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Abstract. A co-rotational beam element for geometrically nonlinear analysis of plane
frames is presented. On the base of the shallow arch expression for local strain, the ele-
ment is formulated by using exact polynomials to interpolate the transversal displacement
and rotation. Using the formulated element, the critical load and equilibrium path are
computed with the aid of the bracketing procedure and the arc-length control method,
respectively. Numerical examples show that the proposed element is capable to give ac-
curate results with a smaller number of elements comparing to the elements previously
used in the examples. The effect of the nonlinear term used in the local strain expression
on the numerical results is also investigated and highlighted.

Keywords: Plane frame, geometric nonlinearity, co-rotational beam element, critical load,
equilibrium path.

1. INTRODUCTION

Frame structure is widely used in civil engineering, and nonlinear analysis of this
structure is of interest from both academic and practical points of views. The essential for
a nonlinear analysis is to have a nonlinear element which is capable to model accurately
nonlinear behavior of the structure. Development of nonlinear elements, in general, and
beam elements, in particular, is an important topic in the field of structural mechanics.
Many beam elements which included geometrical nonlinearity for the large displacement
analysis of frames can be found in the literature, and some of them have been documented
in various well-known textbooks, e.g. [1, 2]. Depending on the choice of reference configu-
ration, the nonlinear beam elements can be classified into three main types, namely the
total Lagrangian formulation, the updated Lagrangian formulation and the co-rotational
formulation.

In the co-rotational formulation, which will be adopted in the present work, a local
coordinate system attached to the element is introduced, and the finite element formulation
is firstly formulated in the local coordinates and then transferred to the global system by
the aid of transformation matrices [2, 3]. Literature survey shows that the co-rotational
beam elements can be formulated by using different local strain definitions, beam theories
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as well as the way to define a local coordinate system. In addition to the plane Bernoulli
element using a linear strain definition described by Crisfield in [2], the formulations
proposed by Pacoste and Eriksson [3], Hsiao and co-workers [4], Meek and Xue [5], are
some main co-rotational elements available in the literature for geometrically nonlinear
analysis of plane elastic beam and frame structures. In a recent work, Jafari and co-
workers [6] also adopted an element attached coordinate system for construction of the
flexibility matrix for geometrically nonlinear Timoshenko beam element, which can be
viewed as a form of the co-rotational formulation. It is necessary to note that the total
Lagrangian formulation and the co-rotational formulation, as demonstrated in [3], though
adopted different reference systems for the kinematic description, they are identical.

In the previous work, the first author and his co-worker have conducted some re-
search on large displacement analysis of elastic and elasto-plastic frames by developing the
co-rotational Bernoulli beam elements [7, 8]. The effect of shear deformation on the large
displacement response of frames has also investigated by the first author by formulation
of the co-rotational Timoshenko element [9]. In the context of the finite element analy-
sis, due to the independence of the transversal displacement and rotation, a Timoshenko
beam element for geometrically nonlinear analysis of frames, as discussed by Pacoste and
Eriksson in [3] or by the first author in [9, 10], can be formulated by linearly interpolat-
ing all the kinematic variables, provided that some techniques such as the reduced-order
integration are employed to prevent the formulated element from the shear locking. An
alternative way for preventing a shear deformable beam element from the shear locking
problem, as discussed by Reddy in [11], is to employ appropriate interpolation functions
for the kinematic variables. The exact cubic and quadratic polynomials obtained by solv-
ing the homogenous equilibrium equations of a beam element proposed by Luo in [12],
which will be adopted in the present work, are examples of such interpolation functions.

The present paper formulates a co-rotational element for geometrically nonlinear
analysis of plane frame structure. The element is adopted a shallow arch expression for
local strain and employing exact polynomials obtained from the field consistent approach
to interpolate the transversal displacement and rotation. Using the formulated element,
nonlinear equilibrium equations in the finite element context are constructed and solved
by an incremental and iterative method procedure. The bracketing procedure and the arc-
length control method are adopted in computing the critical loads and tracing equilibrium
paths, respectively. A number of numerical examples are given to demonstrate the accuracy
and efficiency of the formulated element. The effect of the nonlinear term in the local strain
expression on the accuracy of numerical results is also investigated and highlighted.

