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Abstract. In this paper, the nonlinear buckling and post-buckling of an eccentrically
stiffened cylindrical shell made of functionally graded materials, surrounded by an elastic
medium and subjected to mechanical compressive loads and external pressures are inves-
tigated by an analytical approach. The cylindrical shells are reinforced by longitudinal
and circumferential stiffeners. The material properties of cylindrical shells are graded in
the thickness direction according to a volume fraction power-law distribution. The non-
linear stability equations for stiffened cylindrical shells are derived by using the first order
shear deformation theory and smeared stiffeners technique. Closed-form expressions for
determining the buckling load and load-deflection curves are obtained. The effectiveness
of stiffeners in enhancing the stability of cylindrical shells is shown. The effects of volume
fraction indexes, material properties, geometrical parameters and foundation parameters
are analyzed in detail.

Keywords: Stiffened cylindrical shells, nonlinear buckling and post-buckling, function-
ally graded, foundations.

1. INTRODUCTION

Functionally graded material (FGM) cylindrical shells in recent years, are exten-
sively used in many modern engineering applications. These structures are usually rested
on or placed in a soil medium modelled as an elastic foundation. Thus, their stability
analysis is an important problem and has received considerable interest by researchers.
Bagherizadeh et al. [1] investigated the mechanical buckling of FGM cylindrical shell
surrounded by Pasternak elastic foundation and subjected to combined axial and radial
compressive loads based on a higher-order shear deformation shell theory (HSDT). The
elastic foundation is modelled by two-parameter Pasternak model, which is obtained by
adding a shear layer to the Winkler model. Shen and Wang [2] presented thermal buckling
and post-buckling behavior for fiber reinforced composite (FRC) laminated cylindrical
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shells embedded in a large outer elastic medium and subjected to a uniform tempera-
ture rise. The surrounding elastic medium is modeled as a Pasternak foundation. Shen [3]
presented the post-buckling response of a shear deformable functionally graded (FG) cylin-
drical shell of finite length embedded in a large outer elastic medium and subjected to
axial compressive loads in thermal environments based on a higher order shear defor-
mation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. Shen et
al. [4] studied post-buckling of internal pressure loaded FG cylindrical shells surrounded
by an elastic medium. This work employed a higher order shear deformation shell the-
ory with von Kármán–Donnell-type of kinematic nonlinearity and a singular perturbation
technique. Sofiyev and Kuruoglu [5] investigated torsional vibration and buckling of the
cylindrical shell with functionally graded coatings surrounded by an elastic medium.

Recently, idea of eccentrically stiffened FGM structures has been proposed by Bich
et al. [6–8] and Najafizadeh et al. [9]. Bich et al. [6–8] studied the nonlinear static buck-
ling behavior of eccentrically stiffened imperfect FGM plates and shallow shells and the
nonlinear dynamic response of eccentrically stiffened FGM imperfect panels and doubly
curved thin shallow shells on the basis of the classical plate and shell theory. Stiffeners are
assumed to be homogenous. By considering FGM stiffeners, Najafizadeh et al. [9] investi-
gated the mechanical buckling behavior of axially loaded FGM stiffened cylindrical shells
reinforced by rings and stringers based on the classical shell theory (CST). Following this
direction, Dung and Hoa [10, 11] researched on nonlinear buckling and post-buckling of
eccentrically stiffened FGM thin circular cylindrical shells under torsional load or external
pressure. Approximate three-term solution of deflection taking into account the nonlinear
buckling shape is chosen and the Galerkin method is used in those works.

In this paper, following the direction of work [6–8], the nonlinear buckling and post-
buckling analysis of eccentrically stiffened FGM thin circular cylindrical shells surrounded
by an elastic medium and under axial load and external pressure based on the first or-
der shear deformation theory (FSDT) is studied. Governing equations using the smeared
stiffeners technique and FSDT are derived. Applying Galerkin’s method, the closed-form
expression to determine the buckling loads and post-buckling equilibrium paths are found.
The effects of various parameters as stiffeners and foundations, volume fraction index of
material and geometrical parameters on the nonlinear stability of cylindrical shells are
shown.

