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COLLISION OF FOUR BALLS ALIGNED
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Abstract. The collision of four balls aligned is analyzed in this paper. This study is
based on the fundamental idea that a system formed by rigid bodies is deformable, since
its shape changes because the relative distances of the different bodies change. A simple
linear constitutive law, described by a pseudo-potential of dissipation completed by the
condition of the impenetrability between the balls, is used. we consider the case where
three balls falls on a very massive obstacle. The first ball, considered of very light mass,
bounces with a velocity extensively superior to its fall velocity. This is sometimes called
the superball phenomenon.

This phenomenon is produced according to different cases such as the interaction
between the first ball and the massive obstacle must be presented. Introducing an inter-
action between the first ball and the massive obstacle through the second or the third
ball, the superball phenomenon is produced for all cases of evolutions after the collision.
For every cases of evolutions of the balls after the collision, has been investigated the
relations on the physical parameters which insure the superball phenomenon. These re-
lations are obtained on the basis of the fundamental hypothesis: the mass of the first ball
is very small whereas the mass of the massive obstacle is very large.

1. INTRODUCTION

Let us consider a heavy ball with mass mg on which rest two other balls with masses
ms and mq. These balls fall on a very massive obstacle with mass my, Fig. 1. Mass m;
is assumed to be very small. Experiments show that when the three balls collide the very
massive obstacle, ball 1 rebounds with a very large upward velocity. We intend to give a
predictive theory accounting for this spectacular phenomenon, which is sometimes called
the superball phenomenon [1, 2]. Experiments are more easy to perform with three balls:
ball 1 is a tennis table ball, ball 2 is a soccer ball, ball 3 and 4 are the massive obstacle.

We assume the ball masses are concentrated at their mass center. Thus they are
treated as points (this is equivalent to assume that their mass moment of inertia is equal
to zero). The considered system is made of four points: the three balls and the very massive
obstacle moving along a vertical axis directed upward. This system is deformable because
the relative position of its four elements changes. To describe the velocity of deformation
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Fig. 1. Collision of four balls moving along a vertical axis

of the system, we choose the relative velocities
Dij(U)=U; —U;, i=1.3, j=2.4 and i<},

with U = (Uy, Us, Us,Uy) and U; are the actual velocities of the ball i. In the sequel

we focus only on collisions, which are assumed instantaneous [3-5]: it is denoted AT and
A~ the value of a quantity A after and before the collision and [A] = AT — A~ is the
discontinuity of the quantity A in the collision.

2. THE EQUATIONS OF MOTION

The equations of motion of the balls result from the principle of the virtual work
[4, 5]. The virtual velocities of the system in a collision are V = (V+, V™)

{ vt = (V1+7V2+7V3+7V4+) (1)
Ve = (Vl_v Vys VS_v V4_)
where VT and V~ are the velocities after and before the collision of the four balls.
The virtual work of the acceleration forces in a collision is
Pace(V) = my [0 A + ma[Up] 2ot 4 ms[U3]) At 4 [ g (2)
Because the system is deformable, with deformation velocities D;;(U), there are

internal forces which are percussions. Their virtual work in a collision is [3]

Line(V) = —P12D12(V+J£V7) - P13D13(V+J£V7) - P14D14(V+J£V7)

—P23D23(V+J£V7) - P24D24(V+J£V7) - P34D34(V+J£V7 );

3)
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where P;; are the interior percussions which describe the interactions between the different
balls of the system. It is to be remarked that in this general setting at a distance actions
occur between the different balls. The principle of virtual work assuming there are no
external percussion

vV Fmt(v) = FacC(V)v (4)
gives the equations of motion:
mi[Ui] = — Pio— P13 — P,
mol[Us] = Pia — Pag — Pou, (5)
m3[Us] = P13+ Pag — Psy,
ma[Us] = Pia+ Pos+ P

3. THE CONSTITUTIVE LAWS

Constitutive laws needed for the interior forces, have to satisfy the second law of
thermodynamics [2, 5]. We know it is satisfied by constitutive laws defined with a pseudo-
potential of dissipation ¢(D;;) (a pseudo-potential of dissipation as defined by [6] is a
convex, positive function with value zero at the origin). For the sake of simplicity we
choose a quadratic pseudo-potential function with indicator functions taking into account
the impenetrability of the different balls (U;" > Uy, Uy > Uy and Uy > U)f) .