2. CO-ROTATIONAL METHOD

As above mentioned, in the co-rotational method an element attached coordinate
system which continuously translates and rotates with the element during its deformation
process is introduced. By using such a local system, the element deformation is decom-
posed into rigid body and pure deformation parts, and the geometric nonlinearity induced
by large rigid body motion is incorporated into transformation matrices which can be
derived from the relationship between the local and global quantities [2,3]. The kinematic
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relationship and detail expressions for the transformation matrices are described in this
section.

Fig. 1. A plane beam element and its kinematics in local and global coordinate systems

Fig. 1 shows a two-node plane beam element and its kinematics in the local and
global coordinate systems. The element is assumed initially straight and the beam material
is linearly elastic. Global coordinates (X,Z) are fixed in space. A local system (x, z) is
attached to the element, and it continuously translates and rotates with the element.
Denoting (Xi, Zi) and (Xj, Zj) are respectively the coordinates of node i and node j with
respective to the global system. The local system (x, z) is chosen as well as its original
is always at node i, and x axis directs to node j. By choosing such a local system, the
axial displacement at node i and transversal displacements at both the nodes in the local
system are always zero. Thus, vectors of the nodal displacements in the local and global
systems are given by, respectively,

dl = {ul θli θlj}
T (1)

and

d = {ui wi θi uj wj θj}
T (2)

Here and afterwards a superscript T denotes the transpose of a vector or a matrix, and
subscript “l” stands for the “local”.

The local displacements in Eq. (1) can be computed as [2, 3]

ul = ln − l , θli = θi − θr , θlj = θj − θr (3)

where l, ln and θr are the initial length, current length and rigid rotation of the element,
respectively. These quantities can be computed by geometrical consideration as

l =
√

l2X + l2Z , ln =
√

(lX + d41)2 + (lZ + d52)2

θr = acrtan

[

lXd52 − lZd41

lX(lX + d41) + lZ(lZ + d52)

] (4)

with lX = Xj −Xi, lZ = Zj −Zi are the projections of undeformed element on the global
axes X and Z, respectively; d41 = uj − ui, d52 = wj − wi.
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Denoting f inl
and fin are the element internal force vectors corresponding to the

nodal displacement vectors defined by Eq. (1) and Eq. (2), respectively. These force vectors
contain the axial, shear forces and moments at the nodes

finl
= {Nl Mli Mlj}

T (5)

fin = {Ni Qi Mi Nj Qj Mj}
T (6)

Assuming the strain energy expression for the element U has been derived in terms of the
nodal displacements, the global internal force vector can be computed by differentiation
of this strain energy (which is invariant of the coordinate systems) with respect to the
global displacement vector as

fin =
∂U

∂d
=
∂U

∂dl

∂dl

∂d
= TT

1

∂U

∂dl
= TT

1 finl
(7)

where T1 is the transformation matrix, which can be computed from Eq. (3) as

T1 =
∂dl

∂d
(8)

The element tangent stiffness matrix in the global system kt can be computed as

kt =
∂2U

∂d2
=
∂fin
∂d

= TT
1 ktl

T1 +NlT2 +MliT3 +MljT4 (9)

where ktl
= ∂2U/∂d2

l is the local tangent stiffness matrix; T2, T3 and T4 are the trans-
formation matrices, defined from Eq. (3) as

T2 =
∂2ul

∂d2
, T3 =

∂2θli
∂d2

, T4 =
∂2θlj
∂d2

(10)

From Eq. (3), one gets

T3 = T4 = Tr = −
∂2θr
∂d2

(11)

with θr is defined by Eq. (4). Thus, Eqs. (7)-(11) completely define the element formulation
provided that the local internal force vector finl

and tangent stiffness matrix ktl
are known.

