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Abstract. This paper presents an analytical approach to investigate the buckling and
postbuckling of functionally graded cylindrical shells subjected to axial and transverse
mechanical loads incorporating the effects of temperature. Material properties are as-
sumed to be temperature independent, and graded in the thickness direction according
to a simple power law distribution in terms of the volume fractions of constituents. Equi-
librium equations for perfect cylindrical shells are derived by using improved Donnell shell
theory taking into account geometrical nonlinearity. One-term approximate solution is
assumed to satisfy simply supported boundary conditions and closed-form expressions of
buckling loads and load-deflection curves are determined by Galerkin method. Analysis
shows the effects of material and the geometric parameters, buckling mode, pre-existent
axial compressive and thermal loads on the nonlinear response of the shells.
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1. INTRODUCTION

Cylindrical shell is one of the most common structures found in many applications
of various industries. As a result, problems relating to the stability including buckling and
postbuckling behaviors of this type of shell have a major importance for safe and reliable
design and attract attention of many researchers. Brush and Almroth [1] introduced an
excellent work on buckling of bars, plates and shells in which linear stability of cylindrical
shell structures under basic types of loading has been analyzed. However, the results were
mainly presented for isotropic shallow cylindrical shells. Birman and Bert [2] investigated
dynamic stability of reinforced composite cylindrical shells subjected to pulsating loads
acting in the axial direction and in the presence of a thermal field on the basic of Donnell
theory for laminated shells and a linear analysis. They then considered the buckling and
postbuckling behaviors of reinforced cylindrical shells subjected to the simultaneous ac-
tion of a thermal field and an axial loading by using improved version of Donnell theory
ignoring the shallowness of cylindrical shells [3]. Their paper also formulated conditions
for the snap-through of a cylindrical shell under thermomechanical loading. Eslami et al.
[4] established improved stability equations for linear buckling analysis of isotropic short
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and long cylindrical shells under thermal loadings. An analytical approach was used in
above mentioned studies.

Due to advanced characteristics in comparison with traditional metals and conven-
tional composites, Functionally Graded Materials (FGMs) consisting of metal and ceramic
constituents have received increasingly attention in structural applications in recent years.
Smooth and continuous change in material properties enable FGMs to avoid interface
problems and unexpected thermal stress concentrations. By high performance heat resis-
tance capacity, FGMs are now chosen to use as structural components exposed to severe
temperature conditions such as aircraft, aerospace structures, nuclear plants and other en-
gineering applications. Shahsiah and Eslami [5] employed Donnell shell theory and coupled
form of stability equations to study linear buckling of simply supported FGM shallow cylin-
drical shells under thermal loads. Subsequently, they extended this analytical approach for
FGM nonshallow long cylindrical shells [6] in which improved terms of the classical thin
shell theory were incorporated. Lanhe et al. [7] utilized the Donnell theory, uncoupled
form of stability equation and one-term approximate solution to determine closed-form
expressions of critical temperatures for simply supported FGM cylindrical shells. Buckling
behavior of cylindrical shells with FGM middle layer, imperfect FGM cylindrical shells
and FGM stiffened cylindrical shells under axial compressive load were analytically in-
vestigated in works [8-10], respectively. Postbuckling behavior of FGM cylindrical shells
has been presented in some studies. Shen [11] investigated thermal postbuckling of simply
supported FGM cylindrical shells under uniform temperature rise. He used the classical
shell theory, boundary layer theory of shell buckling and asymptotic perturbation tech-
nique to determine critical temperatures and postbuckling temperature-deflection curves
with both geometric imperfection and temperature dependence of material properties are
taken into consideration. Following this direction, thermomechanical postbuckling behav-
iors of FGM cylindrical shells with and without piezoelectric layer were also reported in
works [12-14]. By using analytical method and the classical theory, nonlinear buckling and
postbuckling of FGM cylindrical shells under axial compression and combined mechanical
loads have been considered by Huang and Han [15, 16]. Recently, Darabi et al. [17] pre-
sented an analytical study on the nonlinear dynamic stability of simply supported FGM
circular cylindrical shells under periodic axial loading. Also, nonlinear dynamic stability
of FGM cylindrical shells with and without piezoelectric layers under thermomechanical
and thermo-electro-mechanical loads has been treated by Shariyat [18,19]. He employed
a high-order shell theory proposed by Shariyat and Eslami [20] in which transverse shear
stress influences are also included, finite element method and a two-step iterative method
to determine buckling loads and postbuckling curves. It is excepted for works [3, 4, 6], most
of aforementioned investigations used the theories in which the shallowness of cylindrical
shells is assumed. This results from the complexity of basic equations when assumption
on the shallowness is ignored due to difficulty in defining a suitable stress function. How-
ever, improved terms should be included in the shell theories for more exact predictions,
especially nonshallow long cylindrical shells.