B(X) = XTMX + L(UF ~ Uf) + L(Uf — U}) + LU} — U})

with XT: (Xlg, Xlg, X14, ng, X24, X34), Xij :DZJ( U+—5U7 ) and dissipative matrix M is

K12 (05} (65)] 0 0 0
a1 K13 a3 0 0 0
as a3 Ky a4 a5 oy

0 0 (7] K23 (675 0
0 0 (07 (675 K24 0
0 0 (0%4 0 0 K34

For the sake of simplicity, we introduced in matrix M, where the coefficients «;
that relate the first ball with the fourth. The six Kj;; and the seven «; parameters satisfy
relations which insure that matrix M of the quadratic function is positive semi-definite,
in order that ¢ is a pseudo-potential:

K;j >0, of < K12K13,03 < K19K14, 03 < K13K14, of < K14Koa3, 02 < K14Kou,

a2 < KogKoag, 02 < K14 K34, K12K13K14 + 2010003 > K203 + K303 + K403,

K14K23K94 + 20uas506 > K140d + Kozai + Kosaf.

The constitutive laws are:

96 Ut +U-
P = D 6
or
P12 = 2K12X12 + 20[1X13 -+ 20[2X14 -+ Plrzeac’ (7)

with P5ec € 01 (Dya(U+)).
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Function I is the indicator function of the set of the positive numbers IR ™, 01, is
its subdifferentiel set [7]. The last relation insures impenetrability of balls 1 and 2, reaction
P59 is only activated if there is a risk of interpenetration, i.e. if contact is maintained
after the collision; D1o(U™) < 0.

Pz = 2K13X13+ 200 X712 + 203X 14 (8)
Py =2K14X14 + 209 X712 + 203X 13 + 204 Xo3 + 205 X4 + 207 X34, 9)
Pz = 2K33Xo3+ 204 X14 + 206 X4 + Po3"c, (10)
with PJSec € A1, (Das(UF)),
Py = 2K21Xo4+ 205 X14 + 2066 X 23, (11)
Py = 2K34X34 +207X14 + P3i", (12)

with P3¢ € 6[+(D34(U+)).

Assuming the velocities before the collision U~ are known, it is proved that the
system formed by constitutive laws (7-12) and equation of motion (5) have an unique
solution to velocities after collision.

4. EXAMPLES

Depending on seventeen physical parameters m;, K;; and o;, there are six possible
evolution of the four balls after collision:

- Case 1: the very light ball bounces and the two heavy solids remain in contact
with the massive obstacle.

- Case 2: the two light balls bounce and the heavy solid remains in contact with
the massive obstacle. Depending for its mass, the second ball may or may not remain in
contact with the first ball after the collision; one can have two possible subcases:

e Case 2.1: the two balls that bounce remain in contact after collision.
e Case 2.2: the two balls that bounce don’t remain in contact after collision.

- Case 3: the three balls bounce. Depending on the masses of the two intermediate
balls, there are three possible subcases:

e Case 3.1: the balls number 1 and 2 remain in contact after collision.
e Case 3.2: the balls number 2 and 3 remain in contact after collision.
e Case 3.3: the three balls don’t remain in contact after collision.

