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Abstract. In this paper, the modelling of a jamming process of a joint during the opera-
tion of a manipulator is presented. Based on the kinematic property of a jamming process,
a motion law of the jammed joint is chosen. By introducing a matrix coressponding to
jammed joint, the equation of motion of the system is restructured without re-deriving.
Some numerical simulations are carried out to illustrate the proposed algorithm.

1. INTRODUCTION

During the operation of a manipulator or of a mechanical system failures can be
occurred. One of these failures is jamming of a joint. The joint can be locked due to a
jammed brake, the stuck of gear transmittion,. . . As consequence, there will be no relative
motion between the two links that are connected through the jammed joint, i.e., the
corresponding links and the joint will be reduced to a single link. The length of the
resultant single link can be calculated from the lengths of two original links, and the relative
position of these links after jamming occurs. A jammed joint will result in the reduction of
a DOF of the manipulators. The issue of fault detection and isolation for serial and parallel
manipulators have been investigated recently [2-6, 10,14,15]. However, the modelling of a
jamming process for simulation has not been discussed yet. The investigation on kinematics
and dynamics of a manipulator in case a joint getting stuck can be carried out by examining
of each case of the jammed joint. The approach method requires time and calculating
burden.

In this paper, the dynamic problem of a manipulator in case of a joint getting stuck
is considered. If the jamming time and the jammed joint are known, the equation of motion
of a manipulator can be determined by introduction of the so-called structure matrix. This
paper is organized as follows: in section 2 the dynamics model in case of a jammed joint
is described. Section 3 shows some results of numerical simulations.

2. MODELLING OF A JAMMING PROCESS

The dynamic equations of a robot manipulator can be derived by using Lagrange’s
theory [1, 7- 9, 11-13] as

M(q)q̈ + C(q, q̇)q̇ + D(q, q̇)q̇ + g(q) = u, (1)
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where q ∈ Rn is the joint position vector, M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centripetal matrix, g(q) ∈ Rn is the
gravitational torque vector, D(q, q̇)q̇ is damping moments, and u ∈ Rn is the applied
torque vector.

The jamming process can occur suddenly and it is difficult to describe. In this paper,
it is assumed that kth joint starts jamming at time t = t1, after a time interval ∆t = t2−t1
this joint is completely jammed. During this time the relative velocity decreases to zero
q̇k → 0 and the joint variable is blocked at qk → qk(t2). Mathematically, the motion of the
jammed joint can be described as follows:

If t1 ≤ t < t2: q̈k(t) = −q̇k(t1)/∆t, q̇k(t) = q̇k + q̈k(t − t1).
If t2 ≤ t: q̈k(t) = 0, q̇k(t) = 0.
Here, in the jamming process the joint acceleration is assumed to be constant. In

order to simulate, the operation of the manipulator can be devided into three phases:
- Normal phase (without jam), 0 < t < t1

q̈ = M−1(q)[u− h(q, q̇) − d], (2)

with h(q, q̇) = C(q, q̇)q̇ + D(q, q̇)q̇ + g(q) + d.
- Jamming phase (joint k get stuck), t1 ≤ t < t2

Ma = ET
k MEk, ha = ET

k h + ET
k Mekq̈k, ua = ET

k u,

q̈a = M−1
a (q)[ua − ha(q, q̇)], q̈ = Ekq̈a + ek q̈k.

(3)

- Joint k is blocked, t2 < t

q̈k(t) = 0, q̇k(t) = 0, Ma = ET
k MEk, ha = ET

k h, ua = ET
k u,

q̈a = M−1
a (q)[ua − ha(q, q̇)], q̈ = Ekq̈a + ekq̈k,

(4)

where Ek ∈ Rn×(n−1) is the so-called structrure matrix obtained by deleting kth colume
of the identical matrix of zise n × n, and ek is a n × 1-vector with ek(k) = 1, ek(i) = 0,
(i 6= k).

