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Abstract. The isogeometric analysis (IGA) that integrates Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) is found so far the effectively numer-
ical tool for the analysis of a variety of practical problems. In this paper, we develop
further the NURBS based isogeometric analysis framework for piezoelectric structures.
The method employs the NURBS basis functions in both geometry representation and
analysis. The main advantages of the present method are capable of handling the exact
geometry of conic sections and making the flexibility of refinement and degree elevation
with an arbitrary continuity of basic functions. These features results in high accuracy of
approximate solutions for practical applications, especially piezoelectric problems. Three
numerical examples are provided to validate excellent performance of the present method.
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1. INTRODUCTION

In recent years, the use of smart materials has become widespread and almost com-
monplace. The technology employed in piezoelectric applications in particular, has reached
a mature level, and piezoelectric materials are frequently used in engineering applications.
Piezoelectric materials transfer electric energy to mechanical energy and vice versa, and
can therefore be used as either actuators or sensors, or both. Applications include ultra-
sonic transducers for sonar and medical purposes, compact piezoelectric motors, struc-
tural monitoring or active damping elements, and even ignition systems [1,2]. Analytical
solutions which are, however, very useful as benchmark problems to problems involving
piezoelectric materials are often difficult to find unless some geometries and boundary
conditions are relatively simple. Numerical methods have been devised to find the approx-
imate solution of these piezoelectric problems. Among them, the finite element method
has become a standard modelling utility for various physical processes, including piezo-
electricity.

In development of advanced computational methodologies, Hughes et al. [3] have
recently proposed a NURBS-based isogeometric analysis to bridge the gap between Com-
puter Aided Design (CAD) and Finite Element Analysis (FEA). In contrast to the standard
FEM with Lagrange polynomial basis, isogeometric approach utilized more general basis
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functions such as Non-Uniform Rational B-splines (NURBS) that are common in CAD
approaches. Isogeometric analysis is thus very promising because it can directly use CAD
data to describe both exact geometry and approximate solution. For structural mechan-
ics, isogeometric analysis has been extensively studied for nearly incompressible linear
and non-linear elasticity and plasticity problem [4], structural vibrations [5], the compos-
ite Reissner-Mindlin plates [6], the Reissner-Mindlin shells [7], Kirchhoff-Love shells [8-10],
the large deformation with rotation-free [11] and structural shape optimization [12], etc. In
this paper, a NURBS-based isogeometric analysis formulation is presented for piezoelec-
tric material structures. The isogeometric stiffness matrices are constructed for quadratic,
cubic and quartic elements. Several numerical examples are illustrated to demonstrate the
effectiveness of the present method.

The paper is arranged as follows: a brief of the B-spline and NURBS surface is
described in section 2. Section 3 describes an isogeometric approximation for piezoelectric
materials. The numerical examples are illustrated in section 4. Finally, we close our paper
with some concluding remarks.

2. NURBS-BASED ISOGEOMETRIC ANALYSIS FUNDAMENTALS

2.1. Knot Vectors and Basis Functions

In one-dimensional problems, a knot vector Ξ is the set of coordinates in the para-
metric space as

Ξ = {ξ1, ξ2, . . . , ξn+p+1} (1)

where p, n are the order of the B-Spline and the number of basis functions associated
with control points, respectively. The interval

[

ξ1 ξn+p+1

]

is called a patch. Given a knot
vector, the B-spline basis functions Ni,p(ξ) of order p = 0 are defined recursively on the
corresponding knot vector as follows

Ni,0 (ξ) =

{

1 if ξi < ξ < ξi+1

0 otherwise
(2)

The basis functions of p > 1 are defined by the following recursion formula

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) with p > 1 (3)

2.2. NURBS Surface

The B-spline curve is defined as

C (ξ) =
n

∑

i=1

Ni,p (ξ) Pi (4)

where Pi are the control points and Ni,p(ξ) is the pth-degree B-spline basis function defined
on the open knot vector. Fig. 1 illustrates a set of cubic B-splines curves and cubic B-spline
basis functions for open uniform knot vectors Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}.

