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Abstract. Nowadays, the structures of continuous girder bridges are becoming more
and more popular with the rapid development of highway networks in many nations
around the world, including Vietnam. High strength materials are commonly used to
construct the bridge structures, so they are very slender and sensitive to the effects of
dynamic loads, especially in the cases that vehicles run with high speed or brake suddenly
on the bridges. In this paper, the author would like to introduce the study of a model of
dynamic interaction between two-axle vehicle and continuous girder bridge. The model
of a two-axle vehicle consists of three masses, taking into account the inertia force and
friction force between the tires and the bridge surface due to vehicle braking. Vertical
reaction forces of axles which change with time make bending vibration of beam increase
significantly. The results of the experiment on the Hoaxuan Bridge and the analysis of the
computerized model indicate that dynamic factors are substantial when vehicle brakes
suddenly on bridge.

Keywords : Dynamic interaction, braking force, two-axle vehicle, continuous girder,
Hoaxuan bridge.

1. INTRODUCTION

The vibration of bridges subjected to moving loads or moving masses has been a
topic of interest for over a century. Interest in this problem originated in civil engineering
for the design of railway tracks and bridges and in mechanical engineering for the trolleys of
overhead cranes that move on their girders, as well as in machining processes. The problem
arose from observation as follows: bridge structure is subjected to moving vehicles or trains,
the dynamic deflection as well as the stresses could become significantly higher than those
for static loads. Two early interesting contributions in this area were made by Stokes [1]
and Willis [2] for the cases of a mass passing over a beam and for the analysis of trains
crossing a bridge. Timoshenko [3] presented the classical solution of a beam subjected
to a constant moving load. Early models adopted to simulate bridge-vehicle interaction
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are normally considered simply supported beams with a single, lumped load moving at
constant speed along its span. These models evolve from the original work by Fryba [4] and
Timoshenko et al. [5]. Warburton [6] analytically investigated the same problem and found
that the maximum dynamic factor of deflection was 1.743. Esmailzadeh and Ghorashi [7]
have tackled the problem of transverse vibration of simply supported beams traversed
by a partially distributed moving mass. In a later study, a comprehensive investigation
involving the dynamic response of a Timoshenko beam subjected to a partially distributed
moving mass, in its most general form, has been carried out by Esmailzadeh and Ghorashi
[8] and Wang [9]. The relationship between the bridge vibration characteristics and the
vehicle speed was established. Resulting in a search for a particular speed that determines
the maximum values of dynamic deflection of the bridge has been carried out by Jalili and
Esmailzadeh [10].

Law and Zhu [11] have recently studied the dynamic behavior of a multi-span non-
uniform continuous bridge under a moving vehicle with considering the effect of interaction
between the structure, the road surface roughness. Ju and Lin [12] applied the finite
element method to analyze vehicle-bridge dynamic responses due to vehicle braking with
simple model.

In Vietnam, the bending vibration of continuous beams under the effect of moving
objects was calculated by Do Xuan Tho [13]. Bending vibration of beam element under
moving loads has been carried out by Nguyen Xuan Toan when vehicle braking forces are
considered [14].

In this paper, the author studied the dynamic interaction between a two-axle vehicle
and a continuous girder bridge considering the braking force. The continuous girder bridge
is divided into beam elements to apply the Finite Element Method (FEM) for the vibration
analysis. The model of a two-axle vehicle consists of three masses, taking into account the
inertia force and friction force between the tires and the bridge surface due to vehicle
braking. This model is nearly similar to the model in the reference [14]. However, the
vertical displacements of the masses m, m1, m2 have been taken into account in the torque
balance of the whole system. Numerical analysis results have been compared with the
experimental testing results carried out on Hoaxuan bridge in Danang city.

2. COMPUTATIONAL MODEL AND ASSUMPTIONS

The diagram of a two-axle vehicle on the Hoaxuan Bridge in Danang city, is shown
in Fig. 1. The dynamic interaction model between a two-axle vehicle and a beam element,
when we consider vehicle braking forces, is shown in Fig. 2.

