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Abstract. An alpha finite element method (αFEM) has been recently proposed to com-
pute nearly exact solution in strain energy for solid mechanics problems using three-node
triangular (αFEM-T3) and four-node tetrahedral (αFEM-T4) elements. In the αFEM,
a scale factor α ∈ [0, 1] is used to combine the standard fully compatible model of the
FEM with a quasi-equilibrium model of the node-based smoothed FEM (NS-FEM). This
novel combination of the FEM and NS-FEM makes the best use of the upper bound
property of the NS-FEM and the lower bound property of the standard FEM. This pa-
per concentrates on applying directly the αFEM for solid mechanics to obtain the very
accurate solutions with a suitable computational cost by using α = 0.6 for 2D problems
and α = 0.7 for 3D problems.

1. INTRODUCTION

For many decades, the constant finite elements such as three-node triangle and four-
node tetrahedron are popular and widely used in practice. The reason is that these elements
can be easily formulated and implemented very effectively in the finite element programs
using piecewise linear approximation. Further more, most FEM codes for adaptive analyses
are based on triangular and tetrahedral elements, due to the simple fact that triangular
and tetrahedral meshes can be automatically generated. However, these elements possess
significant shortcomings, such as poor accuracy in stress solution, the overly stiff behavior
and volumetric locking in the nearly incompressible cases.

In the development of new finite element methods, the strain smoothing technique
[1] has been applied to the FEM to formulate and develop four smoothed finite element
methods (S-FEM) including a cell-based S-FEM (CS-FEM) ([2]-[8]), a node-based S-FEM
(NS-FEM) with the upper bound property in strain energy [9, 10], an edge-based S-FEM
(ES-FEM) [11] and a face-based S-FEM (FS-FEM) [12]. Each of four new smoothing
methods has different characters and advantages.

Recently, an alpha finite element method (αFEM) using 4-node quadrilateral ele-
ments has been developed for the purpose of finding the nearly exact solution in strain
energy even for the coarse mesh [13]. In addition, making use of the upper bound property
of the NS-FEM, the lower bound property of the standard FEM, and the important idea
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of the αFEM for the 4-node quadrilateral elements, a novel alpha finite element method
using 3-node triangular (αFEM-T3) elements for 2D problems and 4-node tetrahedral el-
ements (αFEM-T4) for 3D problems is proposed [14]. The essential idea of the method is
to introduce a scale factor α ∈ [0, 1] to establish a continuous function of strain energy
that contains contributions from both the standard FEM and the NS-FEM [9]. Based
on the fact that the standard FEM of triangular and tetrahedral elements is stable (no
spurious zero energy modes), and so is the NS-FEM [9], the αFEM will be always stable.
This stability ensures the convergence of the solution. Further more, this novel combined
formulation of the FEM and NS-FEM makes the best use of the upper bound property
of the NS-FEM and the lower bound property of the standard FEM. Using meshes with
the same aspect ratio, a unified approach has been proposed to obtain the nearly exact
solution in strain energy for a given linear problem. However, the computational cost of
αFEM-T3 and αFEM-T4 to find the nearly exact solution in strain energy at αexact is
still expensive, because at least two meshes with the same aspect ratio need to be solved
in some cases of α before αexact is determined and the final solution is obtained [14].

This paper concentrates on applying directly the αFEM-T3 and αFEM-T4 for solid
mechanics to obtain very accurate solutions with a suitable computational cost. We simply
use directly α = 0.6 for 2D problems and α = 0.7 for 3D problems, and the computational
procedure is only performed one time. The numerical results show the excellent perfor-
mance of the αFEM at α = 0.6 for 2D problems and α = 0.7 for 3D problems comparing
to other compared numerical methods.

2. THE IDEA OF THE PRESENT αFEM

2.1. An alpha finite element method for triangular elements (αFEM-T3) for
2D problems
The αFEM-T3 [14] combines both the NS-FEM-T3 and the FEM-T3 by using the

scale factor α ∈ [0, 1]. In the NS-FEM-T3, each triangle is divided into three quadrilaterals
of equal area and each quadrilateral is used to calculate the contribution to the stiffness
matrix of the node attached to the quadrilateral as shown in Fig. 1.