The B-spline surfaces are defined by the tensor product of basis functions in two
parametric dimensions ξ and η with two knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H =
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{η1, η2, ..., ηm+q+1} are expressed as follows

S (ξ, η) =

p
∑

i=1

q
∑

j=1

Ni,p (ξ)Mj,q (η)Pi,j (5)

where Pi,j is the bidirectional control net, Ni,p(ξ) and Mj,q(η) are the B-spline basis
functions defined on the knot vectors over an n × m net of control points Pi,j. To have

(a) (b)

Fig. 1. An illustration of cubic B-splines curves: a) Cubic B-spline curves; b) basis functions

the same notation as the finite element method, we identify the logical coordinates (i, j)
of the B-spline surface with the traditional notation of a node A. Eq. (5) is now rewritten
as

S (ξ, η) =

nm
∑

A

NA (ξ, η)PA (6)

where NA(ξ, η) = Ni,p(ξ)Mj,q(η) is the shape function associated with node A. Similar to
B-Splines, a NURBS surface is defined as

S (ξ, η) =

nm
∑

A=1

RA (ξ, η)PA (7)

where RA =
NAwA

nm
∑

A

NAwA

and wA are the rational basis functions and the weight functions,

respectively.
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3. AN ISOGEOMETRIC ANALYSIS FORMULATION

OF 2D PIEZOELECTRIC PROBLEMS

The piezoelectric constitutive equations for a two-dimensional can be expressed
under the form as [1]





Tx

Tz

Txz



 =





c11 c13 0
c13 c33 0
0 0 c55









Sx

Sz

Sxz



 −





0 e31

0 e33

e15 0





[

Ex

Ez

]

[

Dx

Dz

]

=

[

0 0 e15

e31 e33 0

]





Sx

Sz

Sxz



 −

[

ε11 0
0 ε33

] [

Ex

Ez

]

(8)

Eq. (8) also can be written matrix form as

T = cES − eT E

D = eS + εSE
(9)

where T, S, E and D are the stress vector, the strain vector, the electric field and the
electric displacement, respectively. cE is the elastic coefficients at constant E, εS is the
dielectric coefficients at constant S and e is the piezoelectric coupling coefficients.

The strain displacement and electric field potential relationships are expressed by

S = Lu (10)

E = −gradφ (11)

where L is the symmetric gradient operator defined such as

L =









∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x









T

(12)

A weak form of the dynamic model for 2D piezoelectric can be briefly expressed as [1]
∫

Ω

δSTTdΩ +

∫

Ω

δuTρüdΩ −

∫

Ω

δET DdΩ −

∫

Ω

δuT f̄dΩ −

∫

Γ

δuT t̄dΓ +

∫

Γ

δψTqsdΓ = 0

(13)
Using the NURBS basis functions, the variables are the displacement and the electric
potential at all control points, which can be expressed as

u =

nm
∑

A=1

[

RA 0
0 RA

] {

uA

vA

}

=

nm
∑

A=1

RAqA and φ =

nm
∑

A=1

RAφA (14)

where n×m is the number basis functions. RA, qA =
[

uA vA

]T
and φA are rational basic

functions, the degrees of freedom of u and the degrees of freedom of Φ associated with a
control point A, respectively.

Substituting the approximations Eq. (14) into equations Eqs. (10) and (11), we
obtain
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S =

nm
∑

A=1

Bu
AqA and E =

nm
∑

A=1

Bφ

AφA (15)

where

Bu
A =





RA,x 0
0 RA,y

RA,y RA,x



 and B
φ
A =

[

RA,x

RA,y

]

(16)

Substituting Eqs. (15) and (16) into (13), we have a set of piezoelectric static equa-
tions

Muuü + Kuuu + KuφΦ = f (17)

Kφuu + KφφΦ = g (18)

or in matrix form
[

Muu 0
0 0

] [

ü

Φ̈

]

+

[

Kuu Kuφ

Kφu Kφφ

] [

u

Φ

]

=

[

f

g

]

(19)

where

Muu =

∫

Ω

ρRT
ARA dΩ; Kuu =

∫

Ω

BuT
A cEBu

A dΩ;

Kuφ =

∫

Ω

B
φT
A eTB

φ
A dΩ; Kφφ = −

∫

Ω

B
φT
A εSB

φ
A dΩ; Kφu = KT

uφ;

f =

∫

Ω

RT
A f̄ dΩ +

∫

Γ

RT
A t̄ dΓ and g =

∫

Γ

RT
Aqs dΓ.

