under in-plane compressive loading.

About vibration of FGM plates Vel, Batra [8] gave three dimensional exact solution
for the vibration of FGM rectangular plates; Ferreira et al [9] received natural frequencies
of FGM plates by meshless method. Natural frequencies and buckling stresses of FGM
plates were analyzed by Hiroyuki Matsunaga [10] using 2-D higher-order deformation
theory. Pradhan et al [11] and Loy et al [12] studied vibration of FGM cylindrical shells
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and the effects of boundary conditions and power law indices on the natural frequencies
of these shells.

Research on the stability of FGM cylindrical shells under aperiodic axial impulse
and dynamic torsional loading can be seen in the works of Sofiyev et al [13, 14]. Yang and
Shen [15], Shen [16] gave a large deflection and post-buckling analysis of FGM plates and
cylindrical shells subjected to various loadings.

Non-linear buckling analysis of FGM shallow spherical shells under pressure loads
was presented by Ganapathi [17] by using finite element method, geometric non-linearity is
assumed only on the meridional direction in strain-displacement relations. Dao H. B. [18]
studied this problem using the approximated analytical method, geometric non-linearity
is assumed in all strain-displacement relations.

The present research is concerned with non-linear dynamical analysis, including
non-linear dynamical buckling analysis and non-linear vibration of functionally graded
material shallow shells with initial imperfections. Derivations of governing equations of
these shells are based on the shell theory according to the von Karman theory for mod-
erately large deflection and small strain with the assumption of power law composition
for the constituent materials. The non-linear transient responses of FGM cylindrical and
doubly-curved shallow shells subjected to excited external loads are considered. The solu-
tion of dynamic problems is posed as the determination of dynamic critical buckling loads
for various loading cases using here the criterion suggested by Budiansky and Roth. The
influence of characteristics of functionally graded materials and initial imperfections on
the dynamical behaviors of shells is to be investigated.

2. GOVERNING EQUATIONS

2.1. Functionally graded material (FGM)
FGMs are microscopically inhomogeneous materials, in which the material proper-

ties vary smoothly and continuously from one surface of the material to the other surface.
These materials are made from a mixture of ceramic and metal, or a combination of dif-
ferent materials. For example, a functionally graded material may consist of stainless steel
SUS 304 (metal with characteristics E= 201.04×109 N/m2, ν = 0.3262, ρ = 8166 kg/m3)
and zirconia ZrO2(ceramic: E = 244.27×109 N/m2, ν = 0.2882, ρ= 5700 kg/m3), or con-
sist of aluminum Al(metal: E = 70×109 N/m2, ν = 0.3, ρ = 2702 kg/m3) and alumina
Al2O3 (ceramic: E = 380×109 N/m2, ν = 0.3, ρ = 3800 kg/m3). A such mixture of ceramic
and metal with a continuously varying volume fraction can be manufactured. Especially
FGM thin-walled structures with metal in inner surface and ceramic in outer surface are
widely used in practice. Assume that [19] the modulus of elasticity E and the mass density
ρ change in the thickness direction z, while the Poisson ratio ν is assumed to be constant.
Denote Vm and Vc being volume-fractions of the metal and ceramic phases respectively,

which are related by Vm + Vc = 1 and Vc is expressed as Vc (z) =

(

2z + h

2h

)k

, where h is

the thickness of thin-walled structure, k is the volume-fraction exponent (k ≥ 0). Then
the elasticity modulus, the mass density and the Poisson ratio of a functionally graded
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material can be evaluated as following

E(z) = EmVm + EcVc = Em + (Ec − Em)

(

2z + h

2h

)k

,

ρ(z) = ρmVm + ρcVc = ρm + (ρc − ρm)

(

2z + h

2h

)k

,

ν(z) = ν = const.

(1)

The values with subscripts m and c belong to metal and ceramic respectively.

2.2. Functionally graded shallow shells
Shallow shells are assumed to have a relative small rise as compared with their spans.