Fig. 1. An αFEM-T3 element: combination of the triangular elements of FEM
and NS-FEM. NS-FEM is used for three quadrilaterals, and FEM is used for the
Y-shaped area
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In the αFEM-T3, the domain Ve of triangular element is divided into four parts with
a scale factor α as shown in Fig. 1: three quadrilaterals scaled down by (1 − α2) at three
corners with equal area of

(

1 − α2
)

Ve/3, and the remaining Y - shaped part in the middle
of the element of area α2Ve. The NS-FEM-T3 is used to calculate for three quadrilaterals
at three corners, while the FEM-T3 is used to calculate for the Y - shaped domain. The
entries in sub-matrices of the system stiffness matrix K

αFEM-T3 will be assembled from
the entries of those of both NS-FEM-T3 and FEM-T3 as follows

K
αFEM-T3
IJ =

Nn
∑

k=1

K
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l=1
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where Nn, Ne are the total number of nodes and elements in the whole problem domain
and

K
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in which BI = ∇sNI(x) is the strain-displacement matrix that produces compatible strain
fields; NI(x) is the shape function of triangular element; Ve =

∫

Ωe

dΩ is the area of the

element; Ω
(α)
e is the Y -shape area of triangle; Ω(k,α) is the area associated the node k and

bounded by the boundary Γ(k,α) as shown in Fig. 2. The smoothed strain-displacement
matrix B̃

(α)
I (xk) for Ω(k,α) is calculated by
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which implies that we can use the matrix B̃I (xk) for area Ω(k) bounded by the boundary
Γ(k) instead the matrix B̃

(α)
I (xk) for area Ω(k,α). In Eq. (4), N

(k)
e is the number of elements

around the node k; V
(i)
e is the area of the ith element around the node k; and B

e
i =

BI
∑

I∈Se
i

is

the compatible strain-displacement matrix of the ith triangular element around the node
k. This matrix is assembled from the compatible strain-displacement matrices BI(x) of
nodes in the set Se

i containing three nodes of the ith triangular element.
Note that to obtain Eq. (4), the following relation between the area V (k,α) of the

domain Ω(k,α) and the area V (k) of the domain Ω(k) is used:
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Using Eqs.(4) and (5), Eq. (2) now is written as

K
NS - FEM - T3
IJ(k) =

(

1− α2
)

B̃
T
I DB̃JV (k) (6)
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Fig. 2. Cell associated with nodes for triangular elements in the αFEM-T3

which implies that we can simplify the procedure of coding program of the α FEM-T3 by
using the original NS-FEM-T3 in which each triangle is only divided into three quadrilat-
erals of equal area to calculate entries of the stiffness matrix and then multiply

(

1 − α2
)

.
To calculate Eq. (3), the standard FEM using triangular elements is used to calculate

the entries of the stiffness matrix and then the parameter α2 is multiplied.
Now, the αFEM-T3 is equipped with a scaling factor α that acts as a knob con-

trolling the contributions from the NS-FEM-T3 and the FEM. When the factor α varies
from 0 to 1, a continuous solution function from the solution of the NS-FEM to that of
the FEM is obtained.

2.2. An alpha finite element method for tetrahedral elements (αFEM-T4) for
3D problems
Following the same concept of the αFEM-T3, we develop a tetrahedral element for

αFEM for 3D problems (αFEM-T4). The volume Ve of each tetrahedral element will be
divided into five parts based on the scale factor α: four volumes at four corners with equal
volume of

(

1 − α3
)

Ve/4 and the remaining part in the middle of the element of volume
α3Ve. The NS-FEM is used to calculate for four corner parts of equal volumes, while the
FEM-T4 is used to calculate for the remaining volume in the middle. The entries of the
system stiffness matrix K

αFEM-T4 is then calculated using

K
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Nn
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K
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K
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with the matrices K
NS-FEM-T4
IJ(k) and K

