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Abstract. The branch switch characteristics of coupled flutter are clarified by use of
Step-by-Step flutter analysis. In the case of typical coupled flutter instability, the branch
switch characteristic from torsional branch to heaving branch is observed. In this pa-
per, a revised step-by-step analysis method is proposed and a calculating program using
MATLAB is build. Finally, the flutter behavior of the Cao Lanh Bridge, which is the
long bridge in Vietnam, is studied from the point of view of flutter in two-degrees of
freedom, namely torsional and heaving motion.
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1. INTRODUCTION

After total collapse of Tacoma Narrow Bridge in USA, 1940 due to the flutter insta-
bility, the aerodynamic and aeroelastic phenomena have been focused on bridge structures.
Especially, the Flutter instability (known as aeroelastic instability) is closely related to
flexible long-span bridges, because it is a reason for structural catastrophe. The bridge
aeroelasticity implies for the flutter instability. It tends to be most concern on flexible
long-span bridges at high wind velocity in which the aeroelastic interaction between wind
and structure generates the so-called self-excited aeroelastic forces. The aeroelastic in-
stability, however, occurs relating to negative damping mechanism due to combination
between structural damping and aerodynamic one. Traditionally, two types of the flutter
instability have been classified based on characteristics of bridge’s modal participation at
instability state. Torsional flutter is the case that only torsional mode participates domi-
nantly to such critical state, whereas coupled flutter occurs when two torsional and heaving
modes simultaneously involve in.

In only last two decades of the 20th century, many large-span bridges have been
successfully built in the world. Further bridges are hinged on super long span and more
slender structures as the main tendency of research and development of bridge engineering
in the few coming decades. The longer, the more slender structures, however, also face
with many difficulties, especially in the dynamic, seismic and aerodynamic behaviors. It
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is widely agreed that the long-span bridges are very prone to the aerodynamic effects and
the wind-induced vibration. In recent years, a number of long cable-stayed bridges have
been built in Vietnam (My Thuan Bridge, Binh Bridge, Bai Chay Bridge, Can Tho Bridge,
Han River Bridge, Phu My Bridge, Cao Lanh Bridge, Rachmieu Bridge, . . . ). Vietnam is
a country with a lot of wind and storm. Therefore, it is necessary to investigate the flutter
instability of long-span bridges.

Flutter problems can be approximately divided by analytical and experimental
methods and simulation techniques. The experimental approach is thanks to free vibra-
tion tests on 2D bridge sectional model in wind tunnel laboratory. Computational fluid
dynamics (CFD) technique has gained much development so far to become useful supple-
mental tools beside analytical and experimental methods and it is also predicted broadly
that such the CFD might replace wind tunnel tests in future; however, this technique still
has many limitations to cope with complexity of bridge sections and nature of 3D bridge
structures.

To solve 2DOF heaving-torsional motion equations, there are two powerful analytical
methods: so-called the complex eigenvalue method [1, 2] and the step-by-step method
[3–8]. 2DOF heaving-torsional motion system has been usually taken the cases of unit
structural length subjected to unit self-controlled forces into consideration. The 2DOF
heaving-torsional motion systems, moreover, can be known in sectional model tests in
wind tunnels.

This paper presents the application of the step-by-step method [3, 6] for calculating
the flutter instability of a long cable-stayed bridge, which have been built in Vietnam.

2. STEP-BY-STEP METHOD FOR 2 DOF HAVING-

TORSIONAL VIBRATION

The flutter motion equations of 2DOF heaving-torsional system (Fig. 1) can be
written as follows

mḧ(t) + chḣ(t) + khh(t) = Lh (1)

Iα̈(t) + cαα̇(t) + kαα(t) = Mα (2)

where: m, ch, kh are mass, damping coefficient and stiffness, respectively associated with
heaving motion. I , cα, kα are mass inertia moment, damping coefficient and stiffness,
respectively, associated with torsional motion. Lh, Mα are self-controlled lift and moment.

The self-controlled forces Lh, Mα can be determined by either of Theodorsen’s cir-
culation function or Scanlan’s flutter derivatives under frequency approach. The Scanlan’s
self-controlled forces have been applied for the flutter motion equations for various types
of cross sections thank to experimentally-determined flutter derivatives.