A rectangular shallow shell made of FGM is considered here. Let the (x1, x2) plane of the
Cartesian coordinates overlap the rectangular plane area of the shell. The middle surface
of the shell generally is defined in terms of curvilinear coordinates, but for the shallow shell
the Cartesian coordinates can replace the curvilinear coordinates on the middle surface.
Suppose that the FGM shallow shell of thickness h and in-plane edges a and b is subjected
to a transverse load of intensity q0 and compressive edge loads of intensities r0 and p0.

The non-linear strain-displacement relationships based upon the von Karman theory
for moderately large deflection and small strain are

ε0

1 =
∂u

∂x1

− k1w +
1

2

(

∂w

∂x1

)2

, χ1 =
∂2w

∂x2

1

,

ε0

2 =
∂v

∂x2

− k2w +
1

2

(

∂w

∂x2

)2

, χ2 =
∂2w

∂x2

2

,

γ0

12 =
∂u

∂x2

+
∂v

∂x1

+
∂w

∂x1

·
∂w

∂x2

, χ12 =
∂2w

∂x1∂x2

,

(2)

The strains are related in the compatibility equation

∂2ε0
1

∂x2

2

+
∂2ε0

2

∂x2

1

−
∂2γ0

12

∂x1∂x2

=

(

∂2w

∂x1∂x2

)2

−
∂2w

∂x2

1

·
∂2w

∂x2

2

− k1

∂2w

∂x2

2

− k2

∂2w

∂x2

1

. (3)

The constitutive stress-strain equations for the shell material are omitted here for
brevity, note however that the Young modulus E(z) and the mass density ρ(z) are power
functions of z described by expressions (1). Integrating the stress-strain equations and
their moments through the thickness of the shell we obtain the expressions of internal
forces and moments resultants

N1 =
E1

1 − ν2

(

ε0

1
+ νε0

2

)

−
E2

1 − ν2
(χ1 + νχ2) ,

N2 =
E1

1 − ν2

(

ε0

2 + νε0

1

)

−
E2

1 − ν2
(χ2 + νχ1) ,

N12 =
E1

2(1 + v)
γ0

12 −
E2

1 + ν
χ12,

(4)
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or inversely

ε0

1
=

1

E1

(N1 − νN2) +
E2

E1

χ1, ε0

2
=

1

E1

(N2 − νN1) +
E2

E1

χ2,

γ0

12
=

2(1 + ν)

E1

N12 +
2E2

E1

χ12.
(5)

And

M1 =
E2

E1

N1 −
E1E3 − E2

2

E1(1 − ν2)
(χ1 + νχ2) , M2 =

E2

E1

N2 −
E1E3 − E2

2

E1(1− ν2)
(χ2 + νχ1)

M12 =
E2

E1

N12 −
E1E3 − E2

2

E1(1 + ν)
χ12,

(6)

where

E1 =

(

Em +
Ec − Em

k + 1

)

h, E2 =
(Ec − Em) kh2

2 (k + 1) (k + 2)
,

E3 =

[

Em

12
+ (Ec − Em)

(

1

k + 3
−

1

k + 2
+

1

4k + 4

)]

h3.

According to Love’s theory the equations of motion are

∂N1

∂x1

+
∂N12

∂x2

= ρ1

∂2u

∂t2
,

∂N12

∂x1

+
∂N2

∂x2

= ρ1

∂2v

∂t2
,

∂2M1

∂x2

1

+ 2
∂M12

∂x1∂x2

+
∂2M2

∂x2

2

+
∂

∂x1

(

N1

∂w

∂x1

+ N12

∂w

∂x2

)

+
∂

∂x2

(

N12

∂w

∂x1

+ N2

∂w

∂x2

)

+ k1N1 + k2N2 + q0 = ρ1

∂2w

∂t2
,

(7)

where ρ1 =
h/2
∫

−h/2

ρ(z)dz =

(

ρm +
ρc − ρm

k + 1

)

h.

