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WAVELET BASED TECHNIQUE FOR MULTI-CRACK

DETECTION OF A BEAM-LIKE STRUCTURE USING

THE VIBRATION DATA MEASURED DIRECTLY

FROM A MOVING VEHICLE
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Abstract. In this paper an idea for crack detection of a multi-cracked beam-like struc-
ture by analyzing the vibration measured directly from the vehicle is presented. The
crack model is adopted from fracture mechanics. The dynamic response of the bridge-
vehicle system is measured directly from the moving vehicle. When the vehicle moves
along the structure, the dynamic response of the vehicle is distorted by the cracks at their
locations. These distortions are generally small and difficult to be detected visually. In
order to detect the cracks, Wavelet Transform - an effective method of detecting such
small distortions was adopted. The existence of the cracks can be revealed by large values
(peaks) in the wavelet transform. Locations of the cracks can be determined by positions
of the peaks and the vehicle speed. Numerical results show that the method can detect
cracks as small as 10 % of the beam height with noise level up to 5%. The proposed
method is applicable for low velocity-movements while high velocity-movements are not
recommended.

1. INTRODUCTION

The detection of cracks in mechanical systems and civil engineering structures has
attracted many researchers in the last two decades as reviewed by Doebling et al. (1998).
There are a large number of nondestructive methods for crack detection that are based on
the changes in the dynamic properties of the structure (frequencies, mode shapes, transfer
functions). Pandey et al (1991) proposed the application of mode shape curvature in
detecting damage. The reduction in cross section caused by the damage tends to increase
the curvature of the mode shapes in the vicinity of the damage. Verboven et al (2002,
2003) presented autonomous damage detection methods based on modal parameters. The
changes in mode shapes of a slat track structure caused by the damage were auto-identified
by using the frequency-domain maximum likelihood estimator method. Khoo et al (2004)
presented modal analysis techniques to monitor a wooden wall structure. The significant
changes in natural frequencies were used to detect the existence of damage and to identify
modes that are sensitive to damage.

In the last decade, the wavelet transform has emerged as an efficient tool for signal
processing due to its flexibility and precision in time and frequency resolution. Lu and Hsu
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(2002) presented a wavelet based method for detection of structural damage. The minor
localized damage induced significant changes of the wavelet coefficients at the location of
the damage. Poudel, Ye (2005) and Rucka, Wilde (2006) presented a wavelet-based method
to localize damage in a cantilever and simply supported beam using static deflection.
Recently, Castro, Garcia-Hernandez (2006) and Castro, Gallego (2006) presented a wavelet
based method for defect identification in rods subject to free and forced vibration. The
existence and the location of the damage caused by local changes in density or stiffness of
the rod were detected by applying wavelet transform.

The analysis of continuous elastic systems subjected to moving subsystems has been
a topic of interest for well over a century. Parhi and Behera (1997) presented an analytical
method along with the experimental verification to investigate the vibration behavior
of a cracked beam under a moving mass. Piombo et al. (2000) calculated the vehicle–
bridge interaction system by considering it as a three-span orthotropic plate subject to a
seven degrees-of-freedom multi-body system with linear suspensions and tires flexibility.
Bilello and Bergman (2004) studied damaged beams under a moving load. The damages
were modeled by rotational springs whose compliance is evaluated using linear elastic
fracture mechanics. Zhu and Law (2005) used continuous wavelet transform for analyzing
the operational deflection time history of the bridge subject to a moving vehicular load.
Most of the current methods apply dynamic responses obtained from points on the bridge
for crack detection.

The aim of this study is to extend the state-of-art of structural damage detection for
bridges by presenting the wavelet based technique to study the dynamic response measured
directly from the moving vehicle. This is a simple method since it does not need to set up
measurements on bridges. In this paper, the theoretical model of vehicle-bridge and the
wavelet transform are presented. Numerical calculation has been carried out to verify the
efficiency of the proposed technique.

2. VIBRATION OF A BEAM-LIKE STRUCTURE UNDER
MOVING VEHICLE

2.1. Intact beam
Models of vehicles, bridges, and bridge–vehicle using for problems of moving loads

on bridges were discussed by Yua and Chan (2007). The bridge–vehicle system is a very
complicated system and the interaction between the bridge and the vehicle is also a com-
plex problem influenced by a large number of different parameters. However, in some cases
the models can be simplified and the use of these simplified models is more effective to
establish a clear connection between the governing parameters and the bridge response
than a complex model. For this purpose, we consider a specific case where the vehicle
moves with low velocity so that some assumptions can be made to simplify the model of
bridge-vehicle system.