In this paper, buckling and postbuckling behaviors of FGM cylindrical shells under
mechanical loads with and without temperature effects are investigated by an analytical
approach. Equilibrium equations are established by using improved Donnell shell theory
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with kinematic nonlinearity is taken into consideration. One-term approximate solution
satisfying simply supported boundary conditions is assumed and closed-form expressions
of buckling loads and nonlinear load-deflection curves are determined by Galerkin method.
The effects of material and geometric parameters, buckling mode, pre-existent axial com-
pressive and thermal loads on the stability of FGM cylindrical shells are considered and
discussed.

2. FUNCTIONALLY CYLINDRICAL SHELLS

Consider a functionally graded circular cylindrical shell of radius of curvature R,
thickness h and length L as shown in Fig. 1. The shell is made from a mixture of ceramics
and metals and is defined in coordinate system (x, θ, z), where x and θ are in the axial and
circumferential directions of the shell, respectively, and z is perpendicular to the middle
surface and points outwards (−h/2 ≤ z ≤ h/2).

Fig. 1. Configuration and the coordinate system of a cylindrical shell

Suppose that the material composition of the shell varies smoothly along the thick-
ness is such a way the inner surface is metal-rich and the outer surface is ceramic-rich by
following a simple power law in terms of the volume fractions of the constituents as

Vc(z) =

(

2z + h

2h

)k

, Vm(z) = 1 − Vc(z) (1)

where Vc and Vm are the volume fractions of ceramic and metal constituents, respectively,
and volume fraction index k is a nonnegative number that defines the material distribution.
It is assumed that the effective properties Preff of FGM cylindrical shell change in the
thickness direction z and can be determined by the linear rule of mixture as

Preff (z) = PrcVc(z) + PrmVm(z) (2)

where Pr denotes a temperature-independent material property, and subscripts m and c
represent the metal and ceramic constituents, respectively.

From Eqs. (1) and (2) the effective properties of FGM cylindrical shell such as
modulus of elasticity E, the coefficient of thermal expansion α, and the coefficient of
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thermal conduction K can be defined as

[E(z), α(z), K(z)] = [Em, αm, Km] + [Ecm, αcm, Kcm]

(

2z + h

2h

)k

(3)

whereas Poisson ratio ν is assumed to be constant and

Ecm = Ec − Em , αcm = αc − αm , Kcm = Kc − Km. (4)

It is evident that E = Ec , α = αc , K = Kc at z = h/2 and E = Em , α = αm , K =
Km at z = −h/2.

3. GOVERNING EQUATIONS

In the present study, the improved Donnell shell theory is used to obtain the equi-
librium equations as well as expressions of buckling loads and nonlinear load-deflection
curves of FGM cylindrical shells. The strains across the shell thickness at a distance z
from the middle surface are

εx = εx0 + zkx , εy = εy0 + zky , γxy = γxy0 + zkxy (5)

where εx0 and εy0 are the normal strains, γxy0 is the shear strain at the middle surface of the
shell, whereas kx, ky, kxy are the change of curvatures and twist. According to Sanders
assumption, the strains at the middle surface and the change of curvatures and twist
are related to the displacement components u, v, w in the x, y, z coordinate directions,
respectively, as [1]