By taking the inertia forces ρ1

∂2u

∂t2
→ 0 and ρ1

∂2v

∂t2
→ 0 into consideration because

of u << w, v << w, equations (7) and (8) are satisfied indentically by introducing the
stress function ϕ

N1 =
∂2ϕ

∂x2
2

; N2 =
∂2ϕ

∂x2
1

; N12 = −
∂2ϕ

∂x1∂x2

. (8)

and the equation (7) can be rewritten as

∂2M1

∂x2

1

+ 2
∂M12

∂x1∂x2

+
∂2M2

∂x2

2

+ N1

∂2w

∂x2

1

+ 2N12

∂2w

∂x1∂x2

+ N2

∂2w

∂x2

2

+

k1N1 + k2N2 + q0 = ρ1

∂2w

∂t2
.

(9)

The substitution of equations (5) into the compatibility equation (3) and equations
(6) into the motion equation (9), taking into account relations (8) yields a system of
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equations in terms of the stress function ϕ and the deflection w

1

E1

∆∆ϕ = −k1

∂2w

∂x2

2

− k2

∂2w

∂x2

1

+

(

∂2w

∂x1∂x2

)2

−
∂2w

∂x2

1

∂2w

∂x2

2

. (10)

ρ1

∂2w

∂t2
+

E1E3 − E2

2

E1(1 − ν2)
∆∆w + 2

∂2ϕ

∂x1∂x2

∂2w

∂x1∂x2

−
∂2ϕ

∂x2
2

∂2w

∂x2
1

−
∂2ϕ

∂x2
1

∂2w

∂x2
2

−k2

∂2ϕ

∂x2

1

− k1

∂2ϕ

∂x2

2

= q0.

(11)

The initial imperfection of the shell considered here can be seen as a small deviation
of the shell middle surface from the perfect shape, also seen as an initial deflection which is
very small compared with the shell dimensions, but may be compared with the shell wall
thickness. Let w0(x1,x2) denote a known small imperfection, proceeding from the motion
equations (10) and (11) of a perfect FGM shallow shell and following to the Volmir’s
approach [20] for an imperfect shell we can formulate the system of motion equations for
an imperfect FGM shallow shell as

1

E1

∆∆ϕ = −k1

∂2 (w − w0)

∂x2

2

− k2

∂2 (w − w0)

∂x2

1

+

[

(

∂2w

∂x1∂x2

)2

−
∂2w

∂x2

1

∂2w

∂x2

2

]

−

[

(

∂2w0

∂x1∂x2

)2

−
∂2w0

∂x2
1

∂2w0

∂x2
2

]

= 0,

(12)

ρ1

∂2w

∂t2
+

E1E3 − E2

2

E1(1− ν2)
∆∆ (w − w0) + 2

∂2ϕ

∂x1∂x2

∂2w

∂x1∂x2

−
∂2ϕ

∂x2
2

∂2w

∂x2
1

−
∂2ϕ

∂x2
1

∂2w

∂x2
2

−k2

∂2ϕ

∂x2

1

− k1

∂2ϕ

∂x2

2

= q0.

(13)

3. NON-LINEAR DYNAMICAL ANALYSIS

Suppose that the functionally graded shallow shell is simply supported at its edges
and subjected to a transverse load q0(t) compressive edge loads r0(t) and p0(t). The bound-
ary conditions can be expressed as

w = 0, M1 = 0, N1 = −r0h, N12 = 0 at x1 = 0; x1 = a,
w = 0, M2 = 0, N2 = −p0h, N12 = 0 at x2 = 0; x2 = b,

(14)

where a and b are the lengths of in-plane edges of the shallow shell.
The mentioned conditions (14) can be satisfied if the deflection w and the stress

function ϕ are represented by

w = f (t) sin
mπx1

a
sin

nπx2

b
, ϕ = η (t)

[

sin
mπx1

a
sin

nπx2

b
− θ (x1)− λ (x2)

]

, (15)

where f is the maximum deflection, θ(x1), λ(x2) are chosen such that

ηθ′′ (x1) = p0h , ηλ′′ (x2) = r0h .
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Concerning with the initial-imperfection w0(x1, x2) we introduce an assumption, it
has the form like the shell deflection, i.e.

w0(x1, x2) = f0 sin
mπx1

a
sin

nπx2

b
, (16)

where f0 is a given constant.
Substituting expression (15), (16) in to equations (12), (13) and applying Bubnov-