For every case we look for conditions on parameters which insure the superball
phenomenon: the small ball bounces with a velocity larger than its incoming velocity. We
think that the superball phenomenon occurs only if there is an interaction between the
very light ball number 1 and ball number 4 (K14 > 0 is very large). In this situation the
interaction between the balls 1 and 4 is produced:

by an interaction through ball 2,

by an interaction through ball 3,

by an interaction through ball 2 and 3 together,
by a direct interaction.
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We choose to investigate in the sequel
e Case 1, depending on ao,
e Case 2.1, depending on «ay and ag,
e Case 3.2, depending on as,
e Case 3.3, depending on ay.
The last case is analyzed numerically because the formal calculation is too heavy.
For four cases investigated in the next paragraphs, the velocities before the collision of the
first three balls are equal; U, = Uy, = U; = —a, and the velocity of the very massive
obstacle is zero. Where —a is the falling velocity with a = \/2gh where h is the height of
fall.
4.1. Case 1: The very light ball bounces and the two heavy solids remain in

contact with the massive obstacle

As already said; we looked for conditions in order have the superball phenomenon.
We assume as # 0 and the others a; =0 .
It is looked for conditions on the physical parameters such that

Uf >a, Uf=U=U=U"<0 and P35 <0, Pj" <0 (13)

Fig. 2. The very light ball bounces and the two heavy solids remain in contact
with the massive obstacle

The very light ball bounces with a velocity larger than its falling velocity and the
two heavy solids remain in contact with the massive obstacle, Fig. 2. To obtain those
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conditions, the system formed by the equations of constitutive laws and the equations of
motion is solved assuming the three first relations of (13) are satisfied. Then checking that
the resulting velocities UZ-+ and the reactions Py5*¢ and P3{*¢, unknown of the problem,
depending on the physical parameters have the convenient properties, it results the condi-
tions on parameters. Because it is known the solution to be unique, the conditions insure
that the actual evolution is the one characterised by inequalities (13). Assuming that my
and K14 are very large compared to the others quantities, the conditions are:

—ag > 2my + K2 + Kis,
to have the superball phenomenon (U;” > a);
my < K14 + ag,
to describe the actual evolution (U;" > U™);
ag(az +2mg) > K14(Ki2 + K4 + 202 — ma),
to insure non interpenetration between balls 2 and 3 (Py5*¢ < 0);
ma +m3 > K1z + K13+ Koa + K3,

to insure non interpenetration between balls 3 and 4 (P55 < 0).

Those conditions are similar to the case of collision of three balls valued by [2]
when the very light ball bounces and the heavy solid remains in contact with the massive
obstacle.

The velocity of small ball is

Kig+as—my
my + Ko+ K13+ K14+ 209

If we choose K19 =—az(1 —e+¢?), K13=—ase?, K14=—as(1+¢) and m;=—aqe? satisfy
the last relations, the velocity of ball 1 after the collision is very large and its value is
1
Uf' = a%

Remark: If we replace ag by as; as is different from zero and all others «; are
zero, we will also have the superball phenomenon. On the other hand, if we assume oy
and ag to be different from zero an all the other «; are zero, it is not possible to have the
superball phenomenon.

+_
UM"=a

4.2. Case 2.1: The two light balls bounce and remain in contact and the heavy
solid remains in contact with the very massive obstacle after the collision

We analyze this case where the two light balls that bounce remain in contact and
the heavy solid remains in contact with the very massive obstacle after the collision, Fig.
3, we assume «q and ag are different from zero and all others «; are zero. The unknowns
of the problem are: the velocity of the first and second ball that remain in contact Uy, the
reaction between them P[5%¢, the velocity of the third ball and the very massive obstacle
that remain in contact U3+4 and the reaction between them P3{¢. It is looked for conditions

on parameters m;, K;;, oy and ag such that

U >a, Uf; <0, P5*“<0 and P <0. (14)
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Assuming that my4 and K74 are very large compared to the others quantities, the
conditions are:

—ag > 2(my + mo) + (K13 + Ka3),

to have the superball phenomenon (U, > a);
a1 > ag — mg — 2(my + ma),
to describe the actual evolution (U < 0);
a1 > 2mg + ag + Koz — Koy,
of non interpenetration between the balls 1 and 2 (P]5%¢ < 0);
a; > —m3 + ag + K13 + Koz + K3y,

of non interpenetration between the balls 1 and 2 (P5{*¢ < 0).