3. LOCAL FORCE VECTOR AND STIFFNESS MATRIX

This section derives the local internal force vector and tangent stiffness matrix
for the element. Adopting the Timoshenko beam theory, the displacements in the local
coordinate system are given by

u(x, z) = u0(x) − zθ(x) , w(x, z) = w(x) , v(x, z) = 0 (12)

where u0(x) and w(x) are the mid-plane axial and transversal displacements; θ(x) is the
cross sectional rotation, independent of the transversal displacement w(x). The shallow
arch expression, a degenerated form of the Green strain, deduced from Eq. (12), is adopted
for the local strain as

εx =
∂u0

∂x
+

1

2

(

∂w

∂x

)2

− z
∂θ

∂x
= εm + zχ , γxz =

∂w

∂x
− θ (13)
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where χ = −∂θ/∂x is the beam curvature. The strain energy for the beam element asso-
ciated with the strain components defined by Eq. (13) has the form

U =
1

2

∫ l

0

EAε2mdx+
1

2

∫ l

0

EIχ2dx+
1

2

∫ l

0

κGAγ2dx (14)

where EA, EI and GA are the axial, bending and shear rigidities, respectively; κ is the
shear correction factor, depends on the cross section geometry.

In order to derive the local internal force vector and tangent stiffness matrix from
the strain energy expression, we need to express the train energy in term of the local
nodal displacements. To this end, interpolation functions are necessary to introduce for
the axial and transverse displacements and the cross section rotation. In the present work,
the field consistence approach discussed by Luo [12] is adopted, in which the interpolation
functions for the transversal displacement w(x) and the rotation θ(x) are found by solving
the homogeneous equilibrium equations of the beam element















κGA

(

−
∂θ

∂x
+
∂2w

∂x2

)

= 0

EI
∂2θ

∂x2
+ κGA

(

−θ +
∂w

∂x

)

= 0

(15)

with the boundary conditions

w|x=0 = wli , θ|x=0 = θli , w|x=l = wlj , θ|x=l = θlj (16)

By introducing a dimensionless parameter

φ =
12

l2
EI

κGA
(17)

and noticing that wli = wlj = 0, Eqs. (15) and (16) give the solutions

w = Nw1θli +Nw2θlj

θ = Nθ1θli +Nθ2θlj
(18)

where

Nw1 =
l

1 + φ

[

(x

l

)3

−

(

2 +
φ

2

)

(x

l

)2

+

(

1 +
φ

2

)

x

l

]

Nw2 =
l

1 + φ

[

(x

l

)3

−

(

1−
φ

2

)

(x

l

)2

−
φ

2

x

l

]

(19)

and

Nθ1 =
1

1 + φ

[

3
(x

l

)2

− (4 + φ)
x

l
+ (1 + φ)

]

Nθ2 =
1

1 + φ

[

3
(x

l

)2

− (2 − φ)
x

l

] (20)

The axial displacement is still linearly interpolated as u0 =
x

l
ul, and thus to prevent

the formulated element from the membrane locking, which might be occurred from the
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unbalance interpolation, the membrane strain εm in Eq. (13) is necessary to replace by
the effective strain as [2]

εeff. =
1

l

∫ l

0

εmdx =
1

l

∫ l

0

[

∂u0

∂x
+

1

2

(

∂w

∂x

)2
]

dx (21)

Using Eqs. (19) and (20) we can write the effective strain in terms of the local nodal
displacements as

εeff. =
1

l
ul +

1

(1 + φ)2

[

φ(2 + φ)

24
(θli − θlj)

2 +
1

30
(2θ2li − θliθlj + θ2lj)

]

(22)

Substituting Eqs. (19), (20) into Eq. (14), and using Eq. (22) one can express the strain
energy in term of the local nodal displacements as

U =
lEA

2

{

1

l
ul +

1

(1 + φ)2

[

φ(2 + φ)

24
(θli − θlj)

2 +
1

30
(2θ2li − θliθlj + 2θ2lj)

]}2

+
EI

2l(1 + φ)2
[

φ(2 + φ)(θli − θlj)
2 + 4(θ2li + θliθlj + θ2lj)

]

+
lφ2κGA

8(1 + φ)2
(θli + θlj)

2

(23)

Expressions for the local internal force vector finl
and tangent stiffness matrix ktl

are
then obtained by successive differentiation of the strain energy expression, Eq. (23), with
respective to the local degrees of freedom as

finl
=
∂U

∂dl
and ktl

=
∂2U

∂d2

l

(24)

From Eqs. (23) and (24), one can write the components of the local internal force vector,
finl

, in the explicit forms as

Nl = EAεeff .