Noting that when the joint k gets stuck the degree of freedom of the manipulator is
reduced by one. Hence, the inertia matrix Ma, vectors ha, and ua have a zise of (n − 1),
e.g. Ma ∈ R(n−1)×(n−1), ha ∈ R(n−1)×1, ua ∈ R(n−1)×1. Moreover, the matrix Ma is a
symmetric positive definite one, because this is the inertia matrix of a mechanical system
obtained by rigidening one joint of the original system. The value of k ∈ (1, .., n), jamming
time moment t1 > 0, and jamming duration ∆t = t2 − t1 > 0 can be given by a random
number.

3. NUMERICAL SIMULATION

In this section, some simulations in universal software Matlab is implemented to
illustrate the proposed algorithm. In this simulation, a 3-DOF planar manipulator moving
in the vertical plane is considered. The ith link has a length of Li, a mass of mi, and the
inertia moment respect to Ci is JCi (Ci is a center of mass). The distance from Ci to the
joint connected to (i-1)th link is ai. The torque of motor fixed on link (i-1) acts on link i



On modelling and simulation of a manipulator under consideration of a jammed joint 193

Fig. 1. A 3-DOF planar manipulator

is ui (i= 1, ..., 3). The model of the manipulator and its parameters are shown in Fig. 1
and Table 1.

Let qT = [q1, q2, q3] be the generalized coordinates of the manipulator, q1 is the
angle of link 1, bar OA; q2 is the relative angle of link 2 respective to link 1; and q3 is the
relative angle of link 3 respective to link 2. The kinetic and potential energy of the system
are obtained as follows:

T =
1

2
[JC1

+ m1a
2
1 + JC2

+ m2a
2
2 + m2l

2
1 + 2m2l1a2 cos q2 + 2m2l2a3 cos q3

+ JC3
+ m3a

2
3 + m3l

2
1 + m3l

2
2 + 2m3l1a3 cos(q2 + q3) + 2m3l1l2 cos q2]q̇

2
1

+ [JC2
+ m2a

2
2 + m2l1a2 cos q2 + JC3

+ m3a
2
3 + m3l

2
2

+ m3l1a3 cos(q2 + q3) + m3l1l2 cos q2 + 2m3l2a3 cos q3]q̇1q̇2

+ [JC3
+ m3a

2
3 + m3l2a3 cos q3 + m3l1a3 cos(q2 + q3)]q̇1q̇3

1

2
(JC2

+ m2a
2
2 + JC3

+ m3a
2
3 + m3l

2
2 + 2m3l2a3 cos q3)q̇

2
2

+
(

JC3
+ m3a

2
3 + m3l2a3 cos q3

)

q̇2q̇3 +
1

2
(JC3

+ m3a
2
3)q̇

2
3

(5)

Π = −
3

∑

i=1
migxCi = −{m1ga1 cos q1 + m2g[l1 cos q1 + a2 cos(q1 + q2)]+

+m3g[l1 cos q1 + l2 cos(q1 + q2) + a3 cos(q1 + q2 + q3)]};
(6)

The applied torques of motors acting on links and damping at each joint are given
by the principle of virtual work:

Q1 = −b1q̇1 + u1, Q2 = −b2q̇2 + u2, Q3 = −b3q̇3 + u3 (7)

Applying the Lagrangian equation of the second kind one obtains the equation of
motion in matrix form as (1). The differential equation of motion (1) will be implemented
in Matlab simulink for simulation as in Fig. 2.

In order to check the simulation results, the case of the free motion of the manipu-
lator is investigated. It is clearly that there are no torques applying on the manipulator,
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Table 1. Some parameters of the manipulator

Link 1 2 3

m [kg] 9.00 7.00 5.00

JC [kgm2] 1.50 1.00 0.60

L [m] 0.80 0.70 0.60

a [m] 0.40 0.35 0.30

Fig. 2. The simulink diagram

so the manipulator will move to stable equilibrium qe = [0 0 0]T from any arbitrary ini-
tial position due to gravitational forces and damping at each joint. In simulations the
coordinates of the center of mass is also given to check the reliability of the presented
approach.

Three numerical simulations are carried out: In the first case, there are no fault
(no jammed joint), the second case joint 1 gets stuck at time t1 = 2 s. And in the last
simulation, joint 2 gets stuck at time t1 = 0.5 s. The simulation results are shown in Fig.
3 to Fig. 6.