We begin by considering the bridge-vehicle system shown in Fig. 1. Since the vehicle
is traveling with a low velocity v, tyres behave in a nominally rigid manner. As a result,
a one-foot vehicle model as described in Fig. 1 can be adopted. The vehicle is modelled
as a single d.o.f. system with sprung (vehicle body) and unsprung (tyres) masses. The
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crack is assumed to be open all the time for the simplification purpose. The bridge deck
is modelled approximately as an Euler–Bernoulli beam. The surface unevenness of the
bridge is disregarded and the unsprung mass is assumed to be always in contact with
the supported beam. Under these assumptions and apply the finite element method the
governing equation of motion for the bridge–vehicle system can be shown as follows (Lin
and Trethewey [1989]):

m1ÿ + c(ẏ − u̇o) + k(y − uo) = 0 (1)

Md̈ + Cḋ + Kd = f = NTfo (2)

fo = (m1 +m2) g −m2üo −m1ÿ (3)

Fig. 1. A beam-like bridge under moving vehicle

Here m1, m2, k, c are vehicle parameters as shown in Fig. 1; y denotes vertical de-
flection of the vehicle sprung mass m1; uo is the vertical deflection of m2 and is equal
to the deflection of the beam u at the contact position; M, C, K are structural mass,
damping and stiffness matrices; NT is the transpose of the shape functions at the posi-
tion x of the force; f0 is the magnitude of the force acting on the beam; d is a column
vector which denotes the nodal displacement of the beam. The displacement of the beam
u at the arbitrary position x can be obtained from the shape functions N and the nodal
displacement d as:

u = Nd (4)

The shape function of an element can be obtained as:

N =
[

N1 N2 N3 N4

]

(5)
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with l is the length of the element.
The time derivatives of uo are:

u̇o(x, t) =
∂u

∂x
ẋ+

∂u

∂t
(7)

üo(x, t) =
∂2u

∂x2
ẋ2 + 2

∂2u

∂x∂t
ẋ+

∂u

∂x
ẍ+

∂2u

∂t2
(8)

The second term on the right side of equation (8) denotes the Coriolis acceleration
since m2 is moving along the vibrating beam. Because N is spatial function while d is
time dependent, from (4) we have:

∂2u

∂x2
= Nxxd,

∂u

∂x
= Nxd,

∂2u

∂x∂t
= Nxḋ,

∂2u

∂t2
= Nd̈ (9)

where the subscript x implies the differentiation with respect to x. Substituting (7), (8)
and (9) into equations (1) and (2) yields:

(

M + m∗ NTm1

O m1

)(

d̈
ÿ

)

+

(

C + c∗ OT

−cN c

)(

ḋ
ẏ

)

+

+

(

K + k∗ OT

−cNxẋ− kN k

)(

d
y

)

=

(

NT (m1 +m2) g
0

) (10)

where O is a row zero matrix, and :

m∗ = m2NTN, c∗ = 2m2ẋNTNx, k∗ = m2ẋ
2NTNxx (11)

2.2. Multi-cracked beam like structure
Fig. 2 shows a uniform beam-like structure divided into Q elements with R cracks

situated in R different elements. It is assumed that the cracks only affect the stiffness, not
affect the mass and damping coefficient of the beam. According to the principle of Saint-
Venant, the stress field is affected only in the region adjacent to the crack. Therefore,
the element stiffness matrices of intact elements can be considered unchanged under a
certain limitation of element sizes, only the element stiffness matrices of cracked elements
are changed. An element stiffness matrix of a cracked element can be obtained as follows
(Qian et al [1990]): Neglecting shear action, the strain energy of an element without a
crack can be written as:

W (o) =
1

2EI

(

M2l+MPl2 +
P 2l3

3

)

(12)

where P and M are the shear and bending internal forces at the right node of the element
(Fig. 2). The additional stress energy of a crack has been calculated from fracture me-
chanics and the flexibility coefficients are obtained by a stress intensity factor in the linear
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Fig. 2. Model of beam with R cracks

elastic range, using Castigliano’s theorem. For a rectangular beam with the thickness h,
the width b, and the additional energy due to the crack can be written as

W (1) = b

a
∫

0

(

(

K2
I +K2

II

)

E ′
+

(1 + ν)K2
III

E

)

da (13)

where E ′ = E for plane stress, E ′ =
E

1 − ν2
for plane strain and a is the crack depth, and

KI , KII, KIII are stress intensity factor for opening type, sliding type and tearing type
cracks, respectively.