VAR S m,
Un=U=U; ~a
n,
m,
=05 =07 <0
° I
m,

Fig. 3. The two light balls bounce and remain in contact and the heavy solid
remains in contact with the very massive obstacle after the collision

By having the coefficients a7 and ag different from zero, that we call by weak
interaction, we have the superball phenomenon. The found conditions are similar to those
found in the case of collision of three balls, where the small ball bounces and the massif
solid remains in contact with the very massive obstacle [2].
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4.3. Case 3.2: The three balls bounce with 2 and 3 remain in contact after the
collision

This case is investigated analytically assuming as # 0 and all others a; = 0. The
unknowns of the problem are: the velocity of the first ball, velocity of the second and third
ball that remain in contact, the reaction between them and velocity of the obstacle massif
(Fig. 4). It is looked for conditions on parameters m;, K;;, and as such that

Uf >a, UT<Uf, Uf<U" and P3* <0 (15)

with UT = U2Jr = U3Jr . To obtain those conditions, the system formed by the equations of
constitutive laws and the equations of motion is solved assuming the three first relations
of (15) are satisfied. Then checking that the resulting velocities U;” and the reactions
P35%¢, unknown of the problem, depending on the physical parameters have the convenient
properties, it results the conditions on parameters, such as the m4 and K14 are large enough
compared to the others quantities.

0 m, l +
U <0

Fig. 4. The three balls bounce with 2 and 3 remain in contact after the collision

The conditions are:
2my + K19+ K13 — 205 > 0,

to have the superball phenomenon (U;" > a);
(mo 4+ mg3) (K14 + as) < mqi(Kog + K3g + as),
to describe the actual evolution (U;" > U%);

a2 < KoKy, ma+ma < Koy + Kay,
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to obtain the actual evolution (U™ > U;");
ma (K13 + Kz4) < ms(Ki2 + K2a),

of non interpenetration between the balls 2 and 3 (P35 < 0).
Remark If we replace as by a7; ay # 0 and all others «; are zero, we will also have
the superball phenomenon.

e, fre =0

Welocity of the first ball in mds
?.\; -

="

-0 100 50 a a0 jlun] 150

The cosficients of e pergy dissipation in Him?

Fig. 5. Comparison between the coefficients of energy dissipation as and as

When the first ball has an interaction with the massive obstacle through the second
ball, the coefficients s or as is different from zero and all others «; are zero. To understand
the difference between these two coefficients of dissipation, we represent in Fig. 5 the
velocity of the first ball after collision when the first one varies, while the other one is
equal to zero, the other parameters are as follows: mq = 0.001kg et mo = mg = 15kg,
my = 51061439, K12 = 7N/’I’)’L2, K23 = 1N/’I’)’L2, K13 = 5N/’I’)’L2, K24 = 13N/m2, K34 =
12N/m?, K14 = 1500N/m? and a=3.13209 m/s.

We observe the two coefficients allow to produce this phenomenon. The only dif-
ference is that as must be negative whereas as must be positive. Let us recall that these
parameters are restricted by the conditions on matrix M.
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4.4. Case 3.3: The three balls that bounce don’t remain in contact after the
collision

The case of the three balls bounce and don’t remain in contact after the collision,
Fig. 6, is investigates numerically because the formal calculation is too heavy. Let us
suppose that the three balls fall on the massive obstacle of a height h = 0.5m, i.e. with
the velocity before the collision a=3.13209 m/s. Let’s consider, as always, that the mass
of the first ball is very small m; = 0.001kg whereas the mass of the massive is very large
my = 510%kg. We assume the oy # 0 and the others o; = 0.