εx0 = u,x +
1

2
w2

,x , εy0 = v,y −
w

R
+

1

2
w2

,y , γxy0 = u,y + v,x + w,xw,y

kx = −w,xx , ky = −w,yy −
1

R
v,y , kxy = −w,xy −

1

2R
v,x

(6)

where y = Rθ and subscript (, ) indicates the partial derivative.
Hooke law for a functionally graded cylindrical shell including temperature effects

is defined as

(σx, σy) =
E

1 − ν2
[(εx, εy) + ν (εy, εx) − (1 + ν)α∆T (1, 1)]

σxy =
E

2(1 + ν)
γxy ,

(7)

where ∆T denotes the change of environment temperature from stress free initial state or
temperature difference between the surfaces of FGM cylindrical shell.

The force and moment resultants of an FGM cylindrical shell are expressed in terms
of the stress components through the thickness as

(Nij, Mij) =

h/2
∫

−h/2

σij(1, z)dz , ij = x, y, xy. (8)
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Introduction of Eqs. (3), (5) and (7) into Eqs. (8) gives the constitutive relations in
the matrix form as




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









Nx

Ny

Nxy

Mx
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Mxy
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








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














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
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






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










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εx0
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γxy0
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kxy

2kxy

















−

















Φ0/(1− ν)
Φ0/(1− ν)

0
Φ1/(1− ν)
Φ1/(1− ν)

0

















(9)

where

A11 = A22 =
E1

1 − ν2
, A12 = νA11 , A66 =

E1

2(1 + ν)

B11 = B22 =
E2

1 − ν2
, B12 = νB11 , B66 =

E2

2(1 + ν)

D11 = D22 =
E3

1− ν2
, D12 = νD11 , D66 =

E3

2(1 + ν)

(10)

and

E1 = Emh + Ecmh/(k + 1) , E2 = Ecmh2 [1/(k + 2)− 1/(2k + 2)]

E3 = Emh3/12 + Ecmh3 [1/(k + 3) − 1/(k + 2) + 1/(4k + 4)] ,

(Φ0, Φ1) =

h/2
∫

−h/2

[

Em + Ecm

(

2z + h

2h

)k
][

αm + αcm

(

2z + h

2h

)k
]

∆T (1, z) dz

(11)

The nonlinear equilibrium equations of a perfect cylindrical shell based on the im-
proved Donnell shell theory are

Nx,x + Nxy,y = 0

Nxy,x + Ny,y −
1

R
(Mxy,x + My,y) = 0

Mx,xx + 2Mxy,xy + My,yy +
Ny

R
+ Nxw,xx + 2Nxyw,xy + Nyw,yy

+ (Nxy,x + Ny,y)w,y − Pxhw,xx + q = 0

(12)

where Px is axial uniform compressive force acting on two ends of the shell and q is external
pressure uniformly distributed on the surface of the shell.

Substituting of Eqs. (6) into Eqs. (9) and then into Eqs. (12), the system of equi-
librium equations (12) is rewritten in terms of displacement components as follows

L11(u) + L12(v)− L13(w) + P1(w) = 0

L21(u) + L22(v)− L23(w) + P2(w) = 0

L31(u) + L32(v)− L33(w) + P3(w) + Q3(u, w) + R3(v, w)

−
Φ0

1 − ν

(

w,xx + w,yy +
1

R

)

− Pxhw,xx + q = 0

(13)
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where linear operators Lij() (i, j = 1, 2, 3) and nonlinear operators Pi() (i = 1, 2, 3), Q3(, ), R3(, )
are defined as follows

L11() = A11
∂2

∂x2
+ A66

∂2

∂y2

L12() = L21() =

(

A12 + A66 −
B12 + B66

R

)

∂2

∂x∂y

L13() = L31() =
A12

R

∂

∂x
+ B11

∂3

∂x3
+ (B12 + 2B66)

∂3

∂x∂y2

L22() =

(

A66 −
2B66

R
+

D66

R2

)

∂2

∂x2
+

(

A11 −
2B11

R
+

D11

R2

)