Taking into account only bending, equation (13) leads to

W (1) = b

a
∫

0

(KIM +KIP )2 +K2
IIP

E ′
da (14)

where

KIM =
6M

√
πaFI(s)

bh2
, KIP =

3Pl
√
πaFI(s)

bh2
, KIIP =

P
√
πaFII (s)

bh
(15)

FI(s) =

√

2

πs
tg
(πs

2

)0.923 + 0.199
[

1 − sin
(πs

2

)]4

cos
(πs

2

) (16)

FII(s) =
(

3s− 2s2
) 1.122− 0.561s+ 0.085s2 + 0.18s3√

1− s
(17)

where s = a/h; a is the crack depth and h is the beam height.
The generic component of the flexibility matrix C̃ of the intact element can be

calculated as

c̃
(o)
ij =

∂2W (o)

∂Pi∂Pj

, i, j = 1, 2, P1 = P, P2 = M. (18)
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The additional flexibility coefficient is

c̃
(1)
ij =

∂2W (1)

∂Pi∂Pj

, i, j = 1, 2, P1 = P, P2 = M. (19)

Therefore, the total flexibility coefficient is:

c̃ij = c̃
(o)
ij + c̃

(1)
ij . (20)

From the equilibrium condition the following equation can be derived
(

Pi Mi Pi+1 Mi+1

)T
= T

(

Pi+1 Mi+1

)T
, (21)

where

T =

[

−1 −l 1 0
0 −1 0 1

]T

(22)

By the principle of virtual work the stiffness matrix of the cracked element can be
expressed as:

Kc = TTC̃−1T (23)

The stiffness matrix and mass matrix for an element without a crack can be obtained
as:

Ke =
EI

l3









12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2









(24)

Me =
ml

420









156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2









(25)

where I is the moment of inertia; E is the Young’s modulus; m and l are the mass and
the length of the element.

Element mass matrices Me are assembled to form the global mass matrix M, while
matrices Ke and Kc are assembled to form the global stiffness matrix K of the cracked
beam. Rayleigh damping in the form of C = αM+βK is used for the beam. Where ω1 and
ω2 are the first two bending natural frequencies of the beam, and α and β are calculated
as follows (Lin and Trethewey [1989]):

α =
2ω1ω2 (ξ1ω2 − ξ2ω1)

ω2
2 − ω2

1

, β =
2 (ξ2ω2 − ξ1ω1)

ω2
2 − ω2

1

(26)

Substituting global matrices M, C, and K of the cracked beam into equation (10)
and solving this equation by Newmark method, the dynamic responses of the vehicle and
the beam will be obtained.



228 Nguyen Viet Khoa and Tran Thanh Hai

3. WAVELET TRANSFORM

As the name suggested, wavelet transform analysis uses small wavelike functions
known as "wavelets". A more accurate description is that a wavelet is a function which
has local wavelike properties. Wavelets are used to transform a signal into another form
of presentation in which the signal information is presented in a more useful form. Math-
ematically, the wavelet transform is a convolution of the wavelet function with the signal.
Generally, wavelet transform transforms signals in time (or space) domain into time (or
space)-frequency domain. This means that, via wavelet transform, a signal is presented in
the frequency domain while the information in time (or space) domain is still kept. This
is very useful for analysing short events or sudden changes contained in signals.

3.1. Continuous wavelet transform
The continuous wavelet transform is defined as follows (Daubechies [1992]):

W (a, b) =
1√
a

+∞
∫

−∞

f(t)ψ∗

(

t− b

a

)

dt (27)

where a is a real number called scale or dilation, b is a real number called position,

W (a,b) are wavelet coefficients at scale a and position b, f(t) is input signal, ψ

(

t− b

a

)

is

wavelet function and ψ∗

(

t− b

a

)

is complex conjugate of ψ

(

t− b

a

)

. In order to simplify

the expression of the wavelet transform, denote ψa,b(t) =
1√
a
ψ∗

(

t− b

a

)

, the wavelet

transform (27) can be written:

W (a, b) =

+∞
∫

−∞

f(t)ψa,bdt (28)

In order to be classified as a wavelet, a function must satisfy certain mathematical
criteria, they are:

1) A wavelet must have finite energy:

E =

+∞
∫

−∞

|ψ (t)|2 dt <∞ (29)

2) If ψ̂ (ω) is Fourier transform of ψ (t), i.e.