(20)

4. NUMERICAL RESULTS

4.1. Infinite piezoelectric plate with a circular hole

Consider a piezoelectric plate with a central circular cavity subjected to a uniform
uniaxial far-field stress σ∞ = 10 in the y direction as shown in Fig. 2. This example is
used to show the efficiency of the developed elements in predicting stresses in a stress
concentration problem. The reference solution can be found in [2]. In this example we

Fig. 2. An infinite piezo-plate with a circular hole subjected to the far-field stress
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used the PZT-4 material with its properties are given in Tab. 1.

Table 1. The PZT-4 material

c11 = 12.6e4 N/mm2 e15 = 12.7e6 pC/mm2

c13 = 7.43e4 N/mm2 e31 = −5.2e6 pC/mm2

c12 = 7.78e4 N/mm2 e33 = 15.1e6 pC/mm2

c33 = 11.5e4 N/mm2 ε11 = 6.464e9 pC/GVmm

c55 = 2.56e4 N/mm2 ε33 = 5.622e9 pC/GVmm

Table 2. Control net for the plate with a circular hole

i Pi,1 Pi,2 Pi,3 Pi,4

1 (0, 1) (0, 3.4278) (0, 7.75) (0, 10)

2 (0.4142, 1) (0.5954, 3.4278) (5.375, 7.75) (10, 10)

3 (1, 0.4142) (3.4278, 0.5954) (7.75, 5.3750) (10, 10)

4 (1, 0) (3.4278, 0) (7.75, 0) (10, 0)

Table 3. Weights for the plate with a circular hole

i Pi,1 Pi,2 Pi,3 Pi,4

1 1 1 1 1

2 0.8536 1 1 1

3 0.8536 1 1 1

4 1 1 1 1

(a) (b) (c)

Fig. 3. Coarse mesh and control net for the infinite piezo-plate with a circular
hole: a) quadratic; b) cubic and c) quartic elements.
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Due to its symmetry, one fourth of the plate is modeled. A circular hole is represented
the exact by a rational quadratic basis. The coarsest mesh, E×H, is defined by the knot
vectors E = {0 0 0 0.5 1 1 1} and H = {0 0 0 0.5 1 1 1}. The exact geometry is represented
with only four elements based on 16 control points, as shown in Fig. 3. The geometric data
are given in Tabs. 2 and 3. Fig. 4 illustrates the first three meshes of an infinite piezo-plate.

Fig. 4. NURBS meshes produced by h-refinement (knot insertion)

The results obtained from NURBS are compared with the reference solution by Y. Weian
and H. Wang [2]. Fig. 5 shows the distribution of σr and σθ along the line θ = 0 (x axis
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in Fig. 2). It can be seen from Fig. 5 that σθ reaches maximum value at the intersection
of the hole and the x axis. Fig. 6 describes the distribution of σr and σθ along the line
θ = π/2 (y axis in Fig. 2). The minimum value of σθ is obtained at the position where the
hole intersects the y axis. The obtained result from present method matches well with the
reference solution [2].

4.2. Single-layer piezoelectric strip in shear deformation

Next we consider the shear deformation of a 1 × 1 mm single-layer square strip
polarized in the y direction. The strip is subjected to a combined loading of pressure σ0 in
the y direction and an applied voltage V0 as depicted on Fig. 7. The material PZT-5 is

Fig. 7. The PZT-5 material

Table 4. Weights for the plate with a circular hole

s11 = 16.4e − 4 mm2/N d31 = −172e − 9 mm/V

s13 = −7.22e − 6 mm2/N d33 = 374e − 9 mm/V

s33 = 18.8e − 6 mm2/N d15 = 584e − 9 mm/V

s55 = 47.5e − 6 mm2/N L = 1 mm; h = 0.5 mm

g11 = 1.53105e− 8 N/V2 σ0 = −5 N/mm2; V0 = 1e − 6 V

g33 = 1.505e− 8 N/V2

used and its properties are summarized in Tab. 4. For this problem, the elastic coefficients,
the dielectric coefficients and the piezoelectric coupling coefficients are unavailable and
then they can be calculated as [1]

cE =





s11 s13 0
s13 s33 0
0 0 s55





−1

, eT = cEdT and εS = εT − dcEdT (21)

where

εT =

[

g11 0
0 g22

]

and d =

[

d11 d13 d15

d31 d33 0

]