∂2

∂y2

L23() = L32() =

(

A11

R
−

B11

R2

)

∂

∂y
+

(

B11 −
D11

R

)

∂3

∂y3

+

(

B12 + 2B66 −
D12 + 2D66

R

)

∂3

∂x2∂y

L33() =
A11

R2
() +

2B12

R

∂2

∂x2
+

2B11

R

∂2

∂y2
+ D11

(

∂4

∂x4
+

∂4

∂y4

)

+ 2 (D12 + 2D66)
∂4

∂x2∂y2

P1() = A11
∂

∂x

∂2

∂x2
+ (A12 + A66)

∂

∂y

∂2

∂x∂y
+ A66

∂

∂x

∂2

∂y2

P2() =

(

A66 −
B66

R

)

∂2

∂x2

∂

∂y
+

(

A11 −
B11

R

)

∂

∂y

∂2

∂y2

+

(

A12 + A66 −
B12 + B66

R

)

∂

∂x

∂2

∂x∂y

P3(w) = −
w

R

(

A12
∂2w

∂x2
+ A11

∂2w

∂y2

)

+ 2 (B66 − B12)
∂2

∂x2

∂2

∂y2

+ 2 (B12 − B66)

(

∂2w

∂x∂y

)2

−
A12

2R

(

∂w

∂x

)2

−
A11

2R

(

∂w

∂y

)2

+
3A11

2

[

∂2w

∂x2

(

∂w

∂x

)2

+
∂2w

∂y2

(

∂w

∂y

)2
]

+ 2 (A12 + 2A66)
∂w

∂x

∂w

∂y

∂2

∂x∂y

+

(

A12

2
+ A66

)

[

∂2w

∂y2

(

∂w

∂x

)2

+
∂2w

∂x2

(

∂w

∂y

)2
]

Q3(u, w) = A11

(

∂u

∂x

∂2w

∂x2
+

∂2u

∂x2

∂w

∂x

)

+ A12
∂u

∂x

∂2w

∂y2
+ A66

∂2u

∂y2

∂w

∂x

+ (A12 + A66)
∂2u

∂x∂y

∂w

∂y
+ 2A66

∂u

∂y

∂2w

∂x∂y

(14)
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R3(v, w) =

(

A12 −
B12

R

)

∂v

∂y

∂2w

∂x2
+

(

A66 −
B66

R

)[

2
∂v

∂x

∂2w

∂x∂y
+

∂2v

∂x2

∂w

∂y

]

+

(

A11 −
B11

R

)[

∂v

∂y

∂2w

∂y2
+

∂2v

∂y2

∂w

∂y

]

+

(

A12 + A66 −
B12 + B66

R

)

∂2v

∂x∂y

∂w

∂x
.

In what follows, specific expressions of thermal parameter Φ0 for two types of ther-
mal loads will be determined.

3.1. Uniform temperature rise

Environment temperature can be raised from initial value Ti to final one Tf and
temperature difference ∆T = Tf − Ti is a constant. In this case, the thermal parameter
Φ0 can be expressed in terms of the ∆T from Eqs. (11) as follows

Φ0 = I∆Th , I = Emαm +
Emαcm + Ecmαm

k + 1
+

Ecmαcm

2k + 1
(15)

3.2. Through the thickness temperature gradient

In this case, the temperature through the thickness is governed by the one-dimensional
Fourier equation of steady-state heat conduction established in cylindrical coordinate sys-
tem whose origin is on the symmetric axis of cylinder rather than on the middle surface
of cylindrical shell

d

dz̄

[

K(z̄)
dT

dz̄

]

+
K(z̄)

z̄

dT

dz̄
= 0 , T (z̄ = R − h/2) = Tm, T (z̄ = R + h/2) = Tc (16)

where Tc and Tm are temperatures at ceramic-rich and metal-rich surfaces, respectively. In
Eq. (16), z̄ is radial coordinate of a point which is distant z from the shell middle surface
with respect to the symmetric axis of cylinder, i.e. z̄ = R + z and R−h/2 ≤ z̄ ≤ R + h/2.