Galerkin procedure yield a set of two equations with respect to f(t) and η(t)

1

E1

(

m2 + n2λ2
)2

η −
a2

π2

(

k1n
2λ2 + k2m

2
)

(f − f0) +
16mn

3π2

(

f2 − f2

0

)

= 0,

ρ1

d2f

dt2
+

(E1E3 − E2

2
)

E1(1 − ν2)

(

m2 + n2λ2
)2

λ4

a4
(f − f0) +

π2

a2

(

k1n
2λ2 + k2m

2
)

η−

−
π2h

a2

(

m2r0 + n2λ2p0

)

−
32mnλ2π2

3a4
fη +

16h

π2mn
(k1r0 + k2p0) =

16q0

π2mn
,

where λ =
a

b
.

Eliminating η from two obtained equations leads to a non-linear second-order ordi-
nary differential equation for f(t).

ρ1

d2f

dt2
+

[

(E1E3 − E2
2
)

E1(1 − ν2)

(

m2 + n2λ2
)

π4

a4
+

E1

(

k1n
2λ2 + k2m

2
)

2

(m2 + n2λ2) 2

]

(f − f0)

−
16E1mnλ2(k1n

2λ2+k2m
2)

3a2(m2+n2λ2)2
[f2−f2

0 +2f(f − f0)]+
512E1m

2n2λ4

9a4(m2+n2λ2)2
f(f2 − f2

0 )

−
π2h

a2

(

m2r0 + n2λ2p0

)

f +
16h

π2mn
(k1r0 + k2p0) =

16q0

π2mn

(17)

The obtained equation (17) is a governing equation for dynamic analysis of imperfect
functionally graded doubly-curved shallow shells in general. Based on this equation the
non-linear vibration of perfect and imperfect FGM shallow shells can be investigated
and the post-buckling analysis of shells under various loading cases can be performed.
Particularly for a spherical panel we put k1 = k2 in the equation (17), for a cylindrical
shell k1 = 0 and for a plate k1 = k2 = 0. Combined with the equation (17) for obtaining
the non-linear dynamic response the initial conditions are assumed as f(0) = f0, ḟ(0) = 0.
The applied loads are varying as functions of time. The non-linear equation (17) is solved
by the Newmark’s numerical integration method. Equilibrium is achieved for each time
step through direct iteration until the chosen convergence criteria are satisfied.

By use of Eq. (17) we consider two aspects: vibration characteristics and dynamical
stability characteristics of FGM shallow shells.

3.1. Non-linear vibration of FGM shallow shells
Consider an imperfect functionally graded shallow shell acted on by an uniformly

distributed excited transverse load q0 (t) = Q sinΩt, i.e. r0 = p0 = 0 the equation of
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motion (17) has of the form

ρ1

d2f

dt2
+

[

(E1E3 − E2

2
)

E1(1− ν2)

(

m2 + n2λ2
)

π4

a4
+

E1

(

k1n
2λ2 + k2m

2
)2

(m2 + n2λ2) 2

]

(f − f0)

−
16E1mnλ2

(

k1n
2λ2 + k2m

2
)

3a2 (m2 + n2λ2)2
[

f2 − f2

0 + 2f(f − f0)
]

+
512E1m

2n2λ4

9a4 (m2 + n2λ2)2
f

(

f2 − f2

0

)

=
16Q sinΩt

π2mn
.

(18)

From Eq.(18) the fundamental frequencies of natural vibration of the shell can be
determined by the relation

ω2

mn =
1

ρ1

[

(E1E3 − E2

2
)

E1(1− ν2)

(

m2 + n2λ2
)

π4

a4
+

E1

(

k1n
2λ2 + k2m

2
)2

(m2 + n2λ2) 2

]

. (19)

The FGM shallow shells considered here are a spherical panel with in-plane edges

a = b = 2 m; h = 0.01 m; k1 = k2 =
1

R
(with R = 5m ) and a cylindrical panel a = b = 2

m; h = 0.01 m; k1 = 0; k2 =
1

R
(with R= 5 m). The shells are simply supported at all

its edges. The combination of materials consists of aluminum (Em = 70.109 N/m2 ; ρm =
2702 kg/m3) and alumina (Ec = 380.109 N/m2; ρc = 3800 kg/m3). The Poisson ratio is
chosen to be 0.3 for simplicity.

