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Abstract. The collision of four balls aligned is analyzed in this paper. This study is
based on the fundamental idea that a system formed by rigid bodies is deformable, since
its shape changes because the relative distances of the different bodies change. A simple
linear constitutive law, described by a pseudo-potential of dissipation completed by the
condition of the impenetrability between the balls, is used. we consider the case where
three balls falls on a very massive obstacle. The first ball, considered of very light mass,
bounces with a velocity extensively superior to its fall velocity. This is sometimes called
the superball phenomenon.

This phenomenon is produced according to different cases such as the interaction
between the first ball and the massive obstacle must be presented. Introducing an inter-
action between the first ball and the massive obstacle through the second or the third
ball, the superball phenomenon is produced for all cases of evolutions after the collision.
For every cases of evolutions of the balls after the collision, has been investigated the
relations on the physical parameters which insure the superball phenomenon. These re-
lations are obtained on the basis of the fundamental hypothesis: the mass of the first ball
is very small whereas the mass of the massive obstacle is very large.

1. INTRODUCTION

Let us consider a heavy ball with mass m3 on which rest two other balls with masses
m2 and m1. These balls fall on a very massive obstacle with mass m4, Fig. 1. Mass m1

is assumed to be very small. Experiments show that when the three balls collide the very
massive obstacle, ball 1 rebounds with a very large upward velocity. We intend to give a
predictive theory accounting for this spectacular phenomenon, which is sometimes called
the superball phenomenon [1, 2]. Experiments are more easy to perform with three balls:
ball 1 is a tennis table ball, ball 2 is a soccer ball, ball 3 and 4 are the massive obstacle.

We assume the ball masses are concentrated at their mass center. Thus they are
treated as points (this is equivalent to assume that their mass moment of inertia is equal
to zero). The considered system is made of four points: the three balls and the very massive
obstacle moving along a vertical axis directed upward. This system is deformable because
the relative position of its four elements changes. To describe the velocity of deformation
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Fig. 1. Collision of four balls moving along a vertical axis

of the system, we choose the relative velocities

Dij(U)=Ui − Uj, i = 1..3, j = 2..4 and i < j,

with U = (U1, U2, U3, U4) and Ui are the actual velocities of the ball i. In the sequel
we focus only on collisions, which are assumed instantaneous [3-5]: it is denoted A+ and
A− the value of a quantity A after and before the collision and [A] = A+ − A− is the
discontinuity of the quantity A in the collision.

2. THE EQUATIONS OF MOTION

The equations of motion of the balls result from the principle of the virtual work
[4, 5]. The virtual velocities of the system in a collision are V = (V +, V −)
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where V + and V − are the velocities after and before the collision of the four balls.
The virtual work of the acceleration forces in a collision is
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Because the system is deformable, with deformation velocities Dij(U), there are
internal forces which are percussions. Their virtual work in a collision is [3]
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where Pij are the interior percussions which describe the interactions between the different
balls of the system. It is to be remarked that in this general setting at a distance actions
occur between the different balls. The principle of virtual work assuming there are no
external percussion

∀V Γint(V ) = Γacc(V ), (4)

gives the equations of motion:














m1[U1] = − P12 − P13 − P14,
m2[U2] = P12 − P23 − P24,
m3[U3] = P13 + P23 − P34,
m4[U4] = P14 + P24 + P34.

(5)

3. THE CONSTITUTIVE LAWS

Constitutive laws needed for the interior forces, have to satisfy the second law of
thermodynamics [2, 5]. We know it is satisfied by constitutive laws defined with a pseudo-
potential of dissipation φ(Dij) (a pseudo-potential of dissipation as defined by [6] is a
convex, positive function with value zero at the origin). For the sake of simplicity we
choose a quadratic pseudo-potential function with indicator functions taking into account
the impenetrability of the different balls (U+
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with XT =(X12, X13, X14, X23, X24, X34), Xij =Dij(
U++U−

2
) and dissipative matrix M is
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
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K12 α1 α2 0 0 0
α1 K13 α3 0 0 0
α2 α3 K14 α4 α5 α7

0 0 α4 K23 α6 0
0 0 α5 α6 K24 0
0 0 α7 0 0 K34
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

For the sake of simplicity, we introduced in matrix M , where the coefficients αi

that relate the first ball with the fourth. The six Kij and the seven αi parameters satisfy
relations which insure that matrix M of the quadratic function is positive semi-definite,
in order that φ is a pseudo-potential:
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2
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The constitutive laws are:

Pij =
∂φ

∂Xij

(D(
U+ + U−

2
)), (6)

or

P12 = 2K12X12 + 2α1X13 + 2α2X14 + P reac
12 , (7)

with P reac
12 ∈ ∂I+(D12(U

+)).
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Function I+ is the indicator function of the set of the positive numbers lR
+, ∂I+ is

its subdifferentiel set [7]. The last relation insures impenetrability of balls 1 and 2, reaction
P reac

12 is only activated if there is a risk of interpenetration, i.e. if contact is maintained
after the collision; D12(U

+) ≤ 0.

