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Abstract. In this paper, mode shapes of a 3D cracked beam with a rectangular cross
section are analyzed for crack detection. The influence of coupling mechanism between
horizontal and vertical bending vibrations due to the 3D crack model on the mode shapes
is investigated. Due to the coupling mechanism the mode shapes of a beam are twisted
in space. They change from plane curves to space curves. This phenomenon can be used
for crack detection. The existence of the crack can be detected when the mode shapes are
space curves. Also, the mode shapes of a cracked beam bridge have distortions or sharp
changes at the crack position. Therefore, the position of the crack can be determined as a
position at which the mode shapes exhibit such distortions or sharp changes. Moreover,
using the mode shapes in 3D crack model, a crack with depth as small as 1% of the beam
height can be detected, while in previous studies using 2D crack model, distortions in
the mode shapes caused by a small crack cannot be detected. These results are new and
can be used for crack detection of a beam bridge. The stiffness matrix of a 3D cracked
element obtained from fracture mechanics is presented and numerical simulations are
provided in this paper.
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1. INTRODUCTION

The existence of a crack in a structure will influence its dynamic characteristics
such as natural frequencies and mode shapes. Therefore, information from the natural
frequencies and mode shapes is useful for crack detection. The most important problem
for analysing the vibration of a cracked beam is to model the local stiffness at the crack
position. Chondros et al. [1] developed a continuous cracked beam vibration theory for the
lateral vibration of cracked Euler-Bernoulli beams with single-edge or double-edge open
cracks. The crack was modelled as being continuously flexible using the displacement
field in the vicinity of the crack found in fracture mechanics. Lee et al. [2] studied the
influence of a crack on natural frequencies and mode shapes of a beam. The stiffness
matrix of the cracked beam is derived from a flexibility matrix calculated from fracture
mechanics. Sadettin Orhan [3] investigated the influences of the depth and location of the
crack on the natural frequency of a cracked beam. In this study, the flexibility matrix of
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the crack was calculated by using the stress intensity factors based on the finite element
method (FEM). A perturbation method and a transfer matrix approach were proposed
by Gudmundson [4] to investigate the influence of small cracks on the natural frequencies
of slender structures. Zhang et al. [5] presented a method using the transform matrix to
calculate frequencies and mode shapes of a cracked cantilever beam. Some authors [6–9]
modelled cracks as massless rotational springs, whose stiffness were obtained from fracture
mechanics to study the natural frequencies and mode shapes of cracked beams. Recently,
the author of this paper [10] presented a vibration based method for open and breathing
crack detection of a beam bridge subjected to a moving vehicle. The stiffness matrix of a
breathing cracked element was calculated from the stiffness matrix of the intact and open
cracked element which was obtained from fracture mechanics.

Most of the researches model the beams as 1D and 2D structures for investigating
pure longitudinal or bending vibrations, only few of the current works used the 3D beam
model to study more complicated vibrations of the beams. The coupled bending and
longitudinal vibration of a cracked rotor were studied by Papadopoulos et al. [11]. Coupled
bending, longitudinal and torsional vibrations of a cracked rotor were investigated by
Darpe et al. [12]. Saavedra et al. [13] investigated the frequency of forced vibration of a 3D
cracked beam. In these works, the 12×12 stiffness matrices of a cracked element obtained
from fracture mechanics were applied. However, in these works only forced vibrations were
investigated while the influence of a 3D crack on the dynamic characteristics of a beam
such as frequency and mode shape had not been considered and compared with that of
the 1D and 2D beams.

From the above mentions, this paper analyses the influence of the 3D crack model
on the dynamic characteristics of a beam bridge for crack detection purpose. The influence
of the coupling mechanism between horizontal bending and vertical bending vibrations on
the mode shapes of beam due to the 3D crack model is investigated. It is interesting to
show that, while the mode shapes of the intact beam are plane curves, the mode shapes
of the cracked beam are twisted in the 3D space and become space curves. Moreover,
there are distortions or sharp changes in these mode shapes at the position of the crack.
These distortions can be inspected visually with a very small crack by amplifying the
mode shapes to an appropriate scale. In this study, the detection of a crack with depth as
small as 1% of the beam height is illustrated. This result is new and can be applied for
crack detection of a beam. The stiffness matrix of the beam obtained from the fracture
mechanics and the numerical simulation are presented in this paper.