Four first natural frequencies of FGM spherical panel are shown in the tables 1a (

with λ =
a

b
= 1 ) and 1b ( with λ =

a

b
= 2 )

Table 1a Table 1b

The table 2a and 2b represent four first natural frequencies of FGM cylindrical panel with
λ = 1 and λ = 2 respectively.

Obviously the natural frequencies of FGM shallow shells are observed to be depen-
dent on the constituent volume fractions, they decrease when increasing the power law
index k. When k = 0, representing full ceramic shell, the natural frequencies are consider-
ably greater than frequencies of FGM shells. The reason is the higher value of the assumed
modulus of elasticity of the ceramic constituent.
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Table 2a Table 2b

For obtaining the non-linear transient responses of FGM shells acted on by the har-
monic uniformly load q0(t) = Q sinΩt, the equation (18) is solved by using the Newmark
procedure and direct iteration method. The time-step ∆t is taken as T/300 where period
T = 2π/Ω, Ω is the frequency of excited load and tn = n∆t.

Fig. 1 shows non-linear responses of perfect functionally graded spherical shell with
different power law indices subjected to excited load of magnitude Q = 150.000 (N/m2)
and frequency Ω = 1000 (s−1)

Fig. 1. Non-linear transient responses of

FGM spherical panel with various k

Fig. 2. Non-linear transient responses of

FGM cylindrical panel with various k

Non-linear transient responses of FGM cylindrical panel subjected to transverse
excited load q0(t) = 15.000 sin500t are presented on the Fig. 2.

Fig. 3 shows the influence of initial imperfection amplitude f0 = 10−1h on the non-
linear responses of FGM spherical panel with power law index k = 1 under excited load
q0(t) = 75.000 sin1650t.

From obtained results one can see that frequencies of non-linear vibration of FGM
shallow shells decrease, while amplitudes increase, when increasing the power law indices,
the non-linear transient responses perform the phenomenon like periodic cycles. The initial
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Fig. 3. Influence of initial imperfection on non-linear responses.

imperfection f0 = 10−1h has a slight influence on the non-linear responses of the considered
FGM spherical panel.

3.2. Non-linear dynamical buckling analysis of FGM shallow shells
Investigate the non-linear dynamic buckling of imperfect functionally graded spher-

ical and cylindrical panels in some cases of active loads varying as linear functions of time.
The aim of considered problems is to search the critical dynamic buckling loads. They can
be evaluated based on the displacement responses obtained from the motion equation (17).
The criterion suggested by Budiansky and Roth is employed here as it is widely accepted.
This criterion is based on that, for large values of loading speed the amplitude-time curve
of obtained displacement response increases sharply depending on time and this curve
obtains a maximum by passing from the slope point, and at the time t = tcr a stability
loss occurs. Here t = tcr is called critical time and the load corresponding to this critical
time is called dynamic critical buckling load.

3.2.1. Imperfect FGM cylindrical panel acted on by axial compressive load.

The equation (17) in this case k1 = 0, k2 =
1

R
, p0 = q0 = 0 can be rewritten as

ρ1

d2f

dt2
+

[

(E1E3 − E2

2
)

E1(1 − ν2)

(

m2 + n2λ2
)

π4

a4
+

E1m
4

R2 (m2 + n2λ2) 2

]

(f − f0)

−
16E1m

3nλ2

3Ra2(m2 + n2λ2)2
[f2 − f2

0
+ 2f(f − f0)]

+
512E1m

2n2λ4

9a4(m2 + n2λ2)2
f(f2 − f2

0 ) −
π2hm2r0

a2
f = 0.

(20)
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The static critical load can be determined by the equation to be reduced from Eq.
(20) by putting f̈ = 0, f0 = 0

π2hm2r0

a2
f =

[

(E1E3 − E2

2
)

E1(1− ν2)

(

m2 + n2λ2
)

π4

a4
+

E1m
4

R2 (m2 + n2λ2) 2

]

f−

−
16E1m

3nλ2

3Ra2 (m2 + n2λ2)2
f2 +

512E1m
2n2λ4

9a4 (m2 + n2λ2)2
f3.