(22)
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Mechanical boundary conditions are applied to the upper and lower sides of the
strip:

Tyy(x, y = ±h) = σ0, Txy(x = L, y) = 0, Txy(x, y = ±h) = 0,

Txx(x = L, y) = 0, u(x = 0, y) = 0, v(x = 0, y = 0) = 0,

and electrical boundary conditions is applied to the left and right sides of the strip :

ϕ(x = 0, y) = +V0, ϕ(x = L, y) = −V0, ϕy(x, y = ±h) = 0,

The analytical solution for this problem is given in Ohs et al. [1]

u = s13σ0x; v =
d15V0x

h
+ s33σ0y and φ = V0

(

1 − 2
x

L

)

The horizontal displacement and vertical displacement at the central line (y = 0)
of the single-layer piezoelectric strip are shown in Fig. 8. The results are compared with
the analytical solution in Ohs et al. [1]. It can be observed that the results of the present
method are in excellent agreement with the analytical solutions. Fig. 9 shows the electric
potential at the central line (y = 0) of the single-layer piezoelectric strip. Again, the
obtained results match well with the analytical solutions given in [1].
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4.3. An extension to free vibration problem

This example is an eigenvalue analysis of a piezoelectric transducer consisting of a
piezoelectric wall made of PZT4 material with brass end caps as shown in Fig. 10. The
piezoelectric material is electroded on both the inner and outer surfaces. This problem has
been investigated numerically by Liu et al. (2003) [13] and experimentally by Mercer et al.
(1987) [14]. It is also a typical example described in Section 5.1.1 of ABAQUS Example
Problems Manual [15]. The transducer is modeled as an axisymmetric problem.

Fig. 10. Representative sketch and domain discretization control net of a
piezoelectric transducer

The material properties of PZT4 are as

ρ = 7500 kgm−3

c =

















115.4 74.28 74.28 0 0 0
74.28 139.0 77.84 0 0 0
74.28 77.84 139.0 0 0 0

0 0 0 25.64 0 0
0 0 0 0 25.64 0
0 0 0 0 0 25.64

















GPa

e =





15.08 −5.207 −5.207 0 0 0
0 0 0 12.71 0 0
0 0 0 0 12.74 0



 Cm−2

g =





5.872 0 0
0 6.752 0
0 0 6.752



 × 10−9 Fm−1
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And the material properties of brass are

ρ = 8500 kgm−3; E = 10.4× 1010 Pa; v = 0.37

To illustrate we evaluate the performance of the present method using only the
quadratic NURBS element. Tab. 5 shows the first five frequencies, and the relative error
percentages compared with experimental results are given in parentheses. Fig. 11 depicts
five modes given in Table using the quadratic NURBS element. It is again seen that the
present method outperforms with other published approaches.

Mode 1
Mode 2

Mode 3 Mode 4 Mode 5

Fig. 11. Eigenmodes for the piezoelectric transducer

Table 5. Eigenvalues (kHz) of the piezoelectric transducer

Element type Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

T3 19.98 43.31 62.78 67.78 94.23

(272 elements) (7.42%) (22.34%) (15.83%) (7.08%) (6.12%)

Q4 19.7 42.9 61.1 66.7 92.2

(136 elements) (5.91%) (21.19%) (12.73%) (5.37%) (3.83%)

IGA 18.73 39.45 61.44 67.82 87.69

(58 elements) (0.69%) (11.4%) (13.3%) (7.14%) (–1.25%)

CAX4E
18.6 40.3 57.8 64.2 88.1

(320 elements)

CAX8RE
18.6 40.3 57.6 64.2 87.6

(80 elements)

Experimental 18.6 35.4 54.2 63.3 88.8

where CAX4E and CAX8RE are ABAQUS 4-node axisymmetric elements and 8-node
axisymmetric elements respectively [15].
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5. CONCLUSIONS

The isogeometric analysis formulation has been developed for 2D-piezoelectric struc-
tures. The quadratic, cubic and quartic elements are utilized and their results are well
compared with those of several existing methods. Main advantages of the present method
are to maintain the exact geometry of problems containing conic sections and to provide
a flexible way to make refinement, and degree elevation. It allows us to easily achieve
the smoothness with arbitrary continuity order compared with the traditional FEM. The
method is thus very useful to apply for analyzing piezoelectric structures.
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