P13 = 2K13X13 + 2α1X12 + 2α3X14 (8)

P14 = 2K14X14 + 2α2X12 + 2α3X13 + 2α4X23 + 2α5X24 + 2α7X34, (9)

P23 = 2K23X23 + 2α4X14 + 2α6X24 + P reac
23 , (10)

with P reac
23 ∈ ∂I+(D23(U

+)),

P24 = 2K24X24 + 2α5X14 + 2α6X23, (11)

P34 = 2K34X34 + 2α7X14 + P reac
34 , (12)

with P reac
34 ∈ ∂I+(D34(U

+)).
Assuming the velocities before the collision U− are known, it is proved that the

system formed by constitutive laws (7-12) and equation of motion (5) have an unique
solution to velocities after collision.

4. EXAMPLES

Depending on seventeen physical parameters mi, Kij and αi, there are six possible
evolution of the four balls after collision:

- Case 1: the very light ball bounces and the two heavy solids remain in contact
with the massive obstacle.

- Case 2: the two light balls bounce and the heavy solid remains in contact with
the massive obstacle. Depending for its mass, the second ball may or may not remain in
contact with the first ball after the collision; one can have two possible subcases:

• Case 2.1: the two balls that bounce remain in contact after collision.
• Case 2.2: the two balls that bounce don’t remain in contact after collision.

- Case 3: the three balls bounce. Depending on the masses of the two intermediate
balls, there are three possible subcases:

• Case 3.1: the balls number 1 and 2 remain in contact after collision.
• Case 3.2: the balls number 2 and 3 remain in contact after collision.
• Case 3.3: the three balls don’t remain in contact after collision.

For every case we look for conditions on parameters which insure the superball
phenomenon: the small ball bounces with a velocity larger than its incoming velocity. We
think that the superball phenomenon occurs only if there is an interaction between the
very light ball number 1 and ball number 4 (K14 > 0 is very large). In this situation the
interaction between the balls 1 and 4 is produced:

• by an interaction through ball 2,
• by an interaction through ball 3,
• by an interaction through ball 2 and 3 together,
• by a direct interaction.
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We choose to investigate in the sequel

• Case 1, depending on α2,
• Case 2.1, depending on α1 and α6,
• Case 3.2, depending on α5,
• Case 3.3, depending on α4.

The last case is analyzed numerically because the formal calculation is too heavy.
For four cases investigated in the next paragraphs, the velocities before the collision of the
first three balls are equal; U−

1
= U−

2
= U−

3
= −a, and the velocity of the very massive

obstacle is zero. Where −a is the falling velocity with a =
√

2gh where h is the height of
fall.

4.1. Case 1: The very light ball bounces and the two heavy solids remain in
contact with the massive obstacle
As already said; we looked for conditions in order have the superball phenomenon.

We assume α2 6= 0 and the others αi = 0 .
It is looked for conditions on the physical parameters such that

U+

1
> a, U+

2
= U+

3
= U+

4
= U+ ≤ 0 and P reac

23 < 0, P reac
34 < 0 (13)

Fig. 2. The very light ball bounces and the two heavy solids remain in contact
with the massive obstacle

The very light ball bounces with a velocity larger than its falling velocity and the
two heavy solids remain in contact with the massive obstacle, Fig. 2. To obtain those
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conditions, the system formed by the equations of constitutive laws and the equations of
motion is solved assuming the three first relations of (13) are satisfied. Then checking that
the resulting velocities U+

i and the reactions P reac
23

and P reac
34

, unknown of the problem,
depending on the physical parameters have the convenient properties, it results the condi-
tions on parameters. Because it is known the solution to be unique, the conditions insure
that the actual evolution is the one characterised by inequalities (13). Assuming that m4

and K14 are very large compared to the others quantities, the conditions are:

−α2 > 2m1 + K12 + K13,

to have the superball phenomenon (U+

1
> a);

m1 < K14 + α2,

to describe the actual evolution (U+
1

> U+);

α2(α2 + 2m2) ≥ K14(K12 + K24 + 2α2 − m2),

to insure non interpenetration between balls 2 and 3 (P reac
23 ≤ 0);

m2 + m3 ≥ K12 + K13 + K24 + K34,

to insure non interpenetration between balls 3 and 4 (P reac
34 ≤ 0).

Those conditions are similar to the case of collision of three balls valued by [2]
when the very light ball bounces and the heavy solid remains in contact with the massive
obstacle.

