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Abstract. In this note we deal with the approximate solution of the buckling problem
of a clamped-free double-walled carbon nanotube. First the finite difference method is
utilized to solve this case. Then this approach is verified by solving the buckling problem
of a double-walled carbon nanotube that is simply supported at both ends for which the
exact solution is available.
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1. INTRODUCTION

The studies on buckling of carbon nanotubes (CNTs) include those of Yakobson et
al. [1], Cornwell and Wille [2], Yao and Lordi [3], Garg et al. [4], Lu et al. [5], Wang et al. [6],
Falvo et al. [7], Guo et al. [8], Sudak [9], He et al. [10] and Wang [11,12]. However, buckling
of carbon nanotubes is not yet studied sufficiently. For example, we are not able to conclude
yet if this kind of a structure exhibits the same buckling behavior as uniform beams. In
their work on the buckling of double-walled carbon nanotubes (DWCNTs) Elishakoff and
Pentaras [13] found, with Galerkin method, that the ratio between the critical loads of a
clamped-clamped DWCNT and one simply supported at both ends is about four whereas
the analogous ratio for the uniform beam equals four exactly. They did not investigate
the case of clamped-free DWCNTs because of the necessity to satisfy different boundary
conditions for inner and outer nanotubes. This study fills the existing gap.

Hereinafter, we use the finite difference method that has been widely used in the
past for buckling analysis of various structures (see for example, works by Salvadori [14],
Iremonger [15], Chajes [16], and Mikhailov [17]).

2. BUCKLING DIFFERENTIAL EQUATIONS IN FINITE

DIFFERENCE FORM

The governing differential equations for buckling of the DWCNTs read [13]:

c (w2 − w1) = EI1
d4w1

dx4
+ P

A1

A1 + A2

d2w1

dx2
(1)
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−c (w2 − w1) = EI2
d4w2

dx4
+ P

A2

A1 + A2

d2w2

dx2
(2)

where x is the axial coordinate, wi (x, t) is the transverse displacement of the ith tube, c
= 71.11 GPa3 is the Van der Waals interlayer interaction coefficient, E = 1 TPa is the
modulus of elasticity, inner radius R1 is taken as 0.35 nm, whereas the outer radius R2 is
fixed at 0.7 nm, the thickness of each tube is 0.34 nm. The sought buckling load is denoted
as P , Ii is the second moment of area of the ith tube, and Ai is the cross-sectional area;
the indexes i = 1,2 pertain to the inner tube and outer tube, respectively.

In the finite difference method expressions for the derivatives of the displacement
at a point are approximated by an algebraic formula through the displacements at that
point and at some nearby points. In fact, the beam is divided in N segments and thus has
N + 1 nodes for which we have to find the displacement in order to know the one of the
entire DWCNT when P reaches the critical value.

For the first derivative we use the central difference expression:

dw

dx
(xj) = ∆cwj =

w(j+1)
− w(j−1)

2h
(3)

where j is the number of the node, of coordinate xj, where the displacement is expressed,
and h = L/N represents the length of a segment.

The other derivatives are expressed from the first one; thus Eqs. (1) and (2) are now
written at each node j as follows
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Eqs. (4) and (5) are rewritten as follows:
(
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where the coefficients are defined as:

ci =
ch4

EIi

(8)

αi =
PAih

2

EIi (A1 + A2)
(9)
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The solution is found by solving the system of equations written at each node of the beam.