2. FREE VIBRATION OF AN INTACT BEAM IN

FINITE ELEMENT METHOD

In this study, the bridge is considered as an Euler-Bernoulli uniform beam with a
constant rectangular cross-section. The beam is divided by R elements in finite element
analysis. The governing equation of undamped free vibration of the beam can be written
following the finite element method as follows [14]

Md̈ + Kd = 0 (1)
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where M, K are structural mass and stiffness matrices; d is a column vector which denotes
the displacement of the beam.

The solution of Eq. (1) can be found in the form of

d = ϕeiωt (2)

Here ϕ is the amplitude of the nodal displacement, ω is the natural frequency of the
beam, and t is the time. Substituting Eq. (2) into Eq. (1), we have

[

K − ω2
M
]

ϕ = 0 (3)

or
[K − λM]ϕ = 0 (4)

where
λ = ω2 (5)

Eq. (4) is called the eigenvalue equation. To have a non-zero solution for ϕ, the
determinant of the matrix must be zero

det [K − λM] = |K − λM| = 0 (6)

N roots λ1, λ2,..., λN , called eigenvalues will be determined by solving this equa-
tion, where N is the number of DOFs. By substituting these eigenvalue λi back into the
eigenvalue Eq. (4) and solving this equation the eigenvector ϕ will be obtained.

3. FINITE ELEMENT MODEL OF A CRACKED BEAM WITH

RECTANGULAR CROSS SECTION

Considering a uniform beam bridge with rectangular cross section with a crack
located at the distance Lc from the left end. Fig. 1 presents the model of 3D cracked
element with 12 degrees of freedom. The element is loaded with shear forces P2, P3, P8,
P9, bending moments P4, P5, P11, P12, axial forces P1, P7, and torsional moments P4, P10.
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Fig. 1. Model of the cracked element

The stiffness matrix of a cracked element can be derived from the flexibility matrix
as follows [12].
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Using Castingliano’s theorem, a component c̃ij of the total flexibility matrix C̃ is
the sum of the flexibility coefficient of the intact element and the additional flexibility
coefficient due to the crack

c̃ij = c̃
(o)
ij + c̃

(1)
ij (7)

where the flexibility coefficient of the intact element is

c̃
(0)
ij =

∂2W (0)

∂Pi∂Pj
; i, j = 1, 2, ..., 6 (8)

and the additional flexibility coefficient is

c̃
(1)
ij =

∂2W (1)

∂Pi∂Pj
; i, j = 1, 2, ..., 6 (9)

Here, W (0) is the strain energy of the uncracked element; W (1) is the strain energy
due to the crack.

The elastic strain energy of the element can be obtained by considering the action
of axial forces, shear forces, torsion and bending moments at the cross section of the crack
as follows [12]

W (0) =
1

2

[

P 2
1 l

AE
+

κP 2
2 l

GA
+

κP 2
3 l

GA
+

P 2
2 l3

3EIz
+

P 2
6 l

EIz
+

P2P6l
2

3EIz
+

P 2
3 l3

3EIy
+

P 2
5 l

EIy
− P3P5l

2

EIy
+

P 2
4

GI0

]

(10)
Where G is the modulus of rigidity, E is Young’s modulus; A is the cross section

area; Iy, Iz are the inertia moments of the cross section about y and z axes, respectively;
I0 is the polar moment of inertia of the cross section; κ is the shear coefficient.