2. FUNCTIONALLY GRADED SHELLS AND

THEORETICAL FORMULATIONS

2.1. Functionally graded material shells

Consider a functionally graded material cylindrical shell of length L, mean radius
R, and uniform thickness h, as depicted in Fig. 1. An orthogonal Descartes coordinate
system xyz is chosen so that the axes x, y (y = Rθ) are in the longitudinal, circumferential
directions, respectively, and the axis z is perpendicular to the middle surface and in inward

thickness direction

(

−
h

2
≤ z ≤

h

2

)

.
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Fig. 1. Configuration of a cylindrical shell surrounded by an elastic medium

The cylindrical shell is assumed to be made from a mixture of ceramic and metal
with the volume-fractions given by a power-law distribution as

Vm + Vc = 1, Vc = Vc(z) =

(

z

h
+

1

2

)k

, (1)

where k is the volume fraction exponent and takes only non-negative values, and the
subscripts m and c refer to the metal and ceramic constituents, respectively. According to
the mixture rule, the effective Young’s modulus can be expressed by

E = E(z) = EmVm + EcVc = Em + (Ec − Em)

(

z

h
+

1

2

)k

(2)

whereas the Poisson’s ratio is assumed to be a constant. As can be seen, from Eq. (2) that,

the surface

(

z =
h

2

)

of a cylindrical shell is ceramic-rich whereas the surface

(

z = −
h

2

)

is metal-rich.

2.2. Theoretical formulations

Using the first order shear deformation shell theory and geometrical nonlinearity in
von Karman sense, the strains across the cylindrical shell thickness at a distance z from
the middle surface are [12]
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in which εx, εy are normal strains, γxy is the in-plane shear strain and γxz, γyz are the
transverse shear deformations. Also, u, v, w are the displacement components along the
x, y, z directions, respectively, and φx, φy are the slope rotation in the (y, z) and (x, z)
planes, respectively. From the relations (5), the compatibility equation of a cylindrical
shell is obtained as

ε0

x,yy + ε0

y,xx − γ0

xy,xy = w2

,xy − w,xxw,yy −
1

R
w,xx. (6)

Assume that the cylindrical shell and stiffeners are treated as assembled shell and
beams elements and shell is reinforced by closely spaced [13] homogeneous ring and stringer
stiffener systems. Stiffener is pure-ceramic if it is located at ceramic-rich side and is pure-
metal if is located at metal-rich side, and such FGM stiffened circular cylindrical shells
provide continuity between shells and stiffeners. In this case, the stress-strain relationship
is given by Hooke’s law as,

for shells

(

σsh
x , σsh

y

)

=
E(z)

1− ν2
[(εx, εy) + ν (εy, εx)] ,

(

σsh
xy, σ

sh
xz, σ

sh
yz

)

=
E(z)

2 (1 + ν)
(γxy, γxz, γyz) , (7)

and for stiffeners [14]

σs
x = Esxεx, σs

y = Esyεy,

σs
xz = Gsxγxz, σs

yz = Gsyγyz.
(8)

where the superscripts “sh” and “s” denote shell and stiffener, respectively; Esx, Esy and
Gsx, Gsy are Young’s moduli and shear moduli of longitudinal and circumferential stiffen-
ers, respectively.

Taking into account the contribution of stiffeners by the smeared stiffeners technique
and omitting the twist of stiffeners and integrating the above stress-strain equations and
their moments through the thickness of the cylindrical shell, we obtain the expressions for
force and moment resultants of an eccentrically stiffened FGM cylindrical shell

Nx =

(

A11 +
EsxA1

d1

)

ε0
x + A12ε

0
y + (B11 + C1) φx,x + B12φy,y,

Ny = A12ε
0
x +

(

A22 +
EsyA2

d2

)

ε0
y + B12φx,x + (B22 + C2)φy,y ,

Nxy = A66γ
0
xy + B66 (φx,y + φy,x) ,

(9)

Mx = (B11 + C1) ε0
x + B12ε

0
y +

(

D11 +
EsxI1

d1

)

φx,x + D12φy,y,

My = B12ε
0
x + (B22 + C2) ε0

y +

(

D22 +
EsyI2

d2

)

φy,y + D12φx,x,

Mxy = B66γ
0
xy + D66 (φx,y + φy,x) .