U'ra
Z 4 ™
Uy »0
m,
U/ =0
m,
0 e l Ul<0

Fig. 6. The three balls bounce and don’t remain in contact after the collision

We choose the masses mo = 10kg and m3 = 15kg and the coefficients of energy dis-
sipation K1o = TN/m?, Ko3 = 10N/m? K13 = TN/m?, Koy = 13N/m?, K34 = 10N/m?,
Ky = 1500N/m2, ay = —100N/m2 and the all others coefficients are zero such as the
matrix of energy dissipation M, definite from the pseudo-potential of energy, is positive
semi-definite and the conditions of actual evolutions are verified. By resolution of a linear
system, the unknown vector of the velocities of the four balls after the collision is

U = 3.3069 m/s

US = 0.4478m/s (16)
U = 0.2849m/s

Uf = —0.000017m/s

The velocity U- 1+ is larger than to the velocity before the collision. Thus the superball
phenomenon is accounted in this case. The velocity of the fourth ball is negative and is
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very weak, which is in agreement with the conservation of the quantity of motion. The
velocities U™ and U3Jr verify the impenetrability condition.

Now we let coefficient K34 vary and we fixed the other parameters. The results are
shown on Fig. 7.

33
+ 4 + 4 4 + + + + + &
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Fig. 7. Evolution of the velocities of the three balls according to the coefficient K34

One notices that the velocity of the first ball increases weakly by decreasing the
coefficient K34. On the other hand, the velocities of the balls 2 and 3 decrease.

- If K34 > 13.5N/m?; the impenetrability condition is not verified, because U3+ > U2Jr .

- If K34 = 13.5N/m?; the velocities of the two balls 2 and 3 are equal, i.e. these two
balls remain in contact after the collision (Case 3.2).

- If 6.45 < K34 < 13.5N/m?; the impenetrability condition is verified, because
U < Uf.

- If K34 = 6.45N/m?; the third ball remains in contact with the massive obstacle
(Case 2.2).

5. CONCLUSION

The collision of four aligned rigid balls was studied. A system formed by these rigid
balls is deformable, since its shape changes because the relative distances of the different
bodies change. The superball phenomenon is produced according to different cases such
as the interaction between the first ball and the massive obstacle must be presented. For
every cases of evolutions of the balls after the collision, has been investigated the relations
on the physical parameters which insure the superball phenomenon. These relations are
obtained on the basis of the fundamental hypothesis: the mass of the first ball is very
small whereas the mass of the massive obstacle is very large.
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SU VA CHAM CUA BON QUA CAU XEP THANG HANG

Bai bao nay trinh bay két qua nghién citu vé su va cham ctia bén qua cau xép thang
hang. Két qua nghién cttu nay dya trén y tudng co ban 1a hé vat ran sé bién dang khi hinh
dang ctia hé thay doéi do khoang cach tuong déi gitta cac vat thay doi. Mot luat tng xi
tuyén tinh don gidn, mo t4 bdi ham tita thé nang tiéu tan diya trén diéu kién khong xuyén
qua nhau dugc gitta cic qua cau dude st dung. Da xét truong hop khi ba qua cau roi vao
vat can nang. Xét qud cau thit nhat c6 khoi lugng rat nhe nay trd lai véi van toc 16n hon
nhiéu van toc roi ciia n6, Truong hop nay doi khi duge goi 1a hién tugng "siéu cau". Hién
tugng nay dudce sinh ra tir cac truong hop khac nhau nhu syt tuong tac gitta qua cau thi
nhat va vat can ning. Sy tuong tac gitta qua cau thit nhat va vat cdn ning qua qui cau
thit hai hoac thit ba, hién tugng "siéu cau" dugdc tao ra tir tat ca cac truong hdp x3y ra
sau khi va cham. MGdi lien hé vé cac tham s6 vat 1y ddm bdo hién tugng "siéu cau" dé6
dugc nghién citu & tat ca cac truong hop xay ra sau khi va cham. Nhitng méi lién hé thu
dugc duya trén giad thuyét co ban: khéi luong ciia qua cau thit nhat nhé hon rat nhiéu so
v6i khéi lugng clia vat can.