The solution of Eq. (16) can be expressed as follows

T (z̄) = Tm +
∆T

R+h/2
∫

R−h/2

dz̄
z̄K(z̄)

z̄
∫

R−h/2

dζ

ζK(ζ)
(17)

where, in this case, ∆T = Tc − Tm is defined as the temperature difference between
ceramic-rich and metal-rich surfaces of the FGM shell. Due to mathematical difficulty,
this section only considers linear distribution of metal and ceramic constituents, i.e. k = 1
and

K(z̄) = Km + Kcm

[

2(z̄ − R) + h

2h

]

. (18)

Introduction of Eq. (18) into Eq. (17) gives temperature distribution across the shell
thickness as

T (z) = Tm +
∆T

ln Km(R+h/2)
Kc(R−h/2)

[

ln
R + z

R − h/2
− ln

(Kc + Km) /2 + Kcmz/h

Km

]

(19)
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where z̄ has been replaced by z + R after integration.
Assuming the metal surface temperature as reference temperature and substituting

Eq. (19) into Eqs. (11) give Φ0 = H∆Th, where

H =
1

ξ − η

{

Emαm

[

ξ (Rh + 1/2) −
ηKc

Kcm

]

+
Emαcm + Ecmα

2
[(Rh − 1) (1− Rhξ)

+
3

4
ξ +

1

K2
cm

(

3K2
m + K2

c

2
+ 2KmKc (η − 1) − ηK2

c

)]

+ Ecmαcm [−5/8

+ Rh/2−
R2

h

3
+ ξ

(

7

24
+

R3
h

3
−

R2
h

2
+

Rh

4

)

−
1

18K3
cm

(

11K3
m + 2K3

c (3η − 1)

−18ηKmKcKcm + 9KmKc(Kc − 2Km))]}

(20)

and

Rh = R/h , ξ = ln
2Rh + 1

2Rh − 1
, η = ln

Kc

Km
. (21)

4. STABILITY ANALYSIS

In this section, an analytical approach is used to investigate the nonlinear stability of
FGM cylindrical shells under mechanical and thermomechanical loads. Consider a perfect
cylindrical shell with simply supported edge conditions. The boundary conditions at x =
0, L are

w = w,xx = v = u,x = 0. (22)

The approximate solution of the system of Eqs. (13) satisfying the boundary con-
ditions (22) may be assumed as

u = U cosλmx sinµny

v = V sinλmx cosµny

w = W sin λmx sinµny

(23)

where λm = mπ/L , µn = n/R and m, n are number of half waves in x direction and waves
in y direction, respectively, and U, V, W are the amplitudes of displacements. Substitution
of Eqs. (23) into Eqs. (13) and then applying Galerkin method for the resulting equations
yield

l11U + l12V + l13W + n1W
2 = 0

l21U + l22V + l23W + n2W
2 = 0

l31U + l32V + l33W + n3W
2 + n4W

3 + n5UW + n6V W −
Pxhπ2m2

L2
W

−
Φ0

1 − ν

(

m2π2

L2
+

n2

R2

)

W +
16Φ0

R(1 − ν)π2mn
−

16q

π2mn
= 0

(24)
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where

l11 = A11
π2m2

L2
+ A66

n2

R2
, l12 = l21 =

πmn

LR

[

A12 + A66 −
1

R
(B12 + B66)

]

,

l13 = l31 = A12
πm

LR
− B11

π3m3

L3
−

(B12 + 2B66)πmn2

LR2
,

l22 =

(

A11 −
2B11

R
+

D11

R2

)

n2

R2
+

(

A66 −
2B66

R
+

D66

R2

)

π2m2

L2
,

l23 = l32 =

(

A11 −
B11

R

)

n

R2
+

(

D11

R
− B11

)

n3

R3
+

(

D12 + 2D66

R
− B12 − 2B66

)

π2m2n

L2R
,

l33 = D11

(

π4m4

L4
+

n4

R4

)