3. BUCKLING OF CLAMPED-FREE DWCNTS

Let us deal with the buckling load of a clamped-free DWCNT. The boundary con-
ditions are:

wi (0) = w′

i (0) = 0 (10)

w′′

i (L) = 0 (11)

EIiw
′′′

i (L) +
PAi

A1 + A2
w′

i (L) = 0 (12)

Thus there are 8 boundary conditions. The expression (10) leads in finite difference form
to the following expressions

w
(0)
i = 0, (13)

w
(1)
i = w

(−1)
i . (14)

From Eq. (11) we get

w
(n+1)
i = 2w

(n)
i − w

(n−1)
i (15)

Finally Eq. (12) provides
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i = 2w
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(

w
(n+1)
i − w
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i

)

(16)

One observes that Eq. (16) constitutes a condition on w
(n+2)
i . Thus, the axis is extended

over the end nodes 0 and N to introduce fictitious nodes N + 1 and N + 2. This is done
to satisfy the equations which need the displacement values at x = −h, x = L + h, and
x = L + 2h (Fig. 1). We consider the equations of the displacement expressed from j = 1
to j = N in order to have 2N equations and variables.

h
L

0-1 N N+1N+2

x

Fig. 1. Nanotube divided for finite difference analysis

In the general case when the beam is divided into N segments, we have to satisfy,
at each nodal point j, the difference equations (6) and (7), which correspond, for i = 1, 2
to the following expression:

w
(j−2)
i −(4− αi)w

(j−1)
i +(6 + 2αi + ci) w

(j)
i −(4 − αi)w

(j+1)
i +w

(j+2)
i −ciw

(j)
1+δi,1

= 0 (17)

where δi,1 is the Kronecker’s delta. The latter equals unity when i = 1 and vanishes
otherwise. The coefficients in Eq. (17) are constant and only the parameter αi is unknown.
The coefficients are sorted in a N × N matrix, and since its determinant must vanish we
obtain the value of the critical load as the smallest root.
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For illustration consider the cases N = 2 and N = 3 in detail. The inner nodal
points are 0, 1 and 2. Thus, to facilitate satisfaction of Eq. (16) we introduce fictitious
nodes -1, 3 and 4. The boundary conditions are Eqs. (13) and (14), and Eqs. (15) and (16)
lead to:
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i (18)
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By substitution of j = 1 in Eq. (17) we obtain the equation of displacement at the node
1 for the two tubes
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Applying the boundary conditions (13), (14), (18) and (19), we obtain:

(6− 2αi + ci)w
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At the next node (j = 2) we have:
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The coefficients of these expressions generate a matrix equation:
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In order this system to have a nontrivial solution, the determinant of this matrix must
vanish. This requirement leads to the following equation:

2.261 ∗ 1033p4
− 7.419 ∗ 1023 + 2.939 ∗ p2

− 1.057 ∗ 1016p + 4.79 ∗ 107 = 0 (24)

The smallest root of this expression yields the critical load: Pcr = 5.314 nN.
The case N = 3 leads to 6 equations for the nodes j = 1, 2, 3. These are

(7 − 2αi + ci)w
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Eqs. (25)-(27) are equivalent to a matrix equation. Its determinant
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must vanish. This requirement yields the following sixth order polynomial equation for P:

4.422∗10
47p6

−1.396∗10
43p5

+6.67∗10
37p4

−8.499∗10
31p3

+9.632∗10
24p2

−2.877∗10
17p+1.299∗10

9
= 0

(29)

The value of the critical buckling load is Pcr = 5.469 nN.

P
cr

Fig. 2. Variation of the critical buckling load with the number of segments for a
clamped-free DWCNT

Table 1. Critical buckling load of a clamped-free DWCNT

N 2 3 4 5 6 7 8 9 10 15 20

Pcr(nN) 5.314 5.469 5.524 5.549 5.563 5.571 5.576 5.579 5.582 5.588 5.590

We also conduct the evaluation of the critical load P for consecutive values of N
until the convergence is reached (see Fig. 2). The results are reported in Tab. 1.