Fig. 1. Diagram of a two-axle vehicle on the Hoaxuan Bridge
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Fig. 2. Dynamic interaction model between a two-axle vehicle and a beam element

Where:

xi =







vi.(t − ti) − xelf ; when ti ≤ t ≤ tbi

vi.(tbi − ti) +

[

ai.(t− tbi)

2
+ vi

]

.(t − tbi) − xelf ; when tbi < t ≤ tei
; 0 ≤ xi ≤ L

(1)
L - length of the beam elements
t - time variation
x0 - coordinate of the center of mass m at time t

xi - coordinate of the ith axes of the vehicle at time t

xelf - distance between the left side of the bridge and the left side of the beam element

vi - velocity of the ith axle before a brake is used
ai - acceleration of the ith axle when a brake is used (ai < 0)
ti - time when the ith axle begins entering the bridge
tbi - time when a brake on the ith axle is applied
tei - time when the ith axle stops
P = G. sin(Ω.t + α) is the stimulation force caused by the eccentric mass of the engine
m - mass of the entire vehicle and goods, excluding the mass of the axles
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m1, m2 - mass of the 1st, 2nd axles respectively
ds1, ds2 - damping factors of the 1st, 2nd axle suspension respectively
dt1, dt2 - damping factors of the 1st, 2nd tire respectively
ks1, ks2 - spring stiffness of the 1st, 2nd axle suspension respectively
kt1, kt2 - spring stiffness of the 1st, 2nd tire respectively
s̈ - acceleration of vehicle
ϕ - rotation angle of the chassis
u - vertical displacement of centre of the chassis
u1, u2 - vertical displacements of the chassis at the 1st, 2nd axles respectively
u1, u2 - vertical displacements of the 1st, 2nd axles respectively
ys1, ys2 - relative displacements between the chassis and the 1st, 2nd axles respectively
yt1, yt2 - relative displacements between the beam element and the 1st, 2nd axles respec-
tively
h, h1, h2 - heights from the centre of beam to center of mass m, m1, m2 respectively
Tt1, Tt2 - frictional forces between tire and bridge surface when the brake is used

Inertial forces, damping forces, elastic forces, stimulating forces and braking forces
affecting on the system are shown in Fig. 2.
The following assumptions are adopted:

The mass of the whole vehicle, excluding the mass of the axles is transferred to the
center of masses of the whole system. It is equivalent to the mass m and the rotational
inertia J.

The mass of the 1st axle is m1, which is regarded as a mass point at the center of
the corresponding axle. This is the same case for the mass of 2nd axle, m2.

The chassis is assumed to be absolutely rigid.
The materials of a beam are in the linear elastic stage. The bridge surface has the

homogeneous friction coefficient over the entire bridge surface.
Brake forces of the axles of vehicle are assumed to occur simultaneously. The di-

rection of the forces between bridge surface and tires are assumed to be in the opposite
direction of the movement of a vehicle as shown in Fig. 2.

According to this assumption, the friction forces between bridge surface and tires,
called Tt1, Tt2, will decelerate gradually the vehicle and produce inertia forces −m1 . s̈,
−m2 . s̈, −m . s̈.

When the vehicle’s brake is applied suddenly, the forces Tt1, Tt2 are assumed to be
directly proportional to loaded weight of vehicle

Tt1 + Tt2 = (m + m1 + m2).g.τ (2)

τ - the fiction factor between bridge surface and tires
g - the acceleration of gravity

3. BENDING VIBRATION OF BEAM ELEMENTS DUE TO BRAKING

APPLIED ON A TWO-AXLE VEHICLE

Based on the calculation model and assumptions in Section 1, the system of masses
m, m1, m2, inertial forces, damping forces, elastic forces, stimulating forces, and braking
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forces is taken into account. In this case, braking forces are converted to the bridge surface
friction forces Tt1, Tt2 as shown in Fig. 2.

Applying the principle of D’Alembert, and considering the balance of each mass
m, m1, m2 on the vertical axis and that of the whole system on the horizontal axis, we
have

P − m.ü− Fs1 − Fs2 − m.g = 0

Fs1 − Ft1 − m1.ü1 − m1.g = 0

Fs2 − Ft2 − m2.ü2 − m2.g = 0

Tt1 + Tt2 + (m + m1 + m2) . s̈ = 0

(3)

Similarly, considering the torque balance of the whole system with the 0 point, we
have

(P − m.ü − m.g) .x0 + m.s̈.(h + u) − J.ϕ̈ − (m1.ü1 + m1.g).x1 + m1.s̈.(h1 + u1)

− (m2.ü2 + m2.g).x2 + m2.s̈.(h2 + u2) + Tt1.w1 + Tt2.w2 − (Ft1.x1 + Ft2.x2) = 0
(4)