Fig. 3 present the simulation results of the first case: the manipulator moves to the
equilibrium qe = [0 0 0]T after about 15s. In this case, the center of mass is located at
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Fig. 3. Time history of generalized coordinates (1. case, no jammed joint)
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Fig. 4. Time history of generalized coordinates (2. case, joint 1 gets stuck)
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Fig. 5. Time history of generalized coordinates (3. case, joint 2 gets stuck)

the lowest position, and yC = 0 (Fig. 6). The results of the second case are shown in Fig.
4. The joints 1 gets jamming at the time t1 = 2s, after that q1 becomes a constant, and
the system moves to the equilibrium qe = [0.0645, −0.0645, 0.0]T after about 10 s. The
results show that in the equilibrium q1 = −q2, and q3 = 0.0.

The results of the last case are shown in Fig. 5. Joints 2 gets jamming at time
t1 = 0.5 s, after that q2 becomes a constant, and the system moves to the equilibrium
qe = [0.0473 − 0.1525 0.1051]T after about 15 s. The center of mass in the equilibrium
lies on the x axis, yC = 0.
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Fig. 6. Coordinates of the center of mass

Case 1: No fault
qe = [0, 0, 0]T

Case 2: Jam at joint 1
qe = [0.0645,−0.0645, 0.0]T

Case 3: Jam at joint 2
qe = [0.0473,−0.1525, 0.1051]T

Fig. 7. Some manipulator configurations in equilibrium

Fig. 7 shows the configurations of the manipulator in equilibrium in case of no-
fault, jamming at joint 1, and jamming at joint 2. Visually, these configurations are close
to reality, because the center of mass is always located at the lowest position due to
gravitation.

4. CONSLUSION

In reality, when a joint is completely jammed, the manipulator structure and the
number of degrees of freedom will be changed. This leads to change the forward kinema-
tics. Thus we have to solve the problem for each case of jam of joints. This work requires
time and calculating burden. The presented algorithm in this study has overcome these
difficulties. By choosing a motion law of the jammed joint and introducing the so-called
restructured matrix, the equation of motion of the system is restructured without re-
deriving. The effectiveness of the proposed method is demonstrated by means of numerical
experiments.
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APPENDIX

- Kinetic energy of the maniupulator: T = 1
2JO1

ω2
1 + 1

2

3
∑

i=2
(miv

2
Ci

+ JCiω
2
i
)

Link 1: JO1
= JC1 + m1a

2
1, ω1 = q̇1.

Link 2: xC2 = l1 cos q1 + a2 cos(q1 + q2), ẋC2 = −l1q̇1 sin q1 − a2(q̇1 + q̇2

yC2 = l1 sin q1 + a2 sin(q1 + q2), ẏC2 = l1q̇1 cos q1 + a2(q̇1 + q̇2) cos(q1 + q2),
ω2 = (q̇1 + q̇2), v2

C2 = ẋ2
C2 + ẏ2

C2 = l21q̇
2
1 + a2

2(q̇1 + q̇2)
2 + 2l1a2q̇1(q̇1 + q̇2) cos q2.

Link 3: xC3 = l1 cos q1 + l2 cos(q1 + q2) + a3 cos(q1 + q2 + q3),
yC3 = l1 sin q1 + l2 sin(q1 + q2) + a3 sin(q1 + q2 + q3),
ẋC3 = −l1q̇1 sin q1 − l2(q̇1 + q̇2) sin(q1 + q2) − a3(q̇1 + q̇2 + q̇3) sin(q1 + q2 + q3),
ẏC3 = l1q̇1 cos q1 + l2(q̇1 + q̇2) cos(q1 + q2) + a3(q̇1 + q̇2 + q̇3) cos(q1 + q2 + q3),
ω2 = (q̇1 + q̇2 + q̇3), v2

C3 = ẋ2
C3 + ẏ2

C3.
- The inertia matrix M(q) ∈ Rn×n:
M11 = 2m3l1l2 cos q2 + 2m3l1a3 cos(q2 + q3) + 2m2l1a2 cos q2 + JC2 + m2a