According to this approach, the self-controlled forces per unit span length can be
expressed as

Lh =
1

2
ρU2B

[

KH∗

1 (K)
ḣ

U
+ KH∗

2 (K)
Bα̇

U
+K2H∗

3 (K)α + K2H∗

4 (K)
h

B

]

(3)
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Fig. 1. Mechanical model of the bridge deck

Mα =
1

2
ρU2B2

[

KA∗

1(K)
ḣ

U
+ KA∗

2(K)
Bα̇

U
+K2A∗

3(K)α + K2A∗

4(K)
h

B

]

(4)

where the nondimensional reduced frequency K is defined as

K =
Bω

U
(5)

B is the width of the bridge deck, U is the uniform approach velocity of the wind and ω
is the circular frequency of oscillation. The eight real coefficients H∗

j and A∗

j (j = 1, . . . , 4)
are the flutter derivatives based on Scanlans approach.

Above Eqs. (1), (2) can be rewritten in the standard form as follows

ḧ + 2ζhωhḣ + ω2

h
h =

ρB2

2m
ωF H∗

1 ḣ +
ρB2

2m
ω2

F
H∗

4
h +

ρB3

2m
ωF H∗

2
α̇ +

ρB3

2m
ω2

F
H∗

3
α (6)

α̈ + 2ζαωαα̇ + ω2

αα =
ρB3

2I
ωF A∗

1ḣ +
ρB3

2I
ω2

F A∗

4h +
ρB4

2I
ωF A∗

2α̇ +
ρB4

2I
ω2

F A∗

3α (7)

Step 1: In torsional system, harmonic torsional motion is assumed that

α = α0 sin ωF t (8)

where α0 is the amplitude of torsional motion and t is the time.

α̇ = α0ωF cosωt = α0ωF sin
(

ωF t +
π

2

)

(9)

Step 2: In heaving system, the heaving motion is generated by external forces caused by
the torsional motion, as forced vibration:

Substituting Eqs. (8) and (9) into Eq. (6), we have the differential equation of forced
heaving vibration

ḧ +

[

2ζhωh −
ρB2

2m
ωH∗

1

]

ḣ +

[

ω2

h
−

ρB2

2m
ω2

F
H∗

4

]

h =
ρB3

2m
ωF H∗

2
α̇ +

ρB3

2m
ω2

F
H∗

3
α

=
ρB3

2m
ωF H∗

2
α0ωF sin

(

ωF t +
π

2

)

+
ρB3

2m
ω2

F
H∗

3
α0 sin ωF t

(10)
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Rewriting Eq. (10) in the standard form

ḧ + 2ζ∗hω∗

hḣ + ω∗2

h h =
ρB3

2m
H∗

2α0ω
2

F sin
(

ωF t +
π

2

)

+
ρB3

2m
ω2

F H∗

3α0 sin ωF t (11)

where

ω∗2

h = ω2

h −
ρB2

2m
ω2

F H∗

4 (12)

ζ∗h =

[

2ζhωh −
ρB2ωF

2m
H∗

1

]

/ (2ω∗

h) (13)

Solution of Eq. (11) consists of the following components

h = h̄ + h1 + h2 (14)

(i) h̄ is the total solution of free vibration equation

ḧ + 2ζ∗hω∗

hḣ + ω∗2

h h = 0 (15)

which takes a form
h = h0e

−ζ∗
h
t sin (ω∗

ht − φ) (16)

Note that for large values of t, the homogeneous solution (16) approaches zero and
the total solution of Eq. (11) approaches the particular solution [9].
(ii) h1 is the solution of forced vibration equation

ḧ + 2ζ∗
h
ω∗

hḣ + ω∗2

h
h =

ρB3

2m
H∗

2
α0ω

2

F
sin
(

ωF t +
π

2

)

(17)

It takes a form

h1 = h10 sin
(

ωF t +
π

2
− θ
)

(18)

where

h10 =
ρB3

2m |H∗

2
|α0ω

2
F

√

(

ω∗2

h − ω2

F

)2
+ 4ζ∗2h ω∗2

h ω2

F

(19)

sin θ =
2ζ∗hω∗

hωF H∗

2

|H∗

2
|
√

(

ω∗2

h − ω2

F

)2
+ 4ζ∗2h ω∗2

h ω2

F

,

cos θ =

(

ω∗2

h − ω2

F

)

H∗

2

|H∗

2
|

√

(

ω∗2

h − ω2

F

)2
+ 4ζ∗2h ω∗2

h ω2

F

(20)

For convenience, we rewrite Eq. (18) as follows

h1 = h10 sin (ωF t − θ1) with θ1 = θ −
π

2
(21)