(10)

The transverse shear force resultants are

Qx = A44w,x + A44φx, Qy = A55w,y + A55φy, (11)
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where the specific expressions of coefficients Aij , Bij, Dij are given as

A11 = A22 =
E1

1 − ν2
, A12 =

E1ν

1 − ν2
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2 (1 + ν)
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+
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+
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,
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(12)

and
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and
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1
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2
,
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,
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h1 + h

2
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h2 + h

2
.

(14)

In the relation (12), χ1 and χ2 are the shear correction factors and are taken as
χ1 = χ2 = 5/6. Note that Young’s modulus of stiffener takes the value being assigned to
Em if the full metal stiffeners are put at the metal-rich side of the cylindrical shell and
conversely being assigned to Ec if the full ceramic ones at the ceramic-rich side. In addition,
the thickness and width for longitudinal stiffeners (x-direction) are respectively denoted
by h1 and b1 and for circumferential stiffeners (y-direction) are h2 and b2. Also, d1 and d2

are the distance between two longitudinal and circumferential stiffeners, respectively. The
quantities A1, A2 are the cross-section areas of stiffeners and I1, I2 are the second moments
of inertia of the stiffener cross sections relative to the cylindrical shell middle surface; and
the eccentricities e1 and e2 represent the distance from the cylindrical shell middle surface
to the centroid of the longitudinal and circumferential stiffener cross section, respectively.
The quantities C1 and C2 are taken plus sign if stiffeners are attached inside and taken
minus sign if they are outside.

The strain-force resultant relations reversely are obtained from Eq. (9)

ε0
x = A∗

22
Nx − A∗

12
Ny − B∗

11
φx,x − B∗

12
φy,y,

ε0
y = A∗

11
Ny − A∗

12
Nx − B∗

21
φx,x − B∗

22
φy,y,

γ0
xy = A∗

66
Nxy − B∗

66
(φx,y + φy,x) .

(15)

Substituting Eq. (15) into Eq. (10) yields

Mx = B∗

11
Nx + B∗

21
Ny + D∗

11
φx,x + D∗

12
φy,y,

My = B∗

12
Nx + B∗

22
Ny + D∗

21
φx,x + D∗

22
φy,y,

Mxy = B∗

66
Nxy + D∗

66
(φx,y + φy,x) ,

(16)
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where the coefficients A∗

ij , B
∗

ij and D∗

ij are found in Appendix I.
The nonlinear equilibrium equations of FGM cylindrical shells surrounded by an

elastic medium, based on the first order shear deformation theory, are [1, 12]

Nx,x + Nxy,y = 0, (17)

Nxy,x + Ny,y = 0, (18)

Qx,x +Qy,y +Nxw,xx +2Nxyw,xy +Nyw,yy +q+
1

R
Ny −K1w+K2 (w,xx + w,yy) = 0, (19)

Mx,x + Mxy,y − Qx = 0, (20)

Mxy,x + My,y − Qy = 0. (21)

where K1 (N/m3) is modulus of subgrade reaction for foundation and K2 (N/m)-the shear
modulus of the subgrade and q is uniform lateral pressure. Introduce Airy’s stress function
f = f(x, y) so that

Nx = f,yy , Ny = f,xx, Nxy = −f,xy. (22)

It is easy to see that the first two equations (17) and (18) are automatically satisfied.
Three equations (19), (20) and (21) become

Mx,xx + 2Mxy,xy + My,yy + f,yyw,xx − 2f,xyw,xy + f,xxw,yy+

+q +
1

R
Ny − K1w + K2 (w,xx + w,yy) = 0,

Mx,x + Mxy,y − Qx = 0,
Mxy,x + My,y − Qy = 0.