+ (D12 + 2D66)
2π2m2n2

L2R2
+

A11

R2
−

2B12π
2m2

L2R
−

2B11n
2

R3
,

n1 = A11
32πm2

9L3n
−

16 (A12 − A66)n

9πLR2
,

n2 =

(

A11 −
B11

R

)

32n2

9π2mR3
+

(

A66 − A12 −
B66 − B12

R

)

16m

9L2R
,

n3 =
32 (B12 − B66)mn

3L2R2
−

16A12m

3L2Rn
−

16A11n

3π2R3m
,

n4 =
9A11

32

(

π4m4

L4
+

n4

R4

)

+ (A12 + 2A66)
π2m2n2

16L2R2
,

n5 = −A11
32πm2

9L3n
−

32 (A12 − A66)n

9πLR2
,

n6 =

(

A66 − A12 +
B12 − B66

R

)

32m

9L2R
+

(

B11

R
− A11

)

32n2

9π2R3m
(25)

and m, n are odd numbers. Solving the first two of Eqs. (24) for U and V yields

U =
(l12l23 − l22l13)W + (l12n2 − l22n1)W 2

l11l22 − l212

V =
(l12l13 − l11l23) W + (l12n1 − l11n2)W 2

l11l22 − l212

(26)

Substituting Eqs. (26) into the third of Eqs. (24) we obtain

16q

π2mn
= a1W+a2W

2
+a3W

3
−

Pxπ2m2

R2
hL2

R

W+

[

16

Rhπ2mn
−

(

π2m2

R2
hL2

R

+
n2

R2
h

)

W

]

I∆T

1 − ν
(27)
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where

a1 = l̄33 +
2l̄12l̄23l̄13 −

(

l̄11l̄
2
23 + l̄22l̄

2
13

)

l̄11l̄22 − l̄212

a2 = n̄3 +
1

χ

[

l̄13

(

l̄12n̄2 − l̄22n̄1

)

+ l̄23

(

l̄12n̄1 − l̄11n̄2

)

+ n̄5

(

l̄12l̄23 − l̄22l̄13

)

+ n̄6

(

l̄12l̄13 − l̄11l̄23

)]

a3 = n̄4 +
1

χ

[

n̄5

(

l̄12n̄2 − l̄22n̄1

)

+ n̄6

(

l̄12n̄1 − l̄11n̄2

)]

(28)

in which

χ = l̄11l̄22 − l̄212 ,

l̄11 = Ā11
π2m2

R2
hL2

R

− B̄11
π3m3

R3
hL3

R

−

(

B̄12 + 2B̄66

)

πmn2

R3
hLR

,

l̄22 =

(

Ā11 −
2B̄11

Rh
+

D̄11

R2
h

)

n2

R2
h

+

(

Ā66 −
2B̄66

Rh
+

D̄66

R2
h

)

π2m2

R2
hL2

R

,

l̄23 =

(

Ā11 −
B̄11

Rh

)

n

R2
h

+

(

D̄11

Rh
− B̄11

)

n3

R3
h

+

(

D̄12 + 2D̄66

Rh
− B̄12 − 2B̄66

)

π2m2n

R3
hL2

R

,

l̄33 = D̄11

(

π4m4

R4
hL4

R

+
n4

R4
h

)

+
(

D̄12 + 2D̄66

) 2π2m2n2

R4
hL

2
R

+
Ā11

R2
h

−
2B̄12π

2m2

R3
hL2

R

−
2B̄11n

2

R3
h

,

n̄1 = Ā11
32πm2

9R3
hL3

Rn
−

16n
(

Ā12 − Ā66

)

9πR3
hLR

,

n̄2 =

(

Ā11 −
B̄11

Rh

)

32n2

9π2mR3
h

+

(

Ā66 − Ā12 −
B̄66 − B̄12

Rh

)

16m

9R3
hL2

R

,

n̄3 =
32mn(B̄12 − B̄66)

3R4
hL2

R

−
16mĀ12

3nR3
hL2

R

−
16nĀ12

3mπ2R3
h

,

n̄4 =
9Ā11

32

(

π4m4

R4
hL4

R

+
n4

R4
h

)