Taking f 6= 0, i.e. considering the shell after the loss of stability we obtain

π2hm2r0

a2
=

(E1E3 − E2

2
)

E1(1− ν2)

(

m2 + n2λ2
)

π4

a4
+

E1m
4

R2 (m2 + n2λ2) 2
−

−
16E1m

3nλ2

3Ra2 (m2 + n2λ2)2
f +

512E1m
2n2λ4

9a4 (m2 + n2λ2)2
f2.

(21)

From Eq. (21) the upper buckling load can be determined by putting f = 0

rupper =
a2

π2hm2

[

(E1E3 − E2

2
)

E1(1− ν2)

(

m2 + n2λ2
)

π4

a4
+

E1m
4

R2 (m2 + n2λ2) 2

]

and the lower buckling load is found using the condition
dr0

df
= 0 , it follows

rlower =
a2

π2hm2

[

(E1E3 − E2

2
)

E1(1 − ν2)

(

m2 + n2λ2
)

π4

a4
−

E1m
4

8R2 (m2 + n2λ2) 2

]

.

The cylindrical panel considered here is made of the same functionally graded mate-
rial aluminum / alumina and subjected to axial compressive load varying linearly on time
as r0 = st. The imperfection amplitude is taken as f0 = 10−2h, the curvature of panel

k2 =
1

5
(m−1) , a = 2m , and the dimension ratio λ = 1

Fig 4. shows the effect of buckling mode shapes on load-deflection curve of FGM
cylindrical panel with the power law index k = 1 under compressive load r0 = 1, 5.109t.
Clearly, the smallest critical dynamic buckling load corresponds to the buckling mode
shape m = 3 , n = 1 and is equal to value rcr = 3, 8.108N

/

m2.
The effect of power law indices k on load-deflection curve is illustrated in the Fig.5,

from that we obtain dynamic critical buckling load rcr = 6, 375.108N
/

m2(for k = 0) ,

rcr = 3, 8.108N
/

m2 (for k = 1) , rcr = 3, 0.108N
/

m2 (for k = 2) respectively. The critical
dynamic buckling load decreases when increasing the power law index k. The full ceramic
shell ( with k = 0) has the greatest dynamic critical buckling load .
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Fig. 4.Effect of buckling mode shapes on

load-deflection curve

Fig. 5. Effect of power law index k on load-

deflection curve

3.2.2. Imperfect FGM cylindrical panel subjected to transverse load

In this case k1 = 0 ; k2 =
1

R
, p0 = r0 = 0 the motion equation (17) has the form

ρ1

d2f

dt2
+

[

(E1E3 − E2

2
)

E1(1 − ν2)

(

m2 + n2λ2
)

π4

a4
+

E1m
4

R2 (m2 + n2λ2) 2

]

(f − f0)

−
16E1m

3nλ2

3Ra2(m2+n2λ2)2
[f2−f2

0
+2f(f−f0)]+

512E1m
2n2λ4

9a4(m2 + n2λ2)2
f(f2−f2

0
)=

16q0

π2mn
.

(22)

The static critical load can be determined from Eq.(22) by putting f̈ = 0 , f0 = 0

and using condition
dq0

df
= 0.

The FGM cylindrical panel considered here is the same as mentioned in the previous
section (i), but under uniformly transverse load varying on time as q0 = 106t. It is found
that the smallest critical dynamic buckling load corresponds to the buckling mode shape
m = n = 1 and is equal to q0 = 0.2233 × 106 N/m2 (see Fig.6). The critical buckling
load for the FGM cylindrical panel with power law index k = 1 and λ = 1 under axial
compression is greater than that under transverse load.

Fig. 7 demonstrates the effect of power law indices on load-deflection curve. The
critical dynamic buckling load has the same tendency decreasing when increasing the
power law index: qcr = 0.366×106 N/m2 (for k = 0) ; qcr = 0.2233×106 N/m2 (for k = 1)
and qcr = 0.175× 106 N/m2 (for k = 2) .