(iii) h2 is the solution of forced vibration equation

ḧ + 2ζ∗hω∗

hḣ + ω∗2

h h =
ρB3

2m
ω2

F H∗

3α0 sinωF t (22)

We find solution of Eq. (22) in the following form

h2 = h20 sin (ωF t − θ2) (23)
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with

h20 =
ρB3

2m |H∗

3
|α0ω

2

F
√

(

ω∗2

h − ω2

F

)2
+ 4ζ∗2h ω∗2

h ω2

F

(24)

sin θ2 =
2ζ∗hω∗

hωF H∗

3

|H∗

3
|

√

(

ω∗2

h − ω2

F

)

2
+ 4ζ∗2h ω∗2

h ω2

F

,

cos θ2 =

(

ω∗2

h − ω2

F

)

H∗

3

|H∗

3
|

√

(

ω∗2

h − ω2

F

)2
+ 4ζ∗2h ω∗2

h ω2

F

(25)

Thus, the solution of heaving motion equation can be expressed as

h = h10 sin (ωF t − θ1) + h20 sin (ωF t − θ2)

ḣ = ḣ1 + ḣ2 = h10ωF cos (ωF t − θ1) + h20ωF cos (ωF t − θ2)

Expanding h, ḣ and noting that sinωF t = α
α0

; cosωF t = α̇
α0ω , we obtain

h = h10 sin (ωF t − θ1) + h20 sin (ωF t − θ2)

= h10 sin ωF t cos θ1 − h10 cos ωF t sin θ1 + h20 sin ωF t cos θ2 − h20 cos ωF t sin θ2

= h10

α

α0

cos θ1 − h10

α̇

α0ωF

sin θ1 + h20

α

α0

cos θ2 − h20

α̇

α0ωF

sin θ2

ḣ = h10ωF cos (ωF t − θ1) + h20ωF cos (ωF t − θ2)

= h10ωF cos ωF t cos θ1 + h10ωF sin ωF t sin θ1 + h20ωF cos ωF t cos θ2 + h20ωF sin ωF t sin θ2

= h10ωF

α̇

α0ωF

cos θ1 + h10ωF

α

α0

sin θ1 + h20ωF

α̇

α0ωF

cos θ2 + h20ωF

α

α0

sin θ2

(26)
Step 3: In torsional system, the torsional motion is generated by the heaving motion, which
has a certain amplitude ratio and a certain phase difference, as free vibration

α̈ + 2ζαωαα̇ + ω2

αα =
ρB3

2I
ωF A∗

1ḣ +
ρB3

2I
ω2

F A∗

4
h +

ρB4

2I
ωF A∗

2
α̇ +

ρB4

2I
ω2

F A∗

3
α (27)

Expanding the heaving-oriented forced excitation in right-hand side of Eq. (27), we get

ρB3

2I
ωF A∗

1ḣ +
ρB3

2I
ω2

F A∗

4h =

(

ρB3

2I

)(

ρB3

2m

)

ω2

F

√

(ω∗2

h
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F
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+ 4ζ∗2
h
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h
ω2

F
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[

(ωF A∗

1 |H
∗
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∗
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∗

4 sin θ1 − ωF |H∗

3 |A
∗

4 sin θ2)α̇ + (ω2

F A∗

1 |H
∗

2 | sin θ1 + ω2

F A∗

1 |H
∗

3 | sin θ2

+ω2

F
|H∗

2
|A∗

4
cos θ1 + ω2

F
|H∗

3
|A∗

4
cos θ2)α

]

(28)
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For convenience, we use the following notations

Ω1 =

(

ρB4

2I

)

; Ω2 =

(

ρB2

2m

)

ω2

F

√

(ω∗2

h
− ω2

F
)
2

+ 4ζ∗2
h

ω∗2

h
ω2

F

.