The additional energy due to the crack of a rectangular element with thickness h
and width b can be expressed as follows

W (1) =

∫

A

1

E ′





(

6
∑

1

KIi

)2

+

(

6
∑

1

KIIi

)2

+µ

(

6
∑

1

KIIIi

)2


 dA (11)

where E ′ =
E

1 − ν2
and µ=1+ν, and KIi, KIIi, KIIIi are stress intensity factors for opening

type, sliding type and tearing type cracks, respectively; i = 1, 2, ..., 6.
Stress intensity factors are obtained from reference [15]

KI1 = σ1

√
παF1(ᾱ), σ1 =

P1

bh
, KI5 = σ5

√
παF1(ᾱ), σ5 =

12P5z

b3h
,

KI6 = σ6

√
παF2(ᾱ), σ6 =

6P6

bh2
, KI2 = KI3 = KI4 = 0,

KII2 = σ2

√
παFII(ᾱ), σ2 =

κP2

bh
, KII4 = σ4

√
παFII(ᾱ), σ4 =

P4

bh
,

KII1 = KII3 = KII5 = KII6 = 0, KIII3 = σ3

√
παFIII(ᾱ), σ3 =

κP3

bh

KIII4 = σ4III

√
παFIII(ᾱ), σ4III =

P4

bh
, KIII1 = KIII2 = KIII5 = KIII6 = 0

(12)
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Here α is the crack depth variable, ᾱ =
α

h
, and

F1

(α

h

)

=

√

2h

πα
tan

(πα

2h

)

.
0.752 + 2.02

(α

h

)

+ 0.37
(

1 − sin
πα

2h

)3

cos
πα

2h

F2

(α

h

)

=

√

2h

πα
tan

(πα

2h

)

.
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(
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)4
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2h

FII

(α

h
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(
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2h

(13)

The stiffness matrix of the cracked element is derived as follows [16]

Kc = T
T˜C−1

T (14)

where T is the transformation matrix

T =

















−1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 −l 0 1 0 0 0 0
0 0 −1 0 l 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 1

















(15)

where l is the length of the element. The stiffness and mass matrices for a 3D element
without a crack are obtained from the finite element method as follows

ke =
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me =
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(17)

Where a =
l

2
, rx =

Ix

a
, and Ix, Iy, Iz are second moments of area (or moments of

inertia) of the cross-section of the beam with respect to the x, y and z axes; I0 is the polar
moment of inertia of the cross section; E is the Young’s modulus.

Finally, the global mass matrix M is assembled from the element mass matrices
me and the global stiffness matrix K of the cracked beam is assembled from the element
stiffness ke and kc. By substituting these matrices M and K into Eqs. (4)-(6) and solving
them, the eigenvalues and eigenvector of the cracked beam are obtained.

4. NUMERICAL SIMULATION AND DISCUSSIONS

A numerical example of a beam like bridge with a crack located at the position of
L/3 from the left end is analyzed. The beam is divided by 50 elements. The boundary
conditions at the two ends of the beam are as follows. At the left end: translations in the
x, y, z directions and rotations about the x, y axes are fixed, while the rotation about the
z axis is free. At the right end: the rotation about the z axis and the translation in the x
direction are free, while translations in the y, z directions and rotations about the x, y axes
are fixed. Parameters of the beam are: Mass density is 7800 kg/m3; modulus of elasticity
E = 2.1 × 1011 N/m2; L = 50 m; b = 1 m; h = 2 m. In order to investigate the influence
of the crack depth on the mode shapes of the beam four levels of the crack from zero to
30% are applied. These four cases are numbered as in Tab. 1.

Table 1. Four cases with cracks of varying depths

Case Crack depth (%)

1 0

2 10

3 20

4 30

The mode shapes are plotted in 3D views by using the values of the three translation
degrees of freedom in the x, y and z directions of the eigenvector. The first mode shape of
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the beam bridge with four different levels of crack depth is investigated and presented in
Figs. 2 to 5. For the intact beam bridge, the first mode shape corresponds to the bending
vibration in the y-direction. This mode shape is a plane curve and lies in the x-y plane,
thus its projection on the x-z plane is parallel to the x-axis as can be seen from Fig. 2.