ψ̂ (ω) =

+∞
∫

−∞

ψ (t) e−iωtdt (30)
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then the following condition must be satisfied:

Cg =

∞
∫

0

∣

∣

∣
ψ̂ (ω)

∣

∣

∣

2

ω
dω <∞ (31)

This implies that the wavelet has no zero frequency component: ψ̂(0) = 0,

+∞
∫

−∞

ψ(t)e−jωtdt = 0 when ω = 0 (32)

or in other words, the wavelet must have a zero mean:
+∞
∫

−∞

ψ(t)dt = 0 (33)

3) An additional criterion is that, for complex wavelets, the Fourier transform must
both be real and vanish for negative frequencies.

3.2. Inverse wavelet transform
Wavelet transform has its inverse transform:

f(t) = C−1
g

+∞
∫

−∞

+∞
∫

−∞

W (a, b)ψa,bdb
da

a2
(34)

where

Cg = 2π

∞
∫

−∞

∣

∣

∣
ψ̂(ξ)

∣

∣

∣

2

|ξ| dξ <∞ (35)

Equation (34) can be rewritten as follows:

f(t) = C−1
g

+∞
∫

−∞

a−2





+∞
∫

−∞

W (a, b)ψa,bdb



da (36)

4. NUMERICAL SIMULATION AND DISCUSSIONS

A numerical example of the beam with two cracks at locations of Lc1 = L/3 and
Lc2=2L/3 is analyzed. The crack depths of two cracks are the same. Parameters of the
beam are: Mass density is 7855 kg/m3; modulus of elasticity E=1.9x1011 N/m2; L=50 m;
b=0.5 m; h=1 m. Modal damping ratios for all modes are equal to 0.01. Vehicle parameters
are adopted from [27] as follows: m1 = m2=50000 N; k=1.0x106 N/m; c=5.0x102 Ns/m.
The displacement-time history of the moving vehicle is obtained to investigate the influence
of the cracks. When the beam is cracked, there are distortions in the dynamic response
of the vehicle at crack locations. However, these local distortions are generally small and
difficult to be detected visually. Therefore, in this work the CWT with its special property
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is applied for data processing. After trying different wavelet functions for signal processing,
the wavelet function "Symlet" is chosen as the most suitable one for this study.
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Fig. 3. Displacements of the vehicle moving on the beam with (solid lines) and
without cracks (dotted lines), with different velocities: a) v=1 m/s; b) v=4 m/s

In this section the influence of the cracks on the dynamic response of the vehicle
moving on the intact beam and the cracked beam with different crack depths is studied.
Fig. 3 presents the dynamic responses of the vehicle moving at different velocities on the
intact beam and the cracked beam with the crack depth of 50 % of the beam height. As
can be seen in this figure, with the same velocity, the dynamic response of the vehicle
moving on cracked beam is greater than that of the intact beam. However, no sign of local
distortions caused by cracks can be seen in this figure. This is obviously true for the case of
the intact beam (solid lines), but for the cracked beam (dotted lines) this means that the
local distortions in the dynamic response of the vehicle caused by the cracks is so small.

4.1. Influence of the crack depth
In order to detect local distortions in the dynamic response of the vehicle due to

the cracks, the wavelet transform is applied. The velocity of the vehicle is v=1 m/s. Fig.
4 shows the wavelet transform of the vertical displacement of the vehicle. As can be seen
in this graph, there is no significant peaks in the wavelet transform.

Fig. 4. Wavelet transform of y(t). Crack depth is 0 %; v=1 m/s



Wavelet based technique for multi-crack detection of a beam-like structure using the vibration data... 231

However, when there are cracks, the wavelet transform with scale 40 shows clearly
two peaks at two locations of L/3 and 2L/3 (see Figs. 5 to 7).