Mli =
lEA

(1 + φ)2

[

φ(2 + φ)

12
(θli − θlj) +

1

30
(4θli − θlj)

]

εeff .

+
EI

l(1 + φ)2
[φ(2 + φ)(θli − θlj) + 2(2θli + θlj)] +

lφ2κGA

4(1 + φ)2
(θli + θlj)

Mlj =
lEA

(1 + φ)2

[

φ(2 + φ)

12
(θlj − θli) +

1

30
(4θlj − θli)

]

εeff .

+
EI

l(1 + φ)2
[φ(2 + φ)(θlj − θli) + 2(θli + 2θlj)] +

lφ2κGA

4(1 + φ)2
(θli + θlj)

(25)

where εeff . is given by Eq. (22). The local tangent stiffness matrix, ktl
, can be written in

the form
ktl

= ka + kb + ks (26)

in which

kb =
EI

l(1 + φ)2







0 0 0

0 (φ2 + 2φ+ 4) −(φ2 + 2φ− 2)

0 −(φ2 + 2φ− 2) (φ2 + 2φ+ 4)






, ks =

lφ2κGA

4(1 + φ)2







0 0 0

0 1 1

0 1 1






(27)
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are the constant stiffness matrices stemming from the beam bending and the shear de-
formation, respectively; ka is the nonlinear stiffness matrix resulted from the membrane
strain, and having the form

ka = EAl

















1

l2
1

l
ti

1

l
tj

t2i +
(5φ2 + 10φ+ 8)

60(1 + φ)2
εeff . titj −

(5φ2 + 10φ+ 2)

60(1 + φ)2
εeff .

sym. t2j +
(5φ2 + 10φ+ 8)

60(1 + φ)2
εeff .

















(28)

where

ti =
∂εeff .

∂θli
=

1

60(1 + φ)2
[5φ(2 + φ)(θli − θlj) + 2(4θli − θlj)]

tj =
∂εeff .

∂θlj
=

1

60(1 + φ)2
[5φ(2 + φ)(θlj − θli) + 2(4θlj − θli)]

(29)

The element formulated from the strain energy defined by Eq. (23) is based on the
nonlinear shallow arch expression for the local axial strain, Eq. (13). However, a linear
expression for the local strain can be assumed for the local strain [2, 3], and the element
based on the linear strain definition can be obtained by deleting the terms in the Eq. (23)

corresponding to the nonlinear term
1

2
(∂w/∂x)2. In order to investigate the effect of the

nonlinear term on the numerical results, we denote B2CL and B2CS as the elements based
on the linear and shallow arch expressions of the local strain, respectively.

It is necessary to note that when φ → 0, the strain energy given by Eq. (23)
deduces to the strain energy expression of the shallow arch based co-rotational Bernoulli
beam element, previously derived by Pacoste and Eriksson in [3] (conf. Eq. (44) of Ref.
[3]). Thus, with the definition of the coordinate systems as that in [3], when φ → 0 the
Timoshenko beam element of the present work deduces exactly to the 2D co-rotational
Bernoulli element in [3]. In this regards, the element of the present work is able to model
the slender beams and frames. In other work, the Timoshenko beam element formulated
in present paper is free of the shear locking.

4. NUMERICAL PROCEDURES

The equilibrium equations for non-linear analysis of structures are obtained by set-
ting the out-of-balance forces to zeros [2]

g(p, λ) = qin(p)− λfef = 0 (30)

where the out-of-balance force vector g is a function of the current structural nodal dis-
placements p, and the load-level parameter λ; qin is the structural internal force vector,
constructed from the element force vector fin in standard way of the finite element method;
fef is the fixed external loading vector. The non-linear equations (30) can be solved by an
incremental/iterative technique based on the Newton-Raphson method, in which the norm
of vector g(p, λ) is guided towards zero.
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In order to trace complete equilibrium paths for possible complex behavior such
as snap-through and snap-back, the arc-length method developed by Crisfield [2, 13] is
employed. In the method, the load parameter λ becomes a variable, and a constraint
equation is introduced as

a =
(

∆pT ∆p + ∆λ2ψ2fT
ef fef

)