(

ρB2

2m

)(

ωF

ω∗

h

)2

√

√

√

√

(

1 −

(

ωF

ω∗

h

)2
)2

+ 4ζ∗2
h

(

ωF

ω∗

h

)2
(29)

Thus, we have

ρB3

2I
ωF A∗

1ḣ +
ρB3

2I
ω2

F A∗

4h = Ω1Ω2.[(ωF A∗

1 |H
∗

2 | cos θ1 + ωF A∗

1 |H
∗

3 | cos θ2

− ωF |H∗

2 |A
∗

4 sin θ1 − ωF |H∗

3 |A
∗

4 sin θ2)α̇ + (ω2

F A∗

1 |H
∗

2 | sin θ1 + ω2

F A∗

1 |H
∗

3 | sin θ2

+ ω2

F |H∗

2 |A
∗

4 cos θ1 + ω2

F |H∗

3 |A
∗

4 cos θ2)α]

(30)
Substituting Eq. (30) into Eq. (27) yields

α̈ + 2ζαωαα̇ + ω2

αα = Ω1Ω2[(ωF A∗

1 |H
∗

2 | cos θ1 + ωF A∗

1 |H
∗

3 | cos θ2 − ωF |H∗

2 |A
∗

4 sin θ1

− ωF |H∗

3 |A
∗

4 sin θ2)α̇ + (ω2

F A∗

1 |H
∗

2 | sin θ1 + ω2

F A∗

1 |H
∗

3 | sin θ2 + ω2

F |H∗

2 |A
∗

4 cos θ1

+ ω2

F |H∗

3 |A
∗

4 cos θ2)α] +
ρB4

2I
ωF A∗

2α̇ +
ρB4

2I
ω2

F A∗

3α

(31)

Eq. (31) can then be rewritten in the standard form as

α̈ + 2ζF ωF α̇ + ω2

F α = 0 (32)

where
ωF = [ω2

α − Ω1ω
2

F A∗

3
− Ω1Ω2ω

2

F (A∗

1
|H∗

2
| sin θ1 + A∗

1
|H∗

3
| sin θ2

+ |H∗

2 |A
∗

4 cos θ1 + |H∗

3 |A
∗

4 cos θ2)]
1/2 = f (ωF )

(33)

2ζF = 2
ζαωα

ωF
− Ω1A

∗

2 − Ω1Ω2(A
∗

1 |H
∗

2 | cos θ1 + A∗

1 |H
∗

3 | cos θ2

− |H∗

2 |A
∗

4 sin θ1 − |H∗

3 |A
∗

4 sin θ2)
(34)

From Eq. (34) we have the formulation for Logarithmic decrement

δF = 2πζF = 2ζαωα
π

ωF
− π Ω1A

∗

2 − π Ω1Ω2(A
∗

1 |H
∗

2 | cos θ1 + A∗

1 |H
∗

3 | cos θ2

− |H∗

2 |A
∗

4 sin θ1 − |H∗

3 |A
∗

4 sin θ2)
(35)

Step 4: Finding the critical condition of flutter instability
Flutter instability occurs if only if Logarithmic decrement (Log. Dec) δF ≤ 0

δF = 2πζF = 2ζαωα
π

ωF
− π Ω1A

∗

2
− π Ω1Ω2(A

∗

1
|H∗

2
| cos θ1 + A∗

1
|H∗

3
| cos θ2

− |H∗

2
|A∗

4
sin θ1 − |H∗

3
|A∗

4
sin θ2) ≤ 0.

Fig. 2 shows the flowchart for the step-by-step analysis (for torsional branch). Ac-
cording to the algorithm presented in this block diagram, a computer program was devel-
oped for calculating flutter vibration of bridges at the Department of Applied Mechanics
of the Hanoi University of Science and Technology.
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Fig. 2. Flowchart of step-by-step analysis (for torsional branch)

Stepwise procedure for torsional-branch analysis can be briefly presented hereinafter
i) The torsional motion equation will be taken into first account in which torsional related
coupled forces are considered as external oscillation, furthermore heaving motion solu-
tions are found dependent on torsional vibration parameters; ii) Obtained heaving motion
solutions will be transformed into torsional motion equation, then its damping ratio (or
logarithmic decrement) will be determined in this torsional-branch; iii) Checking such a
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damping ratio based on increment of reduced wind velocity to obtain a critical condition
for torsional-branch flutter instability.

3. FLUTTER INSTABILITY ANALYSIS OF CAO LANH BRIDGE

Fig. 3 shows the side view of Cao Lanh cable-stayed Bridge, which was built in the
Mekong Delta of Vietnam. The Cao Lanh Bridge represents the largest single Australian
aid activity in mainland Southeast Asia and will help link people and markets in the
Mekong Delta to the rest of Southeast Asia and beyond. The bridge will directly benefit
five million people and is expected to deliver improved transport facilities to 170,000 daily
road users within five years of completion.