Fig. 2. The first mode shape, crack depth is 0% Fig. 3. The first mode shape, crack depth is 10%

Fig. 4. The first mode shape, crack depth is 20% Fig. 5. The first mode shape, crack depth is 30%

In this case, the plane curve mode shape means the mode shape lies on a plane. The
first mode shape obtained from the 3D crack model lying on the x-y plane corresponds
to the first mode shape obtained from the 2D crack model. It is interesting to notice
that, when there is a crack the first mode shape is slightly inclined from the x-y plane in
the z direction. By amplifying appropriately the magnitude of the mode shape in the z-
direction this incline can be seen clearly. The first mode shape amplified in the z-direction
is presented in Fig. 3. The mode shape becomes a space curve and its projection on the x-z
plane is not parallel to the x-axis as can be seen from this figure. The space curve mode
shape means the mode shape does not lie on any plane but it twits in the space. When
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the crack depth increases, the incline from the x-axis of the projection of mode shape on
the x-z plane increases as presented in Figs. 4 and 5.

It can be observed that the projection of the first mode shape on the x-z plane has
a sharp change at the crack position. In order to investigate the influence of the crack
depth on the first mode shape, the projections of the mode shape with different levels of
crack depth are presented in the same graph. Four projections of the first mode shape
with four different levels of the crack depth are presented in Fig. 6. As can be seen from
this figure, the projections of mode shape on the x-z plane have sharp changes at the
location of L/3 which corresponds to the crack position. When the crack depth increases,
the incline of the projection of the mode shape with respect to the x-axis increases. From
these observations it is concluded that when there is a crack the first mode shape will be
inclined from the x-y plane. The position at which the projection of mode shape on the
x-z plane has a sharp change corresponds to the crack location. Thus, the projection of
the first mode shape can be used to detect the crack existence and the crack position. The
existence of the crack is indicated by the change of the first mode shape from the plane
curve to the space curve. The crack position can be determined by the location at which
the projection of the first mode shape on the x-z plane has a sharp change.
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Fig. 6. Projections of the first mode shape on
the x-z plane with four levels of crack depth
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Fig. 7. Projections of the first mode shape on
the x-y plane with crack depth of 30%

The change of the first mode shape from the plane curve to the space curve can
be explained by the coupling phenomenon between the horizontal and vertical bending
vibrations caused by the 3D crack. Since the sliding effect can be ignored in front of the
bending effect as discussed in [13], the coupling between horizontal bending and vertical
bending depends mainly on the bending effect of the crack. Numerical simulation has been
carried out to show that the bending vibration of the beam with a 3D crack is the same
with that of beam with a 2D crack when the coupling mechanism is disregarded.

The projection of the first mode shape on the x-y plane of the beam with the crack
depth of 30% is presented in Fig. 7 to compare to the 2D crack model. No distortion
in this projection of the mode shape can be seen at the crack location. This is similar
to previous results where 2D crack models were applied [17, 18]: distortions in the mode
shapes due to the crack cannot be seen visually with a small crack depth, it can only
be seen with a very large crack depth. This implies that the projection of the first mode
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shape on the x-y plane which corresponds to the 2D crack model cannot be used directly
for crack detection when the crack depth is small.

Fig. 8. The second mode shape, crack depth is 0% Fig. 9. The second mode shape, crack depth is 10%

Fig. 10. The second mode shape, crack depth
is 20%

Fig. 11. The second mode shape, crack depth
is 30%

Figs. from 8 to 13 present the second mode shapes with four levels of crack depth.
When the crack depth is zero, the second mode shape is a plane curve lying on the x-z
plane and its projection on the x-y plane is parallel to the x-axis as can be seen in Fig.
8. When there is a crack, the projection of the second mode shape on the x-y plane is
not parallel to the x-axis anymore but it inclines from this axis as can be observed from
Figs. 9 to 12. A small distortion of the mode shape in the 3D view and in the projection
of the mode shape at the crack position can also be seen from these figures. However,
this distortion of the mode shape is not as clear as the first mode shape. Moreover, no
distortion can be found in the projection of this mode shape on the x-z plane with a crack
depth of up to 30% which corresponds to the 2D crack model as presented in Fig. 13. Thus,
the projection of the second mode shape on the x-y plane is only useful for detecting the
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existence of the crack. The second mode shape and its projection on the x-y plane are not
useful for determining the position of the crack.
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Fig. 12. Projections of the second mode shape
on the x-y plane with four levels of crack depth
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Fig. 13. Projections of the second mode shape
on the x-z plane with crack depth of 30%