+
(

Ā12 + 2Ā66

) π2m2n2

16R4
hL

2
R

,

n̄5 = −Ā11
32πm2

9nR3
hL3

R

−
32n

(

Ā12 − Ā66

)

9πR3
hLR

,

n̄6 =

(

Ā66 − Ā12 +
B̄12 − B̄66

Rh

)

32m

9R3
hL

2
R

+

(

B̄11

Rh
− Ā11

)

32n2

9π2mR3
h

(29)

and

LR = L/R , W = W/h ,

[

Ā11, Ā12, Ā66

]

=
[A11, A12, A66]

h
,

[

B̄11, B̄12, B̄66

]

=
[B11, B12, B66]

h2
,

[

D̄11, D̄12, D̄66

]

=
[D11, D12, D66]

h3

(30)
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Eq. (27) is explicit expression of external pressure-deflection curves accounting for
pre-existent edge compressive and thermal loads. It is predicted that due to the presence
of temperature conditions FGM cylindrical shells experience a bifurcation-type buckling
behavior with buckling pressure qb = I∆T/ (Rh(1 − ν)) (I is replaced by H in case of
thermal gradient) which is independent of buckling mode (postbuckling behavior, however,
is sensitive to buckling mode). In contrast, in the absence of the temperature and edge
compressive force the q(W ) curves originate from coordinate origin and the shell undergoes
bending at the onset of loading.

In a particular case which the cylindrical shell is only subjected to axial compression,
Eq. (27) leads to

Px =
R2

hL2
R

π2m2

(

a1 + a2W + a3W
2
)

(31)

from which bifurcation compressive load Pxb is determined as

Pxb =
a1R

2
hL2

R

π2m2
(32)

whereas lower buckling compressive load may be obtained at W 0 = −a2/(2a3) as

Pxl = Px(W 0) =
R2

hL2
R

π2m2

(

a1 −
a2

2

4a3

)

(33)

and the intensity of well-known snap-through of compressed cylindrical shells is measured
by difference between bifurcation and lower buckling loads, i.e. by a2

2R
2
hL

2
R/(4a3π

2m2).

5. RESULTS AND DISCUSSION

As part of the validation of the present approach, the buckling behavior of an
isotropic thin cylindrical shell under uniform axial compressive load is analyzed, which
was considered by Brush and Almroth [1] using adjacent equilibrium criterion and Don-
nell shallow shell theory. The dimensionless buckling axial compressive loads of a simply
supported cylindrical shell are compared in Tab. 1 with result of Ref. [1]. As can be
seen, a good agreement is achieved in this comparison study. Brush and Almroth’s results
are slightly higher than our results because the shallow shell theory, instead of improved
theory, was used in their work.

Table 1. Comparison of buckling loads Pxcr×10
3/E for simply supported isotropic

perfect cylindrical shell under axial compression (ν = 0.3).

R/h
L/R = 0.5 L/R = 1.0 L/R = 1.5

100 150 100 150 100 150

Present 6.033(1,9)e 4.043(3,9) 5.954(1,7) 4.018(3,11) 6.033(3,9) 4.043(9,9)

Ref. [1] 6.087 4.047 6.063 4.035 6.087 4.047
e The numbers in brackets indicate the buckling mode (m, n)
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To illustrate the proposed approach, we consider a ceramic-metal functionally graded
cylindrical shell that consists of aluminum and alumina with the following properties

Em = 70 GPa , αm = 23 × 10−6 ◦C−1 , Km = 204 W/mK

Ec = 380 GPa , αc = 7.4× 10−6 ◦C−1 , Kc = 10.4 W/mK
(34)

whereas Poisson’s ratio is chosen to be 0.3.