Combining (2) with (3) and (4), then having them transformed, we obtain a set of
equations

J.ϕ̈ + [ds1(x1 − x0)
2 + ds2(x2 − x0)

2].ϕ̇ + [ds1(x1 − x0) + ds2(x2 − x0)].u̇

− ds1(x1 − x0).u̇1 − ds2(x2 − x0).u̇2 + [ks1(x1 − x0)
2 + ks2(x2 − x0)

2].ϕ

+ [ks1(x1 − x0) + ks2(x2 − x0)− m.s̈].u− [ks1(x1 − x0) + m1.s̈].u1

− [ks2(x2 − x0) + m2.s̈].u2 − Tt1.w1 − Tt2.w2 − (m.h + m1.h1 + m2.h2).s̈ = 0

m.ü + [ds1(x1 − x0) + ds2(x2 − x0)].ϕ̇ + (ds1 + ds2).u̇− ds1.u̇1 − ds2.u̇2

+ [ks1(x1 − x0) + ks2(x2 − x0)].ϕ + (ks1 + ks2).u− ks1.u1 − ks2.u2 − P + m.g = 0

m1.ü1 − ds1(x1 − x0).ϕ̇− ds1.u̇ + (ds1 + dt1).u̇1

− ks1(x1 − x0).ϕ− ks1.u + (ks1 + kt1).u1 − dt1.ẇ1 − kt1.w1 + m1.g = 0

m2.ü2 − ds2(x2 − x0).ϕ̇− ds2.u̇ + (ds2 + dt2).u̇2

− ks2(x2 − x0).ϕ− ks2.u + (ks2 + kt2).u2 − dt2.ẇ2 − kt2.w2 + m2.g = 0

s̈ = − g.τ

(5)
The reactive forces Ft1 and Ft2 are as follows

Ft1 = − m1.ü1 + ds1(x1 − x0).ϕ̇ + ds1.u̇ − ds1.u̇1 + ks1(x1 − x0).ϕ + ks1.u− ks1.u1 − m1.g

Ft2 = − m2.ü2 + ds2(x2 − x0).ϕ̇ + ds2.u̇ − ds2.u̇2 + ks2(x2 − x0).ϕ + ks2.u− ks2.u2 − m2.g

(6)
According to [15], the differential equations of beam element can be written as

follows

EJd.

(

∂4w

∂x4
+ θ.

∂5w

∂x4.∂t

)

+ ρFd.
∂2w

∂t2
+ β.

∂w

∂t
= ξ(x1).Ft1.δ(x− x1) + ξ(x2).Ft2.δ(x− x2)

(7)
In which:

δ(x − xi) is Dirac delta function
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ξ(xi) =

{

1 when 0 ≤ xi ≤ L

0 when xi < 0 or xi > L
is the logic control signal function
xi - is determined by the formula (1).
w - deflection of the beam elements
EJd - bending stiffness of beam elements
ρFd - mass of the beam element on a length unit
θ and β - coefficient of internal friction and coefficient of external friction
The Galerkin method and Green theory are applied to transform (5), (6) and (7)

into a matrix form, and the differential equations of beam element can be written as follows

Me.q̈ + Ce.q̇ + Ke.q = fe (8)

q̈, q̇, q, fe - mixed acceleration vector, mixed velocity vector, mixed displacement vector,
mixed forces vector, respectively

q̈ =

{

ẅe

z̈

}

; q̇ =

{

ẇe

ż

}

; q =

{

we

z

}

; fe =

{

fw

fz

}

; we =















w1

ϕ1

w2

ϕ2















; z =















ϕ

u

u1

u2















;

(9)
w1, ϕ1 - deflection and rotation angle of the left end of element
w2, ϕ2 - deflection and rotation angle of the right end of element
Me, Ce, Ke - mass matrix, damper matrix, stiffness matrix, respectively

Me =

[

Mww Mwz

Mzw Mzz

]

; Ce =

[

Cww Cwz

Czw Czz

]

; Ke =

[

Kww Kwz

Kzw Kzz

]

; (10)

Mww, Cww, Kww - mass matrix, damper matrix, stiffness matrix of beam elements [15].

