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ON MODELLING AND SIMULATION OF A
MANIPULATOR UNDER CONSIDERATION OF A
JAMMED JOINT
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Abstract. In this paper, the modelling of a jamming process of a joint during the opera-
tion of a manipulator is presented. Based on the kinematic property of a jamming process,
a motion law of the jammed joint is chosen. By introducing a matrix coressponding to
jammed joint, the equation of motion of the system is restructured without re-deriving.
Some numerical simulations are carried out to illustrate the proposed algorithm.

1. INTRODUCTION

During the operation of a manipulator or of a mechanical system failures can be
occurred. One of these failures is jamming of a joint. The joint can be locked due to a
jammed brake, the stuck of gear transmittion,. .. As consequence, there will be no relative
motion between the two links that are connected through the jammed joint, i.e., the
corresponding links and the joint will be reduced to a single link. The length of the
resultant single link can be calculated from the lengths of two original links, and the relative
position of these links after jamming occurs. A jammed joint will result in the reduction of
a DOF of the manipulators. The issue of fault detection and isolation for serial and parallel
manipulators have been investigated recently [2-6, 10,14,15]. However, the modelling of a
jamming process for simulation has not been discussed yet. The investigation on kinematics
and dynamics of a manipulator in case a joint getting stuck can be carried out by examining
of each case of the jammed joint. The approach method requires time and calculating
burden.

In this paper, the dynamic problem of a manipulator in case of a joint getting stuck
is considered. If the jamming time and the jammed joint are known, the equation of motion
of a manipulator can be determined by introduction of the so-called structure matrix. This
paper is organized as follows: in section 2 the dynamics model in case of a jammed joint
is described. Section 3 shows some results of numerical simulations.

2. MODELLING OF A JAMMING PROCESS

The dynamic equations of a robot manipulator can be derived by using Lagrange’s
theory [1, 7- 9, 11-13] as

M(q)d + C(q, 4)q + D(q,4)q + g(q) = u, (1)
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where q € R is the joint position vector, M(q) € R™*"™ is the symmetric positive definite
inertia matrix, C(q, ) € R"*" is the Coriolis and centripetal matrix, g(q) € R" is the
gravitational torque vector, D(q, q)q is damping moments, and u € R" is the applied
torque vector.

The jamming process can occur suddenly and it is difficult to describe. In this paper,
it is assumed that k" joint starts jamming at time ¢ = ¢1, after a time interval At = to —t;
this joint is completely jammed. During this time the relative velocity decreases to zero
gr — 0 and the joint variable is blocked at g — qx(t2). Mathematically, the motion of the
jammed joint can be described as follows:

If t; <t <to: Gu(t) = —qr(t1)/ At qr(t) = g + Gr(t —t1).

Ifto <t Gr(t) = 0,4x(t) = 0.

Here, in the jamming process the joint acceleration is assumed to be constant. In
order to simulate, the operation of the manipulator can be devided into three phases:

- Normal phase (without jam), 0 < ¢ < t;

d=M"'(q)[u—h(q,§) —d], (2)

with h(q, q) = C(q, )4 + D(q, )4 + g(q) + d.
- Jamming phase (joint k& get stuck), t1 <t < to

M, = EIME;, h, =Elh+E/Me.j,, u, =Eiu,
da = M, (q)[us — ha(q, )], & = Exdia + exdi-
- Joint k is blocked, to < t
i(t) =0, (1) =0,M, = E{MEy, h,=E{h, u,=Efu,

. N ) . . . (4)
do = Mz (@) [ug — ho(q, )], &= Edq + ek,

where E; € R™ (1) ig the so-called structrure matrix obtained by deleting k" colume
of the identical matrix of zise n x n, and e is a n x 1-vector with ex(k) = 1, ex(i) = 0,
(i #k).

Noting that when the joint k gets stuck the degree of freedom of the manipulator is
reduced by one. Hence, the inertia matrix My, vectors h,, and u, have a zise of (n — 1),
e.g. M, € Rlv=Dx(n=1) ' e R=1x1 "y, ¢ R(=DxL Moreover, the matrix M, is a
symmetric positive definite one, because this is the inertia matrix of a mechanical system
obtained by rigidening one joint of the original system. The value of k € (1, ..,n), jamming
time moment ¢; > 0, and jamming duration At = to —t; > 0 can be given by a random
number.

3. NUMERICAL SIMULATION

In this section, some simulations in universal software Matlab is implemented to
illustrate the proposed algorithm. In this simulation, a 3-DOF planar manipulator moving
in the vertical plane is considered. The i link has a length of L;, a mass of m;, and the
inertia moment respect to C; is Jo; (C; is a center of mass). The distance from C; to the
joint connected to (i-1)%" link is a;. The torque of motor fixed on link (i-1) acts on link i
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Fig. 1. A 3-DOF planar manipulator

is u; (i= 1, ..., 3). The model of the manipulator and its parameters are shown in Fig. 1
and Table 1.