FEM-T4
IJ(l) calculated as follows:
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in which Ω
(α)
e is the remaining volume in the middle of the element; the smoothed strain

matrix B̃I , V (k) and the compatible strain-displacement matrix BI are calculated by

B̃I (xk) =
1
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BI(x) = ∇sNI(x) (12)

where B
e
i =

BI
∑

I∈Se
i

is the strain-displacement matrix of the ith element around the node kand

is assembled from the compatible strain-displacement matrices BI(x) of nodes in the set
Se

i containing four nodes of the ith tetrahedral element, N (k)
e is the number of elements

around the node k and V
(i)
e is the volume of the ith element around the node k.

In the above formulation of the αFEM-T3 (or αFEM-T4), only the area (or vol-
ume), the usual compatible strain-displacement matrices BI of triangular (or tetrahedral)
elements together the factor α are needed to calculate the system stiffness matrix. In the
actual programming, the standard FEM and the NS-FEM-T3 (or NS-FEM-T4) formulae
are used directly to calculate the entries of the stiffness matrices and then the results
obtained are scaled by α2 and

(

1 − α2
)

, respectively, as shown in Eqs. (3) and (6) for
the αFEM-T3 (or by α3 and

(

1 − α3
)

, respectively, as shown in Eqs. (8) and (9) for the
αFEM-T4). Therefore, the αFEM-T3 (or αFEM-T4) code is very similar to a standard
FEM code.

Numerical study [14] has shown that using the meshes with the same aspect ratio,
the strain energy curves E (α) corresponding to these meshes will intersect at a common
point (αexact, Eexact) which gives the nearly exact strain energy of the problem. Note
that the meshes with the same aspect ratio were defined in two ways in [14]. Numerical
procedure for computing the nearly exact solution at αexact using the αFEM-T3 and
αFEM-T4 is summarized in [14]. However, the computational cost of this numerical pro-
cedure is still expensive, because at least two meshes with the same aspect ratio need to
be solved in some cases of α before αexact is determined and the final solution is obtained.

2.3. About applying directly the αFEM
As seen from the above-mentioned procedure, obtaining αexact requires additional

effort, and hence we may want to avoid. Based on the theory presented, we know that in
any case, the accuracy (in the strain energy or displacement norm) of an combined model
is always better than either FEM or NS-FEM for any α ∈ (0, 1). This gives us a guarantee
that we can only get a better solution using any α ∈ (0, 1). Therefore as suggested from
the numerical results in Refs [14, 15], if we only need to improve the accuracy of solution,
we may simply using directly an α ∈ [0.5, 0.7] in 2D problems and α ∈ [0.6, 0.8] in
3D problems for any meshes without searching for the αexact. This range of α is found
preferable by numerical “experiments” on different linear problems using the αFEM-T3
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and αFEM-T4. By this way, the α chosen will not be optimal and the solution may not
be very close to the exact one, but the accuracy of the solution is often much better than
the FEM using the same mesh.

Specifically in this paper, we simply use directly α = 0.6 for 2D problems and
α = 0.7 for 3D problems for any mesh. The computational procedure is only performed
one time and hence the computational cost is not expensive anymore.

3. NUMERICAL EXAMPLES

In order to study the accuracy and convergence rate of the present method, two
norms are used here, i.e., displacement norm and energy norm. The displacement norm is
given by

ed =
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∑
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∣
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i

∣

∣

Ndof
∑

i=1
|ui|

× 100% (13)

where Ndof is the total number of degrees of freedom of problem; ui is the exact solution
and uh

i is the numerical solution, and energy error norm is defined by
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where the total strain energy of numerical solution E (α) is given by
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and the total strain energy of exact solution Eexact is calculated by

Eexact =
1

2
lim

Ne→∞

Ne
∑

i=1

εT
i DεiV

(i)
e (16)

where P = 2 for 2D problems and P = 3 for 3D problems, εh
i is the strain of numerical

solution of the ith element, ε̃h
k is the smoothed strain of numerical solution at the kth node,

εi is the strain of exact solution. In the actual computation using Eq. (16), we will use a
very fine mesh (Ne → ∞) to calculate the "exact" strain energy Eexact.