2
2+

+m1a
2
1 + 2m3l2a3 cos q3 + JC1 + m3l

2
2 + JC3 + m3a

2
3 + m3l

2
1 + m2l

2
1,

M12 = JC2 + m3l1a3 cos(q2 + q3) + m3a
2
3 + JC3 + m2l1a2 cos q2+

+2m3l2a3 cos q3 + m2a
2
2 + m3L

2
2 + m3l1l2 cos q2,

M13 = m3l2a3 cos q3 + JC3 + m3l1a3 cos(q2 + q3) + m3a
2
3,

M21 = M12 M23 = JC3 + m3l2a3 cos q3 + m3a
2
3,

M22 = JC3 + 2m3l2a3 cos q3 + JC2 + m2a
2
2 + m3a

2
3 + m3l

2
2,

M31 = M13, M32 = M23, M33 = m3a
2
3 + JC3

- The Coriolis and centripetal matrix C(q, q̇) ∈ Rn×n:
C11 = −m3l1a3q̇2 sin(q2 + q3) − m3l1l2q̇2 sin q2 − m2l1a2q̇2 sin q2

−m3l1a3q̇3 sin(q2 + q3) − m3l2a3q̇3 sin q3,
C12 = −m2l1a2q̇2 sin q2−m3l1l2q̇2 sin q2−m3l1a3q̇2 sin(q2+q3)−m3l1a3q̇3 sin(q2+q3)

−m3L2a3q̇3 sin q3 − m3l1a3q̇1 sin(q2 + q3)− m3l1l2q̇1 sin q2 − m2l1a2q̇1 sin q2,
C13 = −m3a3[l1q̇2 sin(q2 + q3) + l2q̇3 sin q3 + l1q̇3 sin(q2 + q3)

+l1q̇1 sin(q2 + q3) + l2q̇1 sin q3 + l2q̇2 sin q3],
C21 = −m3L2a3 sin(q3)q̇3+m3L1a3 sin(q2+q3)q̇1+q̇1m3L1L2 sin(q2)+q̇1m2L1a2 sin(q2),
C22 = −m3L2a3 sin(q3)q̇3, C23 = −m3L2a3 sin(q3)(q̇3 + q̇1 + q̇2),
C31 = m3a3(q̇1L1 sin(q2 + q3) + q̇1L2 sin(q3) + L2 sin(q3)q̇2),
C32 = m3L2a3 sin(q3)(q̇1 + q̇2), C33 = 0.
- The gravitational torque vector g(q) ∈ Rn:

g(q) =









m1g(a1 sin q1) + m2g[l1 sin q1 + a2 sin(q1 + q2)] + ...
m3g[l1 sin q1 + l2 sin(q1 + q2) + a3 sin(q1 + q2 + q3)

m2ga2 sin(q1 + q2) + m3g[l2 sin(q1 + q2) + a3 sin(q1 + q2 + q3)]
m3ga3 sin(q1 + q2 + q3)









- The applied torque vector u ∈ Rn: u = [u1, u2, u3]
T .
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VỀ VIỆC MÔ HÌNH HÓA VÀ MÔ PHỎNG CHUYỂN ĐỘNG CỦA TAY
MÁY CÓ CHÚ Ý ĐẾN SỰ CỐ KẸT KHỚP

Trong bài báo này, việc mô hình hóa quá trình kẹt của khớp trong khi tay máy vận
hành được trình bày. Trên cơ sở phân tích tính chất động học của quá trình kẹt, một luật
chuyển động của khớp kẹt được chọn để mô tả động học quá trình kẹt. Bằng cách đưa
vào ma trận cấu trúc tương ứng với khớp kẹt, phương trình vi phân chuyển động của hệ
được cấu trúc lại mà không cần phải thiết lập lại. Từ đó giảm được thời gian phân tích
động học và động lực học của hệ khi cấu trúc thay đổi do khớp bị kẹt. Các mô phỏng số
được thực hiện bằng phần mềm đa năng Matlab để minh họa cho thuật toán. Kết quả mô
phỏng đó khẳng định tính đúng đắn và phù hợp của phương pháp tiếp cận trong bài báo.