− ∆l2 = 0 (31)

where ∆l is a fixed value chosen by the analyst; the vector ∆p and scalar ∆λ are the
incremental displacement and load parameter, defined from the last converged state; ψ
is the scaling parameter. With ψ = 1 , Eq. (31) defines a spherical surface with a radius
∆l in the load-displacement space, and Eq. (31) define a cylindrical surface when ψ = 0.
The methods corresponding to ψ = 1 and ψ = 0 are known in the literature as the
“spherical arc-length method” and “cylindrical arc-length method”, respectively. Thus, with
the introduction of the constrain equation, instead of solving the equilibrium equations
(30) directly, we find the intersection of the equilibrium path with the surface defined by
Eq. (31). The iterative procedure is obtained from the truncated Taylor expansion of the
vector g and a around the current equilibrium point as

g = g|0 +
∂g

∂p
|0δp +

∂g

∂λ
|0δλ = g|0 + Kt|0δp + fefδλ = 0

a = a0 + 2∆pT δp + 2∆λδλψ2fT
ef fef = 0

(32)

where g|0 and a|0 are defined from the current equilibrium point. Eq. (32) gives the
iterative displacements δp and iterative load parameter δλ as

{

δp
δλ

}

= −

[

Kt|0 −fef
2∆pT 2∆λψ2fT

ef
fef

]

−1 {

g|0
a|0

}

(33)

As we see the augmented Jacobian matrix within the square brackets in Eq. (33) remains
non-singular even when the Kt is singular. However, the Jacobian matrix in (33) is neither
symmetric nor banded, and the computation based on the arc-length method is expensive.
The cylindrical arc-length method is adopted in the present work. More detail on the
arc-length method and its numerical implementation are described in [2].

In addition, the bracketing procedure [14, 15] is adopted in computing critical and
limit loads of the structures. To this end, a load-control strategy is employed in solving the
equilibrium equation (30), and the lowest eigenvalue τ of the structural tangent stiffness
matrix Kt, assembled from the element matrix kt, is employed as indicator for predicting
a critical or a limit point. When passing the lowest critical or limit point, predicted by the
negative sign of τ , the bracketing procedure is active to compute an intermediate point
λi, by using an interpolation scheme for the control parameter λ as

λi = λl −
λr − λl

τr − τl
τl (34)

where λl, λr are the values of the load-level parameter at the equilibrium points before and
after passing the critical or limit point, respectively; τl and τr are the lowest eigenvalues
of Kt at the points. The bracketing procedure is terminated when a convergency criteria
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is satisfied. The following criterion is adopted herewith
(

∣

∣

∣

∣

λr − λl

λi
τ̄

∣

∣

∣

∣

)1/2

< β , with τ̄ =
τi

(|τl τr|)1/2
(35)

where β is the tolerance factor, taken by 10−4 in the present work. The obtained value λi

from the bracketing procedure is taken as the critical load-level parameter.

5. NUMERICAL EXAMPLES

In this section, various beam and frame structures shown in Fig. 2 are analyzed
to verify the formulated element. A tolerance factor of 10−4 is also chosen for judging
convergency of the iterative numerical procedure described in section 4. The shear modulus
is taken as G = E/2 for all the problem, and if not mentioned otherwise, the shear
correction factor κ = 5/6 is chosen for all the analyses reported below.

5.1. Euler buckling load

The cantilever beam under a centric axial force P with geometric and material data
shown in Fig. 2(a) adopted from Ref. [3] is employed to study the convergency and accuracy
of the formulated element in computing critical loads. The buckling coefficient of the beam,
fB = PcL

2/EI with Pc is the critical load, computed by various numbers of the B2CL
and B2CS elements is listed in Tab. 1. The analytical solution [16], Pc = Pe/(1+Pe/κGA)
with Pe = π2/4EI/L2, gives the buckling coefficient fB = 2.4674. As seen from Tab. 1,
the accuracy of the critical load obtained by the B2CS can be accepted at a very coarse
mesh. The accuracy of the critical load computed by the B2CL element is steady improved
by using more elements in the analysis, but the load computed by twenty B2CL elements
just gives the same accuracy as that obtained by two B2CS elements. Thus, it is hardly
improved the accuracy of the critical load by using a large number of elements when the
nonlinear term is ignored from the local strain expression.