The third mode shape is presented in Figs. 14 to 19. When the crack depth is
zero, the third mode shape is a plane curve lying on the x-z plane and its projection
on the x-y plane is parallel to the x axis as can be seen in Fig. 14. When there is a
crack, the third mode shape inclines from the x-z plane in the y-direction. The pro-
jection of the third mode shape on the x-y plane inclines from the x-axis as can be
observed from Figs. 15 to 17. The distortion of the mode shape in the 3D view at the crack
position can also be seen from these figures. This distortion can be
seen clearer by projecting the mode shape on the x-y plane as shown in Fig. 18. It is
evident a sharp change in the projection of the third mode shape can be detected at the
crack location, while no distortion can be detected in the projection of the mode shape in
the x-z plane as shown in Fig. 19.

Fig. 14. The third mode shape, crack depth is 0% Fig. 15. The third mode shape, crack depth is 10%

From the above discussion, it can be said that all of the first three mode shapes can
be used for detection of the crack existence. However, while the first and the third mode
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shapes are useful for detection of the crack location, it is difficult to use the second mode
shape for the same purpose.

Fig. 16. The third mode shape, crack depth is 20% Fig. 17. The third mode shape, crack depth is 30%
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Fig. 18. Projections of the third mode shape on
the x-y plane with four levels of crack depth
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Fig. 19. Projections of the third mode shape on
the x-z plane with crack depth of 30%

Fig. 20. Projection of the first mode shape, crack depth is 1%
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It should be noted that, in order to compare the influence of the different levels
of crack depth on the mode shapes in the same graph with the same scale, only three
levels of crack depth ranging from 10% to 30% are investigated in this paper as presented
above. However, smaller cracks can still be detected by the applying the mode shapes to
larger scales. Fig. 20 presents the projection of the first mode shape on the x-z plane with
the crack depth of 1% amplified to a scale which is two hundred times larger than the
normalized scale. It is evident a sharp change in the projection of the third mode shape
can be detected clearly at the crack location. This means that the proposed method can be
applied for detection arbitrary small cracks by amplifying the mode shapes to appropriate
scales.

5. SUMMARY AND CONCLUSION REMARKS

In this paper, the mode shapes of a 3D cracked beam-like bridge are calculated using
finite element method. The twist of mode shapes caused by a 3D crack can be applied
for crack detection of a beam-like bridge. The derivation of the stiffness matrix of a 3D
cracked element derived from fracture mechanics is presented. The concluding remarks
can be listed as follows:

It is interesting to notice that, due to the coupling mechanism of the 3D crack model,
the mode shapes become space curves instead of plane curves. The mode shape in the 3D
model inclines from its plane which corresponds to the case of intact beam.

Therefore, the existence of the crack can be determined by the incline of the mode
shape from its plane in the case of intact beam or the mode shapes change from plane
curve to space curves.

The position of distortions or sharp changes in the mode shapes caused by the crack
can be determined as the position of the crack.

The advantage of using the 3D crack model over the 2D crack model is that the
influence of crack on the mode shapes can be observed visually with arbitrary small crack
depth by amplifying the mode shapes to appropriate scales. In this paper, the detection of
a crack with depth as small as 1% is presented, while in previous studies using 2D crack
models, the distortion of crack can only be inspected from the mode shape with a crack
depth of lager than 50% [17, 18]. This result is new and can be applied for crack detection
of a beam.
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