3.1. 2D Cantilever beam under a tip load
A cantilever with length L and height D is studied as a benchmark problem here,

which is subjected to a parabolic traction at the free end as shown in Fig. 3.
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Fig. 3. Model and domain discretization using regular triangular elements of the cantilever

The cantilever is assumed to have a unit thickness so that plane stress condition is
valid. The analytical solution is available in a textbook by Timoshenko and Goodier [16].

ux =
Py

6EI

[

(6L − 3x)x + (2 + ν)(y2 −
D2

4
)

]

uy = −
P

6EI

[

3νy2(L − x) + (4 + 5ν)
D2x

4
+ (3L − x)x2

]
(17)

where the moment of inertia I for a beam with rectangular cross section and unit thickness
is given by I = D3/12. The stresses corresponding to the displacements Eq. (17) are

σxx(x, y) =
P (L − x)y

I
; σyy(x, y) = 0; τxy(x, y) = −

P

2I

(

D2

4
− y2

)

(18)

The related parameters are taken as E = 3.0 × 107kPa, ν = 0.3, D = 12m, and
P = 1000N . In the computations, the nodes on the left boundary are constrained using
the exact displacements obtained from Eq. (17) and the loading on the right boundary
uses the distributed parabolic shear stresses in Eq. (18).

(a) (b)

Fig. 4. (a) Relative error in displacement v; (b) Strain energy for the cantilever
loaded at the end
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One domain discretization of these meshes is shown in Fig. 3. The exact strain energy
of the problem is 4.4746. The results of αFEM (α = 0.6)are compared with the other
methods: the FEM using quadrilateral elements (FEM-Q4), the FEM using triangular
elements (FEM-T3), the NS-FEM using triangular elements (NS-FEM-T3) and also the
αFEM (α = 0.5) and the αFEM (α = 0.7).

Fig. 4(a) shows the relative error in deflection along axis x (y = 0), and Fig. 4(b)
shows the strain energy versus degrees of freedom of methods. Fig. 5(a) and Fig. 5 (b) show
the displacement and energy norms of methods, respectively. It is seen that the results of
αFEM-T3 (α = 0.6)are the best, and even much better than those of FEM-Q4. In addition,
the convergence rate of αFEM-T3 (α = 0.6) in both displacement norm (r = 3.52) and
energy norm (r = 1.87) are much higher than those of theory (r = 2 for displacement and
r = 1 for energy).

(a) (b)

Fig. 5. (a) Displacement norm; (b) Energy norm for the cantilever loaded at the end

Fig. 6 shows that the distribution of the normal and shear stresses using the αFEM-
T3 (α = 0.6) agree very well with the analytical solution.

3.2. 3-D Lame problem
A 3-D Lame problem consist of a hollow sphere with inner radius a = 1m, outer

radius b = 2mand subjected to internal pressure P = 1N/m2. For this benchmark problem,
the analytical solution is available in polar coordinate system by Timoshenko and Goodier
[16].

ur =
Pa3r

E (b3 − a3)

[

(1 − 2ν) + (1 + ν)
b3

2r3

]

(19)

σr =
Pa3

(

b3 − r3
)

r3 (a3 − b3)
; σθ =

Pa3
(

b3 + 2r3
)

2r3 (b3 − a3)
(20)

where r is the radial distance from the centroid of the sphere to the point of interest in
the sphere.

As the problem is spherically symmetrical, only one-eighth of the sphere model is
shown in Fig. 7(a) and symmetry conditions are imposed on the three symmetric planes.
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Fig. 6. Numerical results of α-FEM-T3 (α = 0.6) and analytical solutions for the
cantilever loaded at the end. (a) Normal stress σxx; (b) Shear stress τxy

The material parameters of the problem are E=1.0 kPa and v = 0.3.The exact strain
energy of the problem is 6.33e-04. The results of αFEM-T4 (α = 0.7)are compared with the
other methods: the FEM using hexahedral elements (FEM-H8), the FEM using tetrahedral
elements (FEM-T4), the NS-FEM using tetrahedral elements (NS-FEM-T4), and also the
αFEM-T4 (α = 0.6) and the αFEM-T4 (α = 0.8). Fig. 7(b) shows the strain energy versus
degrees of freedom of methods.