(23)

Substituting the expressions of Mij in Eq. (16) and Qx, Qy in Eq. (11) into Eq. (23),
we obtain

Ω ≡B∗
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∂x4
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∂x2∂y2
+ B∗

12
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∂y4
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∂x3
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+
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∂2w
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−

− 2
∂2f
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∂2w

∂x∂y
+

∂2f

∂x2

∂2w

∂y2
+ q +

1

R

∂2f

∂x2
− K1w + K2

(

∂2w

∂x2
+

∂2w

∂y2

)

= 0,

(24)

B∗

21

∂3f

∂x3
+(B∗

11 − B∗

66)
∂3f

∂x∂y2
+D∗

11

∂2φx

∂x2
+(D∗

12 + D∗

66)
∂2φy

∂x∂y
+D∗

66

∂2φx

∂y2
−A44

∂w

∂x
−A44φx = 0,

(25)

B∗

12

∂3f

∂y3
+ (B∗

22
− B∗

66
)

∂3f

∂y∂x2
+ D∗

22

∂2φy

∂y2
+ (D∗

21
+ D∗

66
)

∂2φx

∂x∂y
+ D∗

66

∂2φy

∂x2
−A55

∂w

∂y
−A55φy = 0.

(26)

The system of Eqs. (24) ÷ (26) includes four unknown functions w, φx, φy and f
so it is necessary to find the fourth equation relating to these functions by using the
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compatibility equation (6). For this aim, substituting the expressions of εij in Eq. (15)
into Eq. (6), one can write as

A∗

11

∂4f

∂x4
+ (A∗

66
− 2A∗

12
)

∂4f

∂x2∂y2
+ A∗

22

∂4f

∂y4
− B∗

21

∂3φx

∂x3
− (B∗

11
− B∗

66
)

∂3φx

∂x∂y2
−

− (B∗

22
− B∗

66
)

∂3φy

∂y∂x2
− B∗

12

∂3φy

∂y3
−

(

∂2w

∂x∂y

)2

+
∂2w

∂x2

∂2w

∂y2
+

1

R

∂2w

∂x2
= 0.

(27)

Eqs. (24) ÷ (27) are nonlinear equations in terms of four dependent unknown func-
tions w, φx, φy and f and are used to investigate the stability of eccentrically stiffened
functionally graded (ES-FGM) cylindrical shells surrounded by an elastic medium and
under mechanical loads.

3. BUCKLING AND POST-BUCKLING ANALYSIS

Assume that an ES-FGM cylindrical shell is simply supported at x = 0, x = L
and subjected to in-plane compression load uniformly distributed of intensities Px along
x-direction and uniform lateral pressure q. Thus the boundary conditions are given by

w = φy = Nxy = Mx = 0, Nx = Nx0 = −hPx at x = 0, x = L. (28)

The approximate solution of the system of Eqs. (24) ÷ (27) satisfying the boundary
conditions (28) can be expressed by

w = W sinαx sinβy,
φx = φ10 cosαx sin βy + φ11 sin 2αx,
φy = φ20 sinαx cosβy + φ21 sin 2βy,

f = f1 cos 2αx + f2 cos 2βy + f3 sin αx sinβy +
1

2
Nx0y

2,

(29)

where α =
mπ

L
, β =

n

R
and m is number of half waves in x-direction and n is number of

wave in y-direction, respectively.
Substituting Eq. (29) into Eqs. (25), (26) and (27) and carrying out some calcula-

tions, yield

f1 =
4α2D∗

11 + A44

A∗

11
(4α2D∗

11
+ A44) + 4α2B∗2

21

·

β2

32α2
W

2 = L1.W
2
,

f2 =
4β2D∗

22 + A55

A∗

22
(4β2D∗

22
+ A55) + 4β2B∗2

12

·

α2

32β2
W

2 = L2.W
2
,

f3 =
(A44a22α − A55a12β) a13 + (A55a11β − A44a21α)a23 +

D∗

R
α2

D∗ [α4A∗

11
+ α2β2 (A∗

66
− 2A∗

12
) + β4A∗

22
] + (a13a22 − a12a23) a13 + (a11a23 − a21a13)a23

· W

= L3.W,

(30)

and

φ10 = L4.W, φ20 = L5.W, (31)

φ11 = L6.W
2, φ21 = L7.W

2, (32)

where D∗, Li are given in Appendix II.