Fig. 2. Test problems for verifying formulated element

Following the work by Pacoste and Eriksson in [3], the critical load of the cantilever
beam is computed by different slenderness ratios, namely s = 4 and s = 100, where
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s = L/
√

I/A. Keeping all the data as in Fig. 2(a), the computation is performed with the
beam cross-sectional area A = 2.88× 10−5 and A = 0.018, respectively.

Table 1. Buckling coefficient for cantilever beam computed by different element numbers

Number of element
Element

B2CL B2CS

1 3.0000 2.4860

2 2.5966 2.4687

4 2.4993 2.4675

6 2.4815 2.4674

8 2.4753 2.4674

10 2.4725 2.4674

20 2.4687 2.4674

Table 2. Critical load for cantilever beam at different slenderness ratios

Present Ref. [3] Ref. [17]

s B2CL B2CS b2dtt b2dcs

4 Pc 550.7782 548.1241 553.0 548.2 548.64

uc 19.1242 19.0321 14.18 19.03

100 Pc 444.9728 444.0597 446.8 444.6 444.13

uc 0.0247 0.0247 0.0248 0.02477

In consistent with the work in [3], the beam is discretized by 8 elements. The critical
load and the corresponding axial displacement at free end of the beam obtained by the
B2CL and B2CS elements are listed in Tab. 2. For comparison, the critical loads obtained
from a numerical method [3], and from a finite strain theory [17] are also listed in the
table. In the table, the ‘b2dtt’ and ‘b2dcs’ are the Timoshenko and Bernoulli beam el-
ements, formulated in [3] by using the total Lagrangian and co-rotational formulations,
respectively. The numerical result of the present work is very good in agreement with the
result computed by the ‘b2dcs’ of Ref. [3], and with that of [17]. As has been shown in [3],
the ‘b2dcs’ is very accurate in computing the critical load and large displacement response
of planar beam and frame structures. It is noted that for the case s = 4, a shear correction
factor ψ = 1200 as adopted in [3] is chosen in the computation to inhibit the shear effect.

5.2. Cantilever beam under transversal point load

The cantilever beam subjected to a transversal point load as shown in Fig. 2(b) is
employed herewith to test the ability of the elements in tracing the equilibrium path for
large displacement. The problem has been analytically analyzed by Mattiasson [18], and
it has been employed by several authors to test the accuracy of nonlinear beam elements.
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The load-displacement curves computed by only two elements formulated in the present
work are shown in Fig. 3, where the analytical solution derived by Mattiasson [18] and the
finite element result computed by five consistent Bernoulli beam elements by Nanakorn
and Vu [19] are also depicted. As seen from the figure, the numerical result computed by
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Fig. 3. Load-displacement relation cantilever beam under transversal point load

only two B2CS elements of the present work agrees very well with the analytical solution
in [18]. The curves computed by the B2CL element slightly differs from that obtained
by the B2CS element. The difference in the numerical result computed by the B2CL and
B2CS elements in this example can be eliminated by using 4 or more elements.

5.3. Cantilever beam under eccentric axial point load

The cantilever beam with the data shown in Fig. 2(c) under an eccentric axial point
load is considered herewith. The problem has been previously analyzed by Wood and
Zienkiewicz by using five paralinear elements [20]. The load-displacement curves obtained
by using a mesh of three elements formulated in the present work are depicted in Fig. 4.
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Fig. 4. Load-displacement relation for cantilever beam under eccentric axial load
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The good agreement between the result computed by the B2CS element of the present
work with the numerical result obtained in [20] is observed. Some difference between the
curves computed by the B2CL element with that obtained by the B2CS element is seen in
the figure. This difference can be diminished by using more elements in the analysis, and
with a mesh of 5 elements, no difference is observed.