Fig. 3. Side view of Cao Lanh cable-stayed bridge

Fig. 4. Free vibration analysis: Four fundamental natural mode shapes
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Table 1. Flutter derivatives, angle of incidence 00, complete stage

U/fB H∗

1
H∗

2
H∗

3
H∗

4
A∗

1
A∗

2
A∗

3
A∗

4

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.976 -0.019 -0.137 -0.061 -0.141 -0.108 -0.034 0.010 0.014

1.464 -0.318 -0.198 -0.163 -0.426 -0.219 -0.038 0.016 0.075

1.952 -0.642 -0.338 -0.381 -0.198 -0.178 -0.028 0.024 0.032

2.440 -0.402 -0.565 -0.432 -0.240 -0.367 -0.010 0.084 0.024

3.416 -1.118 -0.430 -0.533 -1.440 -0.468 -0.044 0.274 0.199

4.392 -2.426 -0.194 -1.968 -1.919 -0.513 -0.120 0.430 0.258

5.368 -3.730 0.288 -2.763 -2.115 -0.593 -0.182 0.584 0.312

6.344 -5.052 0.482 -4.562 -2.064 -0.680 -0.240 0.781 0.384

7.319 -6.344 0.566 -6.745 -1.856 -0.745 -0.314 1.015 0.444

8.295 -7.455 0.465 -9.142 -1.541 -0.804 -0.402 1.269 0.492

9.271 -8.406 0.186 -11.723 -1.053 -0.862 -0.519 1.531 0.541

10.247 -9.178 -0.194 -14.772 -0.706 -0.917 -0.638 1.810 0.537

11.223 -9.999 -0.652 -17.940 -0.403 -0.900 -0.781 2.103 0.591

12.199 -10.810 -1.119 -21.034 -0.312 -0.941 -0.909 2.388 0.635

13.175 -11.502 -1.770 -24.596 -0.201 -0.959 -1.055 2.703 0.661

14.639 -12.765 -2.609 -30.351 -0.311 -1.013 -1.291 3.209 0.675

16.103 -13.851 -3.423 -36.515 -0.288 -1.069 -1.514 3.752 0.663

17.567 -15.087 -5.136 -43.175 -0.324 -1.117 -1.768 4.301 0.635

19.031 -16.534 -6.324 -50.321 -0.054 -1.209 -2.026 4.904 0.586

20.494 -17.428 -7.789 -58.192 -0.033 -1.431 -2.243 5.612 0.443

Numerical calculating of the Cao Lanh cable-stayed bridge for the flutter analysis
is presented in this section. The following geometry and material data of the bridge deck
have been used for the numerical calculation:

m = 52039 kg/m, I = 3968530 kgm2/m, fh = 0.296 Hz, fα = 0.620 Hz, ζh = 0.008,

ζα = 0.008, B = 27.5 m, ρ = 1.25 kg/m3.
Tab. 1 shows the experimental results of Flutter derivatives [10]. Some calculating

results are displayed in Figs. 4-7.
Fig. 4 shows some natural mode shapes of the Cao Lanh cable-stayed bridge [10].

From the data given in Table 1 we can calculate diagrams of flutter derivatives A∗

i , H∗

i
(i = 1, 2, 3, 4) as shown in Fig. 5. In Figs. 6 and 7 are diagrams U − f and U − δF .

The calculated flutter speed of Cao Lanh Bridge is upper 100 m/s. Ref. [10] gives
the flutter speed of the bridge using a section model upper 98.3 m/s, which is in agreement
with the calculated result.
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Fig. 5. Diagrams of flutter derivatives A∗

i
, H∗

i
(i = 1, 2, 3, 4)

Fig. 6. U − f diagram Fig. 7. U − δF diagram
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4. CONCLUSION

The step-by-step method is based on the serial solving technique of two heaving-
torsional motion equations, solutions of the former equation are used to determine coupled
aerodynamic forces subjected to the later equation. From transformation process, there is
torsional-branch or heaving-branch step-by-step method. Because torsional-branch insta-
bility dominates in almost cases, the torsional-branch step-by-step analysis will be favor-
able to be much more applicable in comparison with heaving-branch one. The step-by-step
method is also favorable to deal with the complex eigenvalue method’s limitation. In this
paper, a revised step-by-step analysis method is proposed and a calculating program us-
ing MATLAB is developed. The step-by-step method is applied for calculating the flutter
instability of the Cao Lanh cable-stayed Bridge, which was built in Mekong Delta of Viet-
nam. The calculation results obtained are consistent with experimental results.
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