Table 2. Critical buckling compressive loads Pxcr (in GPa) for FGM cylindrical
shells, R/h = 100.

k
L/R

1.0 2.0 3.0 6.0

0 2.262(1,7)e 2.229(1,5) 2.262(3,7) 2.079(1,3)

0.5 1.554 1.545 1.554 1.445

1.0 1.230 1.228 1.230 1.151

5.0 0.736 0.723 0.736 0.674
e The numbers in brackets indicate the buckling mode (m, n)

Tab. 2 considers the effects of volume fraction index k and L/R ratio on critical
buckling loads Pxcr of FGM cylindrical shells under axial compression. As expected, the
critical values of buckling loads are decreased when k increases due to drop in the volume
percentage of ceramic constituent. It is also seen that critical loads are not always decreased
when L/R increases.

Fig. 2 gives the effects of k on the postbuckling behavior of FGM cylindrical shells
under axial compression. As can be seen, both buckling compressive loads and postbuckling
load carrying capacity of cylindrical shells are reduced when k is increased. However, the
increase in buckling loads and postbuckling strength is paid by a more severe snap-through
phenomenon, i.e. a bigger difference between bifurcation and lower buckling loads and
curves become more unstable.

Fig. 3 shows the effects of L/R ratio on the postbuckling of FGM cylindrical shells
under axial compression. Although there is not much change of bifurcation point loads,
buckling modes and postbuckling curves are considerably varied due to the variation of
L/R ratio. Specifically, both number of waves in the circumferential direction and post-
buckling bearing capability of shells are reduced when L/R is enhanced. In addition, the
increase in L/R is accompanied by an unstable postbuckling behavior, i.e. a more severe
snap-through response.

Figs. 4 and 5 illustrate the effects of buckling mode and pre-existent axial com-
pressive load on the nonlinear response of FGM cylindrical shells subjected to uniform
external pressure. As can be observed, for a specific buckling mode nonlinear equilibrium
paths become lower and the intensity of snap-through is enhanced for higher values of
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Fig. 2. Effects of k on the postbuckling be-
havior of FGM cylindrical shells under axial
compression

Fig. 3. Effects of L/R ratio on the postbuck-
ling behavior of FGM cylindrical shells un-
der axial compression

pre-existent axial compressive load. Furthermore, the cylindrical shells carry better exter-
nal pressure and the nonlinear response to be more benign as the number of waves in the
circumferential direction increases.
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Fig. 4. Effects of pre-existent compressive
load on the nonlinear response of FGM
cylindrical shells under external pressure

Fig. 5. Counterpart of Fig. 4 for case of n = 5

Figs. 6 and 7 depict the effects of environment temperature and through the thick-
ness temperature gradient on the nonlinear response of FGM cylindrical shells under uni-
form external pressure in the presence of pre-existent axial compressive load. As mentioned
above, due to thermal loading conditions, FGM cylindrical shells experience a bifurcation
type buckling behavior. The increase in thermal loads is followed by both higher bifurca-
tion point pressure and more severe snap-through behavior. It is interesting to note that
all pressure-deflection curves go across a point for various values of temperature differ-
ence ∆T . This behavior trend of FGM shells is similar to the nonlinear response of FGM
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cylindrical panels subjected to simultaneous action of external pressure and thermal loads
presented in [21].
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Fig. 6. Effects of the environment temper-
ature on the nonlinear response of FGM
cylindrical shells under external pressure

Fig. 7. Effects of the temperature gradient
on the nonlinear response of FGM cylindri-
cal shells under external pressure

6. CONCLUDING REMARKS

This paper presents an analytical approach to investigate buckling and postbuckling
behaviors of FGM circular cylindrical shells subjected to axial compressive load, uniform
external pressure accounting for the effects of temperature conditions. Equilibrium equa-
tions are established within the framework of improved Donnell shell theory taking into
account the nonshallowness of cylindrical shell and geometrical nonlinearity. One-term
approximate solution satisfying simply supported boundary conditions is assumed and ex-
plicit expressions of buckling loads and postbuckling load-deflection curves are determined
by using Galerkin method. The study shows that buckling loads and postbuckling behavior
of FGM cylindrical shells are greatly influenced by material and geometrical parameters
and temperature conditions. The results also reveal that buckling mode and pre-existent
axial compressive load have significant effects on the nonlinear response of the shells. The
improved theory should be used to predict the nonlinear behavior of nonshallow cylindrical
shells.
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