292 Dao Van Dung, Nguyen Thi Nga

Substituting the expression (29) into Eq. (24) and then applying Galerkin’s method
to the resulting equation

πR
∫

0

L
∫

0

Ω sin
mπx

L
sin

ny

R
dxdy = 0

yields

α2β2 (L1 + L2)

(

−LπR

2

)

·W 3 +

(

16α4B∗

21L1 + 16β4B∗

12L2 − 2α2β2L3 −
4α2

R
L1 − 8α3D∗

11L6

−8β3D∗

22L7

)

(

−4

3αβ
δmδn

)

· W 2 +

{[

α4B∗

21 + α2β2 (B∗

11 + B∗

22 − 2B∗

66) + β4B∗

12 −
α2

R

]

L3

+
[

α3D∗

11
+ αβ2 (D∗

21
+ 2D∗

66
)
]

L4 +
[

β3D∗

22
+ α2β (D∗

12
+ 2D∗

66
)
]

L5 − α2Nx0

− K1 −
(

α2 + β2
)

K2

}

(

LπR

4

)

· W + q

(

4

αβ
δmδn

)

= 0

(33)

in which δm =
1 − (−1)m

2
, δn =

1 − (−1)n

2
.

Eq. (33) is governing equations used to determine critical buckling loads and post-
buckling load-deflection curves of ES-FGM cylindrical shells surrounded by an elastic
medium and subjected to mechanical compressive loads and external pressures.

If ES-FGM cylindrical shells only subjects to uniform external pressures q, Nx0 = 0
and m, n are odd numbers, thus Eq. (33) becomes

q = q(W ) =
I

3
.W 3

− J.W 2 + K.W. (34)

in which

I = 3α3β3 (L1 + L2)

(

LπR

8

)

,

J = −
1

3

(

16α4B∗

21L1 + 16β4B∗

12L2 − 2α2β2L3 −
4α2

R
L1 − 8α3D∗

11L6 − 8β3D∗

22L7

)

,

K =

{[

α4B∗

21
+ α2β2 (B∗

11
+ B∗

22
− 2B∗

66
) + β4B∗

12
−

α2

R

]

L3 +
[

α3D∗

11
+ αβ2 (D∗

21
+ 2D∗

66
)
]

L4

+
[

β3D∗

22 + α2β (D∗

12 + 2D∗

66)
]

L5 − K1 −
(

α2 + β2
)

K2

}

(

−LπRαβ

16

)

(35)

Eq. (34) leads to the equation from which the upper and lower buckling external
pressures may be obtained as

qu =
1

3I2

[

J
(

3IK − 2J2
)

+ 2
(

J2
− IK

)3/2
]

,

ql =
1

3I2

[

J
(

3IK − 2J2
)

− 2
(

J2
− IK

)3/2
]

,

(36)

The condition providing the existence of the upper and lower buckling loads is

J2
− IK > 0. (37)
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If ES-FGM cylindrical shells only subjects to axial compressive loads, substituting
q = 0, Nx0 = −h.Px into Eq. (33), obtains

Px =

(

−1

hα2

)

(

H2.W
2 + H1.W + H0

)

. (38)

in which

H0 =

»

α
4
B
∗

21 + α
2
β

2 (B∗

11 + B
∗

22 − 2B
∗

66) + β
4
B
∗

12 −

α2

R

–

L3+

+
ˆ

α
3
D

∗

11 + αβ
2 (D∗

21 + 2D
∗

66)
˜

L4 +
ˆ

β
3
D

∗

22 + α
2
β (D∗

12 + 2D
∗

66)
˜

L5 − K1 −

`

α
2 + β

2
´

K2,

H1 =

„

16α
4
B
∗

21L1 + 16β
4
B
∗

12L2 − 2α
2
β

2
L3 −

4α2

R
L1 − 8α

3
D

∗

11L6 − 8β
3
D

∗

22L7

«„

−16

3αβLπR
δmδn

«

,

H2 = − 2α2β2 (L1 + L2) .