Mwz =









0 0 m1.P11 m2.P12

0 0 m1.P21 m2.P22

0 0 m1.P31 m2.P32

0 0 m1.P41 m2.P42









; fw = −















g(m1.P11 + m2.P12)
g(m1.P21 + m2.P22)
g(m1.P31 + m2.P32)
g(m1.P41 + m2.P42)















; (11)

Cwz = −









ds1(x1 − x0)P11 + ds2(x2 − x0)P12 ds1P11 + ds2P12 −ds1P11 −ds2P12

ds1(x1 − x0)P21 + ds2(x2 − x0)P22 ds1P21 + ds2P22 −ds1P21 −ds2P22

ds1(x1 − x0)P31 + ds2(x2 − x0)P32 ds1P31 + ds2P32 −ds1P31 −ds2P32

ds1(x1 − x0)P41 + ds2(x2 − x0)P42 ds1P41 + ds2P42 −ds1P41 −ds2P42









(12)

Kwz = −









ks1(x1 − x0)P11 + ks2(x2 − x0)P12 ks1P11 + ks2P12 −ks1P11 −ks2P12

ks1(x1 − x0)P21 + ks2(x2 − x0)P22 ks1P21 + ks2P22 −ks1P21 −ks2P22

ks1(x1 − x0)P31 + ks2(x2 − x0)P32 ks1P31 + ks2P32 −ks1P31 −ks2P32

ks1(x1 − x0)P41 + ks2(x2 − x0)P42 ks1P41 + ks2P42 −ks1P41 −ks2P42









(13)
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Mzz =









J 0 0 0
0 m 0 0
0 0 m1 0
0 0 0 m2









; fz =















(m.h + m1.h1 + m2.h2).s̈
P − m.g

−m1.g

−m2.g















; (14)

Czz=







ds1(x1 − x0)
2

+ ds2(x2 − x0)
2

ds1(x1 − x0) + ds2(x2 − x0) −ds1(x1 − x0) −ds2(x2 − x0)
ds1(x1 − x0) + ds2(x2 − x0) ds1 + ds2 −ds1 −ds2

−ds1(x1 − x0) −ds1 ds1 + dt1 0
−ds2(x2 − x0) −ds2 0 ds2 + dt2







(15)

Kzz=







ks1(x1−x0)
2
+ks2(x2−x0)

2
ks1(x1−x0)+ks2(x2−x0)−ms̈ −ks1(x1−x0)−m1 s̈ −ks2(x2−x0)−m2 s̈

ks1(x1−x0)+ks2(x2−x0) ks1 + ks2 −ks1 −ks2

−ks1(x1 − x0) −ks1 ks1 + kt1 0
−ks2(x2 − x0) −ks2 0 ks2 + kt2







(16)

Mzw = 0; Czw =









0 0 0 0
0 0 0 0

−dt1.P11 −dt1.P21 −dt1.P31 −dt1.P41

−dt2.P12 −dt2.P22 −dt2.P32 −dt2.P42









(17)

Kzw = −









Tt1.P11 + Tt2.P12 Tt1.P21 + Tt2.P22 Tt1.P31 + Tt2.P32 Tt1.P41 + Tt2.P42

0 0 0 0

dt1.Ṗ11 + kt1.P11 dt1.Ṗ21 + kt1.P21 dt1.Ṗ31 + kt1.P31 dt1.Ṗ41 + kt1.P41

dt2.Ṗ12 + kt2.P12 dt2.Ṗ22 + kt2.P22 dt2.Ṗ32 + kt2.P32 dt2.Ṗ42 + kt2.P42









(18)
In which

P1i =
ξ(xi)

L3
.(L + 2xi)(L− xi)

2; P2i =
ξ(xi)

L2
.xi(L − xi)

2;

P3i =
ξ(xi)

L3
.x2

i (3L − 2xi); P4i =
ξ(xi)

L2
.x2

i (xi − L);

(19)

4. APPLYING FEM TO ANALYSE THE VIBRATION OF

THE HOAXUAN BRIDGE IN DANANG CITY

The Hoaxuan Bridge is a continuous girder bridge which has 7 spans shown in
Fig. 1. It is divided into many beam elements shown in Fig. 2. Applying the FEM and
the algorithm of the FEM [16], we have the vibration differential equation for the whole
system as in (20)

M.Q̈ + C.Q̇ + K.Q = F (20)

In which:
M, C, K - are the mass matrix, the damper matrix, and the stiffness matrix of the

whole system.
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Q̈, Q̇, Q, F - are the acceleration vector, the velocity vector, the deflection vector,
and the force vector of the whole system.