Fig. 5. Wavelet transform of y(t). Crack depth is 10 %; v=1 m/s

Fig. 6. Wavelet transform of y(t). Crack depth is 30 %; v=1 m/s

Fig. 7. Wavelet transform of y(t). Crack depth is 50 %; v=1 m/s

The peaks of the wavelet transform explain that there are distortions in the dynamic
response of the vehicle at the positions of the peaks. The locations of these peaks are at
locations L/3 and 2L/3 of the beam, where the cracks present. This result implies that the
cracks cause the distortions in the dynamic response of the vehicle at their locations, or in
other words, the distortions in the dynamic response appear when the moving vehicle is
passing by the crack locations. Therefore, the peaks in the wavelet transform indicate the
existence of the cracks, and the positions of these peaks point out the crack locations. As
can be seen in Figs. 5 to 7, when the crack depth increases from 10 % to 50 %, the peaks
at the crack positions are more significant. This means that the larger the crack depth is
the more consistent of the proposed method for crack detection.
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4.2. Influence of the noise
In order to simulate the polluted measurements, the white noise is added to the

calculated responses of the vehicle. The noisy response is calculated as following formula
[Law et al, 1997]:

ynoisy = y +EpNσ(y) (37)

where y is the vertical displacement of the vehicle obtained from the numerical simulation.
Ep is the noise level and N is a standard normal distribution vector with zero mean value
and unit standard deviation. ynoisy is the noisy displacement, and σ(y) is its standard
deviation.
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Fig. 8. Wavelet transform of dynamic responses of the vehicle, v=1 m/s. Solid
line: noise level is 0 %; dotted line: noise level is 5 %

Fig. 8 show the wavelet transforms of the noisy responses of the vehicle moving on
the beam with the crack depth of 50%, with the velocity of 0.5m/s. In this case, the cracks
can be detected with the noise level up to 5%.

5. CONCLUSIONS

A proposed technique for structural damage detection based on the wavelet trans-
form of the dynamic response obtained on moving vehicle is presented.

The existence of the cracks is detected by the significant peaks in the wavelet trans-
form of the dynamic response of the vehicle body. The crack locations can be pinpointed
from the locations of the peaks in the wavelet transform and the velocity of the vehicle.

The proposed technique is simple since only one vibration transducer attached on
the vehicle is needed. Also, applying the technique we do not need to consider the positions
of sensors on the deck of the bridge since the vibration data is measured directly from
the moving vehicle. Another advantage of the present method is that no information of
the intact structure is required. Numerical results showed that the method is sensitive to
cracks as small as 10 % of the beam height. This method is more sensitive than frequency
based methods since the natural frequencies are almost constant for cracks up to a depth
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of 50% of the beam after which they slowly decrease (Gudmunston [1983] and Nguyen
[1999]).

The method can be applied for the case of non-polluted measurements as well as
for the case of polluted measurements with the noise level up to 5%.

From the investigation of the influence of the vehicle speed, the method works much
better in comparison with the high speed.

However, the efficiency of the method has not been justified by the experiment.
Therefore, to validate the presented method, experimental testing needs to be carried out
as a future work.
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PHƯƠNG PHÁP WAVELET CHẨN ĐOÁN KẾT CẤU DẠNG DẦM
CÓ NHIỀU VẾT NỨT SỬ DỤNG TÍN HIỆU DAO ĐỘNG ĐO

TRỰC TIẾP TRÊN XE DI ĐỘNG

Bài báo trình bày một ý tưởng về chẩn đoán kết cấu dạng dầm có nhiều vết nứt
bằng việc phân tích tín hiệu dao động đo trực tiếp trên xe di động. Mô hình vết nứt được
kế thừa từ cơ học phá hủy. Phản ứng động của hệ cầu - xe được đo trực tiếp từ trên xe di
động. Khi xe chuyển động dọc theo cầu thì phản ứng động của xe sẽ bị thay đổi do vết
nứt gây ra tại thời điểm xe chuyển động qua vị trí của các vết nứt này. Sự thay đổi này
thường nhỏ và khó phát hiện khi quan sát bằng mắt thường. Để phát hiện những vết nứt,
biến đổi wavelet, một trong những phương pháp rất hiệu quả - được áp dụng để phân tích
những sự thay đổi nhỏ trong phản ứng động của hệ. Sự tồn tại của vết nứt có thể được
chỉ ra bởi các đỉnh có giá trị lớn bất thường trong biến đổi wavelet. Vị trí của vết nứt có
thể được xác định bởi vị trí của đỉnh và vận tốc của xe. Kết quả tính toán số đã chỉ ra
rằng phương pháp này có thể xác định vết nứt có độ sâu nhỏ đến 10 % chiều cao của dầm
với mức nhiễu lên đến 5 %. Phương pháp này là hiệu quả cho vận tốc xe là thấp, trong
khi vận tốc xe là cao thì không cho kết quả tốt.