(39)

Taking W → 0, Eq. (38) gives the upper buckling load as

Pupper =

(

−1

hα2

)

H0. (40)

The lower buckling load can be obtained from Eq. (38) by using the condition
dPx

dW
= 0 leads to W∗ =

−H1

2H2

and obtains

Plower = Px (W∗) =

(

−1

hα2

)(

H0 −
H2

1

4H2

)

. (41)

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Comparison results

As part of the validation of the present approach, a simple supported un-stiffened
FGM cylindrical shell without elastic foundations under axial compressive load is consid-
ered. The geometrical and material properties of the cylindrical shell are taken by [15]
L/R = 2; Ec = 168.08× 109 Pa; Em = 105.69× 109 Pa; ν =0.3, and k and R/h change.
The buckling load of static-axial loaded FGM cylindrical shells Pscr = Pdcr/τcr in which

Table 1. Comparisons with results of [15] for un-stiffened FGM cylindrical shells
without elastic foundations under axial compressive load

Huang and Han Present Difference (%)

Critical load versus k

R/h = 500

k = 0.2 189.262 (2,11)a 189.166 (3,13) 0.051
k = 1.0 164.352 (2,11) 164.248 (3,13) 0.063

k = 5.0 144.471 (2,11) 144.123 (3,13) 0.241

Critical load versus R/h

k = 0.2

R/h = 400 236.578 (5,15) 236.245 (19,14) 0.141
R/h = 600 157.984 (3,14) 157.558 (22,19) 0.270

R/h = 800 118.898 (2,12) 118.1658 (33,1) 0.616
a Buckling mode (m, n).
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the non-dimensional parameter τcr is the critical parameter and Pdcr is the corresponding
dynamic buckling load, is calculated by Huang and Han [15] and Pupper is given by Eq.
(40) in this paper. The comparison results are given in Tab. 1. It is seen that the present
results are in good agreement to those from the reference [5].

4.2. ES-FGM cylindrical shells surrounded by elastic foundations

In this section the above formulations are used to analyze the effects of input param-
eters on buckling and post-buckling behavior of cylindrical shells. The geometric properties
of shells are h = 0.006m, R/h = 100, L/R = 2, h1 = h2 = 0.006 m, b1 = b2 = 0.003 m and
d1 = 2πR/n1 m, d2 = L/n2 m. The material properties are Ec =380×109 Pa, Em =70×109

Pa, ν =0.3.

Table 2. Critical buckling compressive load for different types of stiffeners (k = 1)

Pupper cr(MPa) Inside stiffeners Outside stiffeners

Without stiffeners 1244.0685 (12,2) 1244.0685 (12,2)

Longitudinal stiffeners (n1 = 26) 1251.1232 (2,7) 1257.5814 (2,7)

Circumferential stiffeners (n2 = 26) 1250.7971 (9,8) 1257.1162 (12,1)

Orthogonal stiffeners (n1 = n2 = 13) 1305.0626 (7,9) 1279.5732 (12,1)
a Buckling mode (m, n).

Tab. 2 shows that the critical buckling loads of FG cylindrical shells without foun-
dations only attached by x-stiffener or by y-stiffener are close each other. But, the combi-
nation of longitudinal and circumferential stiffeners has strongly effect on the stability of
cylindrical shells. The critical load in this case is biggest, but the critical load of cylindrical
shells attached by circumferential stiffeners is smallest, for stiffened cylindrical shells. As
results in Tab. 2, it can be seen that the critical buckling load of stiffened cylindrical shells
is greater than one of un-stiffened cylindrical shells. It is reasonable because the present
of stiffeners makes cylindrical shells to become more rigid.

Table 3. Critical buckling compressive loads (MPa) for different types
of foundation parameters (k = 1)

Foundation
K1 = K2 = 0

K1 =2.5×108 N/m3, K1 = 0, K1 =2.5×108 N/m3,

parameters K2 = 5×105 N/m K2=0 K2 =5×105 N/m

Pupper cr 1244.0685 (12,2) 1286.2857(12,2) 1327.7614 (12,1) 1369.9786 (12,1)
a Buckling mode (m, n).

Tab. 3 shows the effect of the foundation on the critical buckling loads of FGM
cylindrical shells without stiffeners in which the foundation parameters are K1 = 2.5×108

N/m3, K2 = 5 × 105 N/m. The critical load using two foundation parameters is biggest,
whereas the critical load without foundations is smallest. This difference is considerable.
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For example Pupper cr = 1369.9786 MPa for shell with two foundation parameters is great
than Pupper cr = 1244.0685 MPa for shell without about 9.2%.