Accordingly comparing with dynamic buckling analysis of perfect FGM cylindrical
panel under transverse load we can see that the imperfection has a slight influence on the
critical load.
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Fig. 6.Effect of buckling mode shapes on

load-deflection curve

Fig. 7. Effect of power law indices on load-

deflection curve

3.2.3. Imperfect FGM spherical panel under transverse load

The motion equation (17) in this case k1 = k2 =
1

R
, p0 = r0 = 0, is of the form

ρ1

d2f

dt2
+

[

(E1E3 − E2
2
)

E1(1 − ν2)

(

m2 + n2λ2
)

π4

a4
+

E1

R2

]

(f − f0)

−
16E1mnλ2

3Ra2(m2 + n2λ2)
[f2 − f2

0 + 2f(f − f0)] +
512E1m

2n2λ4

9a4(m2 + n2λ2)2
f(f2 − f2

0 ) =
16q0

π2mn
.

(23)

Substituting f̈ = 0 and f0 = 0 into Eq.(23) and using condition
dq0

df
= 0 we can

determine the static critical load.
Consider a functionally graded spherical panel under transverse load varying on

time as q0 = st. Geometric characteristics of panel are: a = 2m , h = 1cm, λ = 1, R = 5m
and the imperfection amplitude f0 = 10−2h.

The effect of buckling mode shapes on load-deflection curve of the mentioned FGM
spherical panel with the power law index k = 1 under transverse load q0 = 106t is illus-
trated in the Fig.8. Obviously, the smallest critical dynamic buckling load corresponds to
the buckling mode shape m = 1 , n = 1 and is equal to value qcr = 1, 628.106N

/

m2

Fig. 9 shows the graphs of load-deflection curve of FGM spherical panel with various
power law indices, from that to obtain qcr = 2.746 × 106 (N/m2) (for k = 0), qcr =
1.628 × 106 (N/m2) (for k = 1) and qcr = 1.258 × 106 (N/m2) (for k = 2). The critical
dynamic buckling loads of FGM spherical panel are found to be similar to those of FGM
cylindrical panel. Comparing with results of perfect FGM spherical panel qcr = 2.751×106

(N/m2) (for k = 0), qcr = 1.633 × 106 (N/m2) and qcr = 1.26 × 106 (N/m2) leads to a
conclusion that the initial imperfection f0 = 10−2h slightly influences on the critical
dynamic buckling load.
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Fig. 8.Effect of buckling mode shapes on

load-deflection curve

Fig. 9. Effect of power law index on load-

deflection curve

4. CONCLUSION

The governing equations for non-linear dynamical analysis of functionally graded
shallow shells, including geometric non-linearity, are derived. Derivations are based on the
classical shell theory and with the assumption of power law composition for the constituent
materials.

Non-linear vibration of FGM shallow shells is studied. Frequencies of non-linear
vibration decrease, while amplitudes increase, when increasing the power law index, the
non-linear transient responses perform the phenomenon like periodic cycles.

Non-linear dynamical buckling analysis of FGM shallow shells is carried out. Illus-
trating numerical results obtained here show that the critical dynamic buckling loads for
FGM shallow shells decrease when increasing the power law index.

The initial imperfection has a slight influence on dynamical characteristics of FGM
shallow shells.

ACKNOWLEDGEMENT

This work is completed with partly financial support of VNU project QGTD. 09. 01.

REFERENCES

[1] M. Koizumi, The concept of FGM, Ceram. Trans. Funct. Grad. Mater. 34 (1993) 3-10.
[2] V. Birman, Buckling of functionally graded hybrid composite plates, Proc. of 10 th Conf. on

Eng. Mech. USA, 1995.
[3] E. Feldman, J. Aboudi, Buckling analysis of FGM plates subjected to uniaxial loading.

Composite Structures 38 (1997) 29-36.
[4] J. N. Reddy et al, Axisymmetric bending of FGM circular and annular plates, European J.

of Mech. 18 (1999) 185-199.