The velocity of small ball is

U+
1

= a
K14 + α2 − m1

m1 + K12 + K13 + K14 + 2α2

If we choose K12=−α2(1−ε+ε2), K13=−α2ε
2, K14=−α2(1+ε) and m1=−α2ε

3 satisfy
the last relations, the velocity of ball 1 after the collision is very large and its value is

U+
1

= a
1

2ε

Remark: If we replace α2 by α3; α3 is different from zero and all others αi are

zero, we will also have the superball phenomenon. On the other hand, if we assume α1

and α6 to be different from zero an all the other αi are zero, it is not possible to have the

superball phenomenon.

4.2. Case 2.1: The two light balls bounce and remain in contact and the heavy
solid remains in contact with the very massive obstacle after the collision
We analyze this case where the two light balls that bounce remain in contact and

the heavy solid remains in contact with the very massive obstacle after the collision, Fig.
3, we assume α1 and α6 are different from zero and all others αi are zero. The unknowns
of the problem are: the velocity of the first and second ball that remain in contact U+

12
, the

reaction between them P reac
12 , the velocity of the third ball and the very massive obstacle

that remain in contact U+
34

and the reaction between them P reac
34

. It is looked for conditions
on parameters mi, Kij, α1 and α6 such that

U+
12

> a, U+
34

≤ 0, P reac
12 ≤ 0 and P reac

34 ≤ 0. (14)
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Assuming that m4 and K14 are very large compared to the others quantities, the
conditions are:

−α6 > 2(m1 + m2) + (K13 + K23),

to have the superball phenomenon (U+
12

> a);

α1 > α6 − m3 − 2(m1 + m2),

to describe the actual evolution (U+
34

≤ 0);

α1 ≥ 2m2 + α6 + K23 − K24,

of non interpenetration between the balls 1 and 2 (P reac
12 ≤ 0);

α1 ≥ −m3 + α6 + K13 + K23 + K34,

of non interpenetration between the balls 1 and 2 (P reac
34 ≤ 0).

Fig. 3. The two light balls bounce and remain in contact and the heavy solid
remains in contact with the very massive obstacle after the collision

By having the coefficients α1 and α6 different from zero, that we call by weak
interaction, we have the superball phenomenon. The found conditions are similar to those
found in the case of collision of three balls, where the small ball bounces and the massif
solid remains in contact with the very massive obstacle [2].
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4.3. Case 3.2: The three balls bounce with 2 and 3 remain in contact after the
collision
This case is investigated analytically assuming α5 6= 0 and all others αi = 0. The

unknowns of the problem are: the velocity of the first ball, velocity of the second and third
ball that remain in contact, the reaction between them and velocity of the obstacle massif
(Fig. 4). It is looked for conditions on parameters mi, Kij, and α5 such that

U+
1

> a, U+ < U+
1

, U+
4

< U+ and P reac
23 < 0 (15)

with U+ = U+
2

= U+
3

. To obtain those conditions, the system formed by the equations of
constitutive laws and the equations of motion is solved assuming the three first relations
of (15) are satisfied. Then checking that the resulting velocities U+

i and the reactions
P reac

23 , unknown of the problem, depending on the physical parameters have the convenient
properties, it results the conditions on parameters, such as the m4 and K14 are large enough
compared to the others quantities.

Fig. 4. The three balls bounce with 2 and 3 remain in contact after the collision

The conditions are:
2m1 + K12 + K13 − 2α5 > 0,

to have the superball phenomenon (U+
1

> a);

(m2 + m3)(K14 + α5) < m1(K24 + K34 + α5),

to describe the actual evolution (U+
1

> U+);

α2
5 ≤ K24K14, m2 + m3 < K24 + K34,
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to obtain the actual evolution (U+ > U+
4

);

m2(K13 + K34) < m3(K12 + K24),

of non interpenetration between the balls 2 and 3 (P reac
23 ≤ 0).

Remark If we replace α5 by α7; α7 6= 0 and all others αi are zero, we will also have

the superball phenomenon.

Fig. 5. Comparison between the coefficients of energy dissipation α2 and α5

When the first ball has an interaction with the massive obstacle through the second
ball, the coefficients α2 or α5 is different from zero and all others αi are zero. To understand
the difference between these two coefficients of dissipation, we represent in Fig. 5 the
velocity of the first ball after collision when the first one varies, while the other one is
equal to zero, the other parameters are as follows: m1 = 0.001kg et m2 = m3 = 15kg,
m4 = 5106kg, K12 = 7N/m2, K23 = 1N/m2, K13 = 5N/m2, K24 = 13N/m2, K34 =
12N/m2, K14 = 1500N/m2 and a=3.13209 m/s.