Tab. 4 shows the effect of both foundations and stiffeners on the critical buckling
loads of FGM cylindrical shells. The number of stiffeners is 26 in all cases. If cylindri-
cal shells have the same value of foundation parameters, the critical load is biggest for
longitudinal stiffeners, but the critical load is smallest for circumferential stiffeners. The
case of two foundation parameters is biggest, the case of the first foundation parameter is
smallest for the same type of stiffener.

Table 4. Critical buckling compressive loads (MPa) for different types
of foundation parameters and stiffeners (k = 1)

Pupper cr(MPa)
K1 = 2.5×108 N/m3, K1 = 0, K1 =2.5×108 N/m3,

K2 = 0 K2 = 5×105 N/m K2 =5×105 N/m

Longitudinal stiffeners
1432.0105 (8,9) 1451.0503 (7,9) 1558.0887 (8,9)

(n1 = 26)

Circumferential stiffeners
1309.8784 (11,7) 1351.9671 (10,7) 1406.1543 (11,6)

(n2 = 26)

Orthogonal stiffeners
1389.0893 (9,8) 1424.0553 (9,8) 1495.6795 (10,7)

(n1 = n2 = 13)

Fig. 2. Effect of volume fraction index on the
nonlinear response of ES-FGM cylindrical shells
under axial compressive load

Fig. 3. Effect of radius-to-thickness ratio on the
nonlinear response of ES-FGM cylindrical shells
under external pressure

Fig. 2 shows the effect of material index k on the stability of inside-stiffened FG
cylindrical shells. As can be seen, the critical buckling compressive loads decrease when
the value of k increases.

In Fig. 3, the effects of radius-to-thickness ratios are focused on with (m, n) = (1, 1),
k = 1. Three values of R/h are 100, 150 and 300. As can be seen that the post-buckling
load-deflection curves become lower when the values of R/h increase.
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Fig. 4. Effect of volume fraction index on the
nonlinear response of un-stiffened FG cylindri-
cal shells under external pressure without elas-
tic foundations

Fig. 5. Effect of volume fraction index on the
nonlinear response of inside-stiffened FG cylin-
drical shells under external pressure with elastic
foundations

Figs. 4 and 5 show the effect of volume fraction index on the nonlinear response of
FG cylindrical shells under external pressure. Fig. 4 is plotted with k = 0, 0.5, 1 and 5 and
(m, n) = (1, 3), L = 2 m, L/R = 5, R/h = 100 for cylindrical shells without both stiffeners
and foundations. Fig. 5 is plotted with k = 0, 1 and 5, (m, n) = (1, 1), h = 0.006 m,
L/R = 2, R/h = 100 for cylindrical shells with orthogonal stiffeners and two-parameter
foundation. As can be seen that the post-buckling load-deflection curves become lower
when the values of k increase, i.e. the load carrying capacity of structures decreases with
the greater percentage of metal.

5. CONCLUSIONS

This paper presents an analytical solution to investigate the buckling and post-
buckling behavior of ES-FGM cylindrical shells surrounded by an elastic medium subjected
to mechanical compressive loads and external pressures. Theoretical formulations are based
on the smeared stiffeners technique and the first-order shear deformation theory. The
analytical expressions to determine the static critical buckling load and analyze the post-
buckling load-deflection are obtained. Numerical results shows the effects of stiffeners,
geometrical parameters and elastic foundations on the buckling and post-buckling response
of ES-FGM cylindrical shells. Some following remarks are deduced from the present results:

a. The stiffeners enhance the stability of cylindrical shells. Particularly, the combi-
nation of longitudinal and circumferential stiffeners has strongly effect on the stability of
shells. The critical load in this case is biggest.

b. The foundation parameters affects strongly critical buckling load. Especially, the
critical buckling load corresponding to the presence of the both foundation parameters K1

and K2 is biggest.
c. The loading carrying capacity of shell is reduced considerably when R/h ratio or

volume fraction index k increases.
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APPENDIX I
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APPENDIX II
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