14 Dao Huy Bich, Vu Do Long

[5] J. Woo, S. A. Meguid, Non-linear analysis of FGM plates and shallow shells, Int. J. Solid

Struct. 38 (2001) 7409-7421.
[6] R. Naj, M. Sabzikar, M. R. Eslami, Thermal and mechanical instability of FGM truncated

conical shells, Thin-walled Structures 46 (2008) 65-78.
[7] B. A. Sasam Shariat, R. Javaheri, M.R. Eslami, Buckling of imperfect FGM plates under

in-plane compressive loading, Thin-walled Structures 43 (2005) 1020-1036.
[8] S. S. Vel, R. C. Batra, Three dimensional exact solution for the vibration of FGM rectangular

plates, J. Sound and Vibration 272 (3) (2004) 703-730.
[9] A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, Natural frequencies of FGM plates by

meshless method, Composite Structures 75 (2006) 593-600.
[10] Hiroyuki Matsunaga, Free vibration and stability of FGM plates according to a 2-D high

order deformation theory, Composite Structures 82 (2008) 499-512.
[11] S. C. Pradhan, C. T. Loy, K. Y. Lam, J. N. Reddy, Vibration characteristics of FGM cylin-

drical shells under various boundary conditions, Applied Acoustics 61 (2000) 111-129.
[12] C. T. Loy, K. T. Lam, J. N. Reddy, Vibration of FGM cylindrical shells, Int. J. Mech. Sei

41 (1999) 309-324.
[13] A. H. Sofiyev, The stability of compositionally graded ceramic-metal cylindrical shells under

aperiodic axial impulse loading, Composite Structures 69 (2005) 247-257.
[14] A. H. Sofiyev, E. Schnack, The stability of FGM cylindrical shells under linearly increasing

dynamic torsional loading, Engineering Structures 26 (2004) 1321-1331.
[15] J. Yang, H. S. Shen, Non-linear analysis of FGM plates under transverse and in-plane loads,

Int. J. Non-linear Mech. 38 (2003) 467-482.
[16] H. S. Shen, Post-buckling analysis of pressure-loaded FGM cylindrical shells in thermal en-

vironments, Engineering Structures 25 (2003) 487-497.
[17] M. Ganapathi, Dynamic stability characteristics of FGM shallow spherical shells, Composite

Structures 79 (2007) 338-343.
[18] Dao Huy Bich, Non-linear buckling analysis of functionally graded shallow spherical shells,

Vietnam Journal of Mechanics 31 (2009) 17-30.
[19] R. Javaheri, M. R. Eslami, Buckling of FGM plates subjected to temperature rise, Proc. of

4 th Int. Congress on the thermal stresses, Osaka Japan, June 8-11, 2001, 167-170.
[20] A. S. Volmir, Non-linear dynamics of plates and shells, Science Edition, M. 1972.

Received June 21, 2009

PHÂN TÍCH PHI TUYẾN ĐỘNG LỰC VỎ THOẢI KHÔNG HOÀN HẢO
BẰNG VẬT LIỆU CÓ CƠ TÍNH BIẾN THIÊN

Trong bài báo này khảo sát các tính chất động lực của vỏ thoải không hoàn hảo
bằng vật liệu có cơ tính biến thiên. Cơ tính của vật liệu biến thiên theo chiều dày của vỏ
theo quy luật phân bố phụ thuộc vào thể tích thành phần của các vật liệu tham gia tạo
thành vật liệu vỏ. Đã thiết lập các phương trình chuyển động, phương trình ổn định và
phương trình tương thích của vỏ tính đến phi tuyến hình học. Giải các phương trình phi
tuyến bằng phương pháp tích phân số Newmark. Đã nhận được đáp ứng phi tuyến tức
thời của vỏ trụ và vỏ hai độ cong dưới tác dụng của lực kích động ngoài. Tải trọng động
tới hạn của vỏ được xác định dựa trên tiêu chuẩn Budiansky-Roth. Các kết quả nhận được
cho thấy ảnh hưởng đáng kể của các đặc trưng vật liệu cơ tính biến thiên đến các tính
chất động lực của vỏ.