4. VERIFICATION: BUCKLING OF DWCNTS SIMPLY

SUPPORTED AT BOTH ENDS

To verify the above approach we conduct a comparison with the results previously
obtained by Elishakoff and Pentaras [13] for the simply supported case. Specifically, we
calculate the buckling load of a DWCNT simply supported at both ends by the finite
difference method. Firstly, we write the boundary conditions of this system. For each end
the following expressions should be satisfied:

wi (0) = wi (L) = 0, (30)

d2wi

dx2
(0) =

d2wi

dx2
(L) = 0. (31)

In finite difference setting we have:

w
(0)
i = w

(N)
i = 0 (32)
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Eq.(31) leads to

w
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Thus we obtain two relations:

w
(1)
i = −w

(−1)
i (34)

w
(N+1)
i = −w

(N−1)
i (35)

This time the equation of the displacement at x = L + 2h is not needed so Eq. (17)
is applied to nodes from j = 1 to j = N − 1 in order to have as many equations as the
number of variables; in this case the system is of size 2(N − 1).
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This leads to the following determinant:
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∣
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From Eq. (37) we obtain the value of the critical load as the smallest root : Pcr = 18.138
nN, whereas the Elishakoff and Pentaras [13] result is Pcr = 22.63 nN. One observes that
2 segments are not sufficient for an accurate evaluation of the buckling load.

In the case of three segments, i.e. N = 3, the system is composed of 4 equations
which are those at nodes j = 1 and j = 2:

(5 − 2αi + ci) w
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1+δi,1

= 0 (38)
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Eqs. (38) and (39) lead to the following requirement:
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Table 2. Critical buckling load for a DWCNT simply supported at both ends

N 2 3 4 5 6 7 8 9 10 12 15 20

Pcr (nN) 18.138 20.403 21.247 21.646 21.866 21.999 22.086 22.146 22.189 22.245 22.290 22.326

We obtain Pcr = 20.403 nN. The results for various values of N are listed in Tab.
2. The smallest percentage-wise difference from the Elishakoff and Pentaras [13] value is
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P
cr

Fig. 3. Variation of the critical buckling load with the number of segments for a
DWCNT simply supported at both ends

1.34%, and is achieved for N = 20 (see Fig. 3). Thus the finite difference method yields a
result that is extremely close to the exact solution.

5. DISCUSSION AND CONCLUSION

In this study it has been demonstrated that the finite difference method can be
successfully applied to buckling of double-walled carbon nanotubes since it yields extremely
reliable results. The best approximation for the clamped-free DWCNT is 5.590 (Tab.
1), and the best approximation for the simply supported at both ends is 22.236 (Tab.
2). This leads to a ratio of 3.978, what tends to the ratio we expected from the beam
theory. The difference comes from two reasons. First the convergence of the finite difference
discretization; and second, the introduction of the boundary conditions. In the first case
they are expressed with w = 0, w′ = 0 at the clamped edge and w′′ = 0 and w′′′ = 0 at
the free edge (Eqs. 10-16). In the second case they are expressed with w = 0 and w′′ = 0
at both edges. The examination of the finite difference formulas shows that the error level
would not be the same by using the third order differentiation.

The major complexity with this method is that when the number of nodes increases
substantially, the calculation time increases dramatically. Indeed this process entails the
solution of a large number of simultaneous equations. As indicated by Salvadori [14],
one can use the Richardson’s extrapolation scheme to increase the accuracy of the result
instead of increasing the number of segments. This approximation is expressed by:

Pcr =
N 2

1Pcr1
− N 2

2Pcr2

N 2
1 − N 2

2

(41)

where Ni is the number of segments into which the beam was divided to obtain an ap-
proximation of the critical buckling load denoted as Pcri. To illustrate the effectiveness of
Richardson’s extrapolation scheme, the approximate resuls obtained for the clamped-free
case with N1 = 4 and N2 = 5 will be substituted in Eq. (41):

Pcr =
16 ∗ 5.524− 25 ∗ 5.549

16− 25
= 5.593 nN (42)
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Note that this solution is nearly as accurate as can be achieved by using N = 20
segments of the nanotubes.

Thus, the combination of the finite difference method with the Richardson’s extrap-
olation scheme gives an excellent tool to investigate the buckling of double-walled carbon
nanotubes.
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