5.4. Williams toggle frame

The toggle frame in Fig. 2(d) was previously employed by several authors to test the
behavior of nonlinear finite elements in large displacement analysis of frames [3,4,19]. The
frame data are: L = 12.943,H = 0.386, b = 0.753, h = 0.243, E = 10.3×106. The previous
work shows snap-through behavior of the frame under the downwards point load P . The
load-deflection curves for the frame computed by various numbers of the B2CL and B2CS
elements are depicted in Fig. 5. The numerical result obtained by using ten paralinear
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Fig. 5. Load-displacement curve for Williams frame

Table 3. Limit load around snap-through situation of Williams toggle frame

Number of element
Element

B2CL B2CS

2 39.9904 33.0079

4 39.9253 32.9903

6 35.8876 32.8587

8 34.4337 32.8409

10 33.9811 32.8270

12 33.6169 32.8066

elements of Wood and Zienkiewicz [20] is also shown in the figure by small triangles. Very
good agrement between the curve computed by two B2CS element of the present work and
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that in [20] is noted. The two B2CL elements gives the curve, which largely differs from
the corresponding curve obtained by the two B2CS and the numerical result of Ref. [20].
To improve the accuracy, a larger number of the B2CL is required, and as seen from Fig.
5 the curve computed by eight B2CL elements has been improved considerately.

To examine the effect of the nonlinear term
1

2
(
∂w

∂x
)2, the limit load around the

snap-through situation of the frame is computed with different numbers of the the B2CL
and B2CS elements by using the bracketing procedure. The obtained result listed Tab. 3
shows that the limit load is overestimated by using the B2CL element, even with a fine
mesh of twelve B2CL elements.

5.5. Lee’s frame

An asymmetric frame under a concentrated load shown in Fig. 2(e), which also
known in the literature as the Lee’s frame, is investigated. The problem has been previously
analyzed by Pacoste and Eriksson [3], Hsiao and Huo [4], and Cichón [21]. The frame shows
highly nonlinear with snap-through and snap-back behavior. The frame data are L = 120
cm, A = 6 cm2, I = 2 cm4, E = 720 t/cm2, where L, A, I and E are the length,
cross section area, moment of inertia and elastic modulus, respectively. A model of five
elements with different length as shown in Fig. 2(e) is employed in the present work. The
displacements in both horizontal and vertical directions at the loaded point are computed
by using the B2CS element.
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Fig. 6. Load-displacement relation of Lee’s frame

Fig. 6 shows the relation between the applied load and the displacements at loaded
point of the frame. The computed curves of the present work agrees well with the numerical
result obtained by using 10 elements in Ref. [4], which shown in the figure by small circles.
As in case of the Williams toggle frame, the curves computed by the B2CL (not shown in
the figure) differ from the curves in Fig. 6. To improve the numerical result, more elements
are required when the B2CL element is used.

In order to show the ability in modelling the shear deformation, the computation
was performed with various values of the slenderness ratio, namely s = 150, 50, and 30 by
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Fig. 7. Load-displacement relation of Lee’s frame with different slenderness ratios

using five B2CS elements. Keeping the rest data as above, the computation is performed
with A = 3.125, 0.3472 and 0.1250 cm2, respectively. The computed curves depicted in
Fig. 7 show a reduction in the limit load which the frame can withstand when reducing the
slenderness ratio. Thus, the shear deformation effect on the large displacement behavior
of the frame can be well modelled by the formulated element.

6. CONCLUSIONS

In this paper, a co-rotational beam element for geometrically nonlinear analysis
of plane frames has been formulated. The shallow arch expression was adopted for the
local strain and the exact polynomials obtained from the field consistence approach were
employed as interpolation functions for the transversal displacement and sectional rotation.
Using the formulated element, the critical loads and equilibrium paths are computed with
the aid of the bracketing procedure and the arc-length method. A number of examples
have been given to demonstrate the accuracy and efficiency of the formulated element.
The numerical results have shown that the proposed element is capable to give accurate
results by using a smaller number of the elements comparing to the elements previously
used in the examples.

The effect of nonlinear term in the local strain expression on the critical loads and
large displacement behavior of the structure has also been numerically investigated. It has
been shown that a larger number of elements is required to ensure the accuracy when
the nonlinear term in the expression of the local strain is ignored. In addition, ignoring
the nonlinear term leads to an overestimation of the critical and limit loads, and in some
cases this shortcoming is hardly improved by increasing number of the elements used in
analysis.
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