Let ¢ = [q1, q2, ¢3] be the generalized coordinates of the manipulator, q; is the
angle of link 1, bar OA; g5 is the relative angle of link 2 respective to link 1; and g3 is the
relative angle of link 3 respective to link 2. The kinetic and potential energy of the system
are obtained as follows:

1
T = §[J01 + mla% + JCQ + mgag + mgl% + 2malias cos qo + 2m2l2a3 COS g3

+ Joy + msa3 + msli +msl3 + 2malias cos(ga + g3) + 2malila cos ga]d7
+ [Joy + maas + molyag cos ga + Joy + m3a§ + msl3
+mgliaz cos(gz + g3) + malily cos g2 + 2mslaas cos gslgido (5)

+ [Jey + maa3 + malaag cos g3 + maliag cos(ga + 3)]d1ds

1 .
§(JCZ + mgag + Joy + mgag + mglg + 2malaas cos qg)qg

.. 1 )
+ (Jos + maas +malaas cos gs) dads + 5 (Jog +msa3)ds

3
II = - migxci = —{migaj cos q1 + mag[li cosq1 + az cos(q1 + ¢2)]+ (6)
i=1

+mgg(li cos g1 + Iz cos(q1 + q2) + azcos(q1 + g2 + q3)]};

The applied torques of motors acting on links and damping at each joint are given
by the principle of virtual work:

Q1= —big1 + u1, Q2 = —bago + u2, Q3 = —bsgs + us (7)

Applying the Lagrangian equation of the second kind one obtains the equation of
motion in matrix form as (1). The differential equation of motion (1) will be implemented
in Matlab simulink for simulation as in Fig. 2.

In order to check the simulation results, the case of the free motion of the manipu-
lator is investigated. It is clearly that there are no torques applying on the manipulator,
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Table 1. Some parameters of the manipulator

Link 1 2 3
m [kg] 9.00 7.00 5.00
Jo [kem?] 1.50 1.00 0.60
L [m] 0.80 0.70 0.60
a [m] 0.40 0.35 0.30
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Fig. 2. The simulink diagram

so the manipulator will move to stable equilibrium q. = [0 0 0]” from any arbitrary ini-
tial position due to gravitational forces and damping at each joint. In simulations the
coordinates of the center of mass is also given to check the reliability of the presented
approach.

Three numerical simulations are carried out: In the first case, there are no fault
(no jammed joint), the second case joint 1 gets stuck at time ¢t; = 2 s. And in the last
simulation, joint 2 gets stuck at time ¢; = 0.5 s. The simulation results are shown in Fig.
3 to Fig. 6.

Fig. 3 present the simulation results of the first case: the manipulator moves to the
equilibrium g, = [0 0 0]7 after about 15s. In this case, the center of mass is located at
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Fig. 3. Time history of generalized coordinates (1. case, no jammed joint)
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Fig. 4. Time history of generalized coordinates (2. case, joint 1 gets stuck)
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Fig. 5. Time history of generalized coordinates (3. case, joint 2 gets stuck)

the lowest position, and yo = 0 (Fig. 6). The results of the second case are shown in Fig.
4. The joints 1 gets jamming at the time t; = 2s, after that ¢; becomes a constant, and
the system moves to the equilibrium q, = [0.0645, —0.0645, 0.0]” after about 10 s. The
results show that in the equilibrium ¢; = —¢o, and g3 = 0.0.

The results of the last case are shown in Fig. 5. Joints 2 gets jamming at time
t1 = 0.5 s, after that go becomes a constant, and the system moves to the equilibrium
ge = [0.0473 — 0.1525 0.1051]7 after about 15 s. The center of mass in the equilibrium
lies on the z axis, yo = 0.
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Fig. 6. Coordinates of the center of mass
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Fig. 7. Some manipulator configurations in equilibrium

Fig. 7 shows the configurations of the manipulator in equilibrium in case of no-
fault, jamming at joint 1, and jamming at joint 2. Visually, these configurations are close

to reality, because the center of mass is always located at the lowest position due to
gravitation.