We observe the two coefficients allow to produce this phenomenon. The only dif-
ference is that α2 must be negative whereas α5 must be positive. Let us recall that these
parameters are restricted by the conditions on matrix M.
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4.4. Case 3.3: The three balls that bounce don’t remain in contact after the
collision
The case of the three balls bounce and don’t remain in contact after the collision,

Fig. 6, is investigates numerically because the formal calculation is too heavy. Let us
suppose that the three balls fall on the massive obstacle of a height h = 0.5m, i.e. with
the velocity before the collision a=3.13209 m/s. Let’s consider, as always, that the mass
of the first ball is very small m1 = 0.001kg whereas the mass of the massive is very large
m4 = 5106kg. We assume the α4 6= 0 and the others αi = 0.

Fig. 6. The three balls bounce and don’t remain in contact after the collision

We choose the masses m2 = 10kg and m3 = 15kg and the coefficients of energy dis-
sipation K12 = 7N/m2, K23 = 10N/m2 K13 = 7N/m2, K24 = 13N/m2, K34 = 10N/m2,
K14 = 1500N/m2, α4 = −100N/m2 and the all others coefficients are zero such as the
matrix of energy dissipation M, definite from the pseudo-potential of energy, is positive
semi-definite and the conditions of actual evolutions are verified. By resolution of a linear
system, the unknown vector of the velocities of the four balls after the collision is















U+
1

= 3.3069 m/s
U+

2
= 0.4478m/s

U+
3

= 0.2849m/s
U+

4
= − 0.000017m/s

(16)

The velocity U+
1

is larger than to the velocity before the collision. Thus the superball
phenomenon is accounted in this case. The velocity of the fourth ball is negative and is
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very weak, which is in agreement with the conservation of the quantity of motion. The
velocities U+

2
and U+

3
verify the impenetrability condition.

Now we let coefficient K34 vary and we fixed the other parameters. The results are
shown on Fig. 7.

Fig. 7. Evolution of the velocities of the three balls according to the coefficient K34

One notices that the velocity of the first ball increases weakly by decreasing the
coefficient K34. On the other hand, the velocities of the balls 2 and 3 decrease.

- If K34 > 13.5N/m2; the impenetrability condition is not verified, because U+
3

>U+
2

.
- If K34 = 13.5N/m2; the velocities of the two balls 2 and 3 are equal, i.e. these two

balls remain in contact after the collision (Case 3.2).
- If 6.45 < K34 < 13.5N/m2; the impenetrability condition is verified, because

U+
3

< U+
2

.
- If K34 = 6.45N/m2; the third ball remains in contact with the massive obstacle

(Case 2.2).

5. CONCLUSION

The collision of four aligned rigid balls was studied. A system formed by these rigid
balls is deformable, since its shape changes because the relative distances of the different
bodies change. The superball phenomenon is produced according to different cases such
as the interaction between the first ball and the massive obstacle must be presented. For
every cases of evolutions of the balls after the collision, has been investigated the relations
on the physical parameters which insure the superball phenomenon. These relations are
obtained on the basis of the fundamental hypothesis: the mass of the first ball is very
small whereas the mass of the massive obstacle is very large.
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SỰ VA CHẠM CỦA BỐN QUẢ CẦU XẾP THẲNG HÀNG

Bài báo này trình bày kết quả nghiên cứu về sự va chạm của bốn quả cầu xếp thẳng
hàng. Kết quả nghiên cứu này dựa trên ý tưởng cơ bản là hệ vật rắn sẽ biến dạng khi hình
dạng của hệ thay đổi do khoảng cách tương đối giữa các vật thay đổi. Một luật ứng xử
tuyến tính đơn giản, mô tả bởi hàm tựa thế năng tiêu tán dựa trên điều kiện không xuyên
qua nhau được giữa các quả cầu được sử dụng. Đã xét trường hợp khi ba quả cầu rơi vào
vật cản nặng. Xét quả cầu thứ nhất có khối lượng rất nhẹ nảy trở lại với vận tốc lớn hơn
nhiều vận tốc rơi của nó, Trường hợp này đôi khi được gọi là hiện tượng "siêu cầu". Hiện
tượng này được sinh ra từ các trường hợp khác nhau như sự tương tác giữa quả cầu thứ
nhất và vật cản nặng. Sự tương tác giữa quả cầu thứ nhất và vật cản nặng qua quả cầu
thứ hai hoặc thứ ba, hiện tượng "siêu cầu" được tạo ra từ tất cả các trường hợp xảy ra
sau khi va chạm. Mối liên hệ về các tham số vật lý đảm bảo hiện tượng "siêu cầu" đó
được nghiên cứu ở tất cả các trường hợp xảy ra sau khi va chạm. Những mối liên hệ thu
được dựa trên giả thuyết cơ bản: khối lượng của quả cầu thứ nhất nhỏ hơn rất nhiều so
với khối lượng của vật cản.