After imposing boundary and initial conditions on (20), we can solve this equation
by the Runge-Kutta-Merson method. The numerical values of the parameters were used
in the computer simulation and the field test as follows:

Hoaxuan Bridge
Lb = 7×42 m, E = 3230769.23 T/m2, Jd = 0.6879 m4, Fd = 1.3776 m2, ρFd = 3.8

T/m, θ = 0.027, β = 0.01, τ = 0.25, g = 9.81 m/s2.
Two-axle vehicle
J = 13.8 Tm2, m = 10.5 T, m1 = 0.055 T, m2 = 0.107 T, P = 0, b1 = x1 −x0 = 2.3

m, b2 = x0 − x2 = 1.21 m, h = 1.1 m, h1 = h2 = 0.5 m, k1s = 115 T/m, k1t = 140
T/m, k2s = 220 T/m, k2t = 280 T/m, d1s = 0.73 Ts/m, d1t = 0.4 Ts/m, d2s = 0.4 Ts/m,
d2t = 0.8 Ts/m.

According to the FEM results, the deflections of the Hoaxuan Bridge caused by a
two-axle vehicle which is running at 30 km/h on the first span and its brakes are suddenly
used are shown in Figs. 3-6. According to the experimental results, the first span deflections
of the Hoaxuan Bridge are shown in Figs. 7-10.

Fig. 3. The quarter-span deflection caused by the braking of the vehicle at the

quarter-span position

Fig. 4. The mid-span deflection caused by the braking of the vehicle at the

quarter-span position
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Fig. 5. The quarter-span deflection caused by the braking of the vehicle at the

mid-span position

Fig. 6. The mid-span deflection caused by the braking of the vehicle at the

mid-span position

Fig. 7. The quarter-span deflection caused by the braking of the vehicle at the

quarter-span position
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Fig. 8. The mid-span deflection caused by the braking of the vehicle at the

quarter-span position

Fig. 9. The quarter-span deflection caused by the braking of the vehicle at the

mid-span position

Fig. 10. The mid-span deflection caused by the braking of the vehicle at the

mid-span position

The results of the maximum dynamic deflections and the dynamic factor of the
Hoaxuan Bridge caused by a two-axle vehicle which is running at 30 km/h on the first
span and its brakes are suddenly used are shown in Tab. 1.

In which: KD =
UD

US
KD - dynamic factor of deflection
UD - maximum dynamic deflection of beam
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US - maximum static deflection of beam
∆UD - difference of UD between from FEM and experiment
∆KD - difference of KD between from FEM and experiment

Table 1. The results of the deflections of the Hoaxuan Bridge caused by a two-axle vehicle

Positions of

deflections

Braking

positions

The FEM results
The experimental

results

The difference
between from FEM

and experiment

UD KD UD KD ∆UD ∆K D

Quarter-span Quarter-span 1.118 mm 1.317 1.079 mm 1.348 3.6 % -2.3%

Mid-span Quarter-span 1.411 mm 1.421 1.333 mm 1.334 5.8 % 6.5%

Quarter-span Mid-span 1.102 mm 1.201 1.026 mm 1.140 7.4 % 5.4%

Mid-span Mid-span 1.507 mm 1.231 1.430 mm 1.197 5.4 % 2.8%

In the scope of the study, the FEM results were compared with the experiment
ones in Tab. 1. As for the maximum dynamic deflection of beam, the difference between
the FEM results and the experimental results are 3.6÷7.4% while as for the dynamic
factor of deflection, it is 2.3÷6.5%. The FEM results are suitable when compared with
the experimental results. The maximum dynamic factor of deflection is 1.421 according
to the FEM results and it is 1.348 according to the experimental results. The FEM and
experimental results of the maximum dynamic factor of deflection are significant.

5. CONCLUSIONS

This paper introduces the results of research on a dynamic interaction model be-
tween a two-axle vehicle and a continuous girder bridge when braking forces are taken into
account. The FEM has been applied to analyse the vibration of Hoaxuan bridge caused
by a brake suddenly used on a two-axle vehicle. The analysis results were tested by the
experiments. The FEM results are suitable when compared with the experimental results.
The FEM and experimental results of the dynamic factor of the Hoaxuan Bridge are sig-
nificantly. Therefore, the author recommends that when engineers design bridges, they
should take into account the dynamic interaction caused by the fact that the brake of the
vehicle is suddenly applied on the bridge.
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