4. CONSLUSION

In reality, when a joint is completely jammed, the manipulator structure and the
number of degrees of freedom will be changed. This leads to change the forward kinema-
tics. Thus we have to solve the problem for each case of jam of joints. This work requires
time and calculating burden. The presented algorithm in this study has overcome these
difficulties. By choosing a motion law of the jammed joint and introducing the so-called
restructured matrix, the equation of motion of the system is restructured without re-
deriving. The effectiveness of the proposed method is demonstrated by means of numerical
experiments.
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APPENDIX

3
- Kinetic energy of the maniupulator: T = 3$Jo,w? + & Y (mvd,; + Jow?)
i=2
Link 1: Jol =Jmn —I—mlaf, w1 =q.
Link 2: xco =l cosqr + agcos(q1 + q2), To2 = —li1G1singg — as(d1 + 4o
yo2 = lisingy + agsin(q1 + q2),  Yo2 = l141 cosqr + az(q1 + ¢2) cos(q + g2),
wo = (414 G2), VEg = E2 + Y2o = 13¢3 + a3(d1 + 42)? + 2lazdi(¢1 + d2) cos ga.
Link 3: zc3 = l1cosq1 + 2 cos(q1 + g2) + azcos(q1 + ¢2 + g3),
Yoz = lising + lasin(q + g2) + agsin(q1 + g2 + ¢3),
o3 = —ligisingr — la(g1 + g2) sin(q1 + g2) — a3(q1 + G2 + ¢3) sin(q1 + 2 + g3),
Yoz = l1gr cosqr + la(q1 + g2) cos(q1 + g2) + a3(q1 + g2 + 3) cos(q1 + g2 + g3),
w2 = ((h +q2 + (j3)a U%g = i%g +y%3'
- The inertia matrix M(q) € R™*":
M1 = 2mglila cos g2 + 2mgliag cos(qa + q3) + 2maliag cos g2 + Joo + mgag—i—
—I—mla% + 2mgloag cosqs + Jo1 + mglg + Jos + mgag + mgl% + mgl%,
Mo = Jeg + maliag cos(qa + q3) + m3a§ + Jos + molias cos o+
+2mglaag cos g3 + maa? + mgL3 + malyls cos go,
Mg = mglaag cos g3 + Jos + maliag cos(ga + g3) + maaj,
My = Mys  Mas = Jos + malaag cos g3 + maaj,
Moo = Jog + 2mglsag cos gz + Joo + mga% + m3a§ + mgl%,
Mgy = M3, Msp = M3, Msz=msza3+ Jes
- The Coriolis and centripetal matrix C(q, q) € R™*™:

C11 = —mgsliasgesin(qe + q3) — malilage sin ga — maliazge sin o
—mgaliazgs sin(ge + g3) — mslaazgs sin g3,
Chi2 = —maliaggs sin ga —mslilage sin go —maliazgs sin(ga +q3) —msliasds sin(ga+¢3)

—m3Layasqs sin g3 — maliasqy sin(qz + g3) — malilagy singa — moliazg singo,
Ci13 = —mgas|lig2 sin(q2 + g3) + l2g3 sings + l1G3 sin(qz2 + q3)

+11q1 sin(q2 + q3) + l2¢1 sin gz + l2g2 sin g3),
Co1 = —m3Laaz sin(q3)g3+msLias sin(qa+q3)d1+GimsLi L sin(ga)+¢1maLias sin(ge),
Coo = —m3Laazsin(gs3)gs, Caz = —maLoaszsin(gs)(d3 + 41 + d2),
C31 = maas(d1 L1 sin(ge + g3) + ¢1 Lo sin(gqs) + Lo sin(g3)ge),
C32 = m3Lloagsin(gs)(q1 + ¢2), Cs3 = 0.
- The gravitational torque vector g(q) € R™:

myg(aysingr) + meogll singy + azsin(qr + ¢2)] + ...
e(q) = magllisingi + lzsin(q + g2) + azsin(g1 + g2 + g3)
magaz sin(q1 + q2) + magll2sin(q1 + g2) + azsin(q1 + ¢2 + ¢3)]
magassin(qr + q2 + q3)

- The applied torque vector u € R™: u = [u1, uz, us]’.
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VE VIEC MO HINH HOA VA MO PHONG CHUYEN DONG CUA TAY
MAY CO CHU Y DEN SU CO KET KHOP

Trong bai bao nay, viec mo hinh héa qua trinh ket ctia khép trong khi tay may van
hanh dudc trinh bay. Trén co sé phan tich tinh chat dong hoc clia qua trinh ket, mot luat
chuyén dong ctia khép ket duge chon dé mo ta dong hoc qua trinh ket. Bing cach dua
vao ma tran cau tric tuong ing véi khép ket, phuong trinh vi phan chuyén dong ctia he
dugc cau tric lai ma khong can phai thiét 1ap lai. T d6 gidm duge thoi gian phan tich
dong hoc va dong luc hoc ciia hé khi ciu tric thay ddi do khép bi ket. Cac mo6 phdng s6
dugce thuc hién bing phan mém da ning Matlab dé minh hoa cho thuat toan. Két qua mo
phoéng dé khang dinh tinh ding din va phit hgp clia phuong phéap tiép can trong bai bao.