(a) (b)

Fig. 7. (a) Discretization of one-eighth of hollow sphere model using 4-node tetra-
hedral elements; (b) Strain energy for the hollow sphere subjected to inner pressure

Fig. 8(a) and Fig. 8 (b) show the displacement and energy norms of methods,
respectively. Again, it is seen that the results of αFEM-T4 (α = 0.7) are the best, and
even much better than those of FEM-H8. In addition, the convergence rate of αFEM-T4
(α = 0.7) in displacement norm (r = 2.42) is much higher than those of theory (r = 2 for
displacement).
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(a) (b)

Fig. 8. (a) Displacement norm; (b) Energy norm for the hollow sphere subjected
to inner pressure

(a) (b)

Fig. 9. (a) Radial displacement v; (b) Radial and tangential stresses for the hollow
sphere subjected to inner pressure

Fig. 9 shows that the distribution of the radial displacement, radial and tangential
stresses using the αFEM-T4 (α = 0.7) agree very well with the analytical solution.

4. CONCLUSION

In this work, we apply directly α = 0.6 for the αFEM-T3 and α = 0.7 for the αFEM-
T4 for solids mechanics in 2D and 3D. Through the numerical results, some conclusion
can be drawn as follows:

- The results show the excellent performances of the αFEM-T3 (α = 0.6) and αFEM-
T4 (α = 0.7) compared with other compared methods: (1) errors of solutions of the αFEM
are much smaller than those of other compared methods; (2) convergence rate of solutions
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of the αFEM also converge much faster than those of theory and those of other compared
methods.

- The implementation of αFEM-T3 (α = 0.6) and αFEM-T4 (α = 0.7) in practical
applications is very easy and quite similar to the standard FEM.

- The obtained result from this study is very promising and the αFEM-T3 (α = 0.6)
and αFEM-T4 (α = 0.7) can be applied directly easily into the available commercial
software with little modification.

- The αFEM-T3 (α = 0.6) and αFEM-T4 (α = 0.7) is suitable for adaptive analysis
as it uses only triangular and tetrahedral elements that can be automatically generated
for complicated domains.
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VỀ VIỆC ÁP DỤNG TRỰC TIẾP PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN
VỚI THÔNG SỐ ALPHA (αFEM) CHO CƠ HỌC VẬT RẮN SỬ DỤNG

CÁC PHẦN TỬ TAM GIÁC VÀ TỨ DIỆN

Gần đây, một Phương pháp phần tử hữu hạn sử dụng hệ số alpha (αFEM) đã được
thành lập để tìm nghiệm gần như chính xác của năng lượng biến dạng cho các bài toán
vật rắn có sử dụng các lưới có thể được tạo một cách tự động cho các miền bài toán bất
kỳ. Các phần tử tam giác 3 nút (αFEM-T3) và các phần tử tứ diện 4 nút (αFEM-T4)
cùng với 1 hệ số tỷ lệ α được thành lập cho các bài toán trong 2 chiều (2D) và ba chiều

(3D) một cách tương ứng. Ý tưởng chính của phương pháp là sử dụng 1 hệ số tỷ lệ để kết
hợp mô hình hoàn toàn tương thích của FEM và mô hình tựa cân bằng của phương pháp
trơn dựa trên nút (NS-FEM). Việc kết hợp giữa FEM và NS-FEM này nhằm sử dụng tốt
nhất đặc tính cận trên của NS-FEM và đặc tính cận dưới của FEM. Bài báo này tập trung
vào việc ứng dụng trực tiếp phương pháp αFEM cho cơ rắn để tìm nghiệm rất chính xác
nhưng chỉ sử dụng một chi phí tính toán hợp lý bằng cách sử dụng α = 0.6 cho các bài
toán 2D và α = 0.7 cho các bài toán 3D.


