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Abstract. This paper presents a wavelet spectrum technique for monitoring a sudden
crack of a beam-like bridge structure during earthquake excitation. When there is a
sudden crack caused by earthquake excitation the stiffness of the structure is changed
leading to a sudden change in natural frequencies during vibration. It is difficult to mon-
itor this sudden change in the frequency using conventional approaches such as Fourier
transform because in Fourier transform the time information is lost so that it is impos-
sible to analyse short time events. To overcome this disadvantage, wavelet spectrum,
a time-frequency analysis, is used for monitoring a sudden change in frequency during
earthquake excitation for crack detection. In this study, a model of 3D crack is applied.
The derivation of the stiffness matrix of a 3D cracked beam element with rectangular
section adopted from fracture mechanics is presented. Numerical results showed that the
sudden occurrence of the crack during earthquake excitation can be detected by the sud-
den change in frequency using wavelet power spectrum. When the crack depth increases,
the instantaneous frequency (IF) of the structure is decreased.

Keywords: Earthquake, crack, crack monitoring, sudden crack, 3D crack, wavelet
spectrum.

1. INTRODUCTION

In practice, cracks in a structure may gradually develop due to repeated low ampli-
tude loads or may suddenly appear due to high amplitude loads caused by, for example,
natural calamities such as storms or earthquakes. The cracks of certain structures such as
building, oil-rig structure or bridge can be catastrophic, therefore, the detection of cracks
in such structures is essential to ensure further use of structures. Structural Health Moni-
toring (SHM) methods have been developed to ensure early detection of such cracks and,
hence, prevention of catastrophic failure. Structural health monitoring is a system which
comprises sensors, instrumentation and methods for in situ monitoring of the integrity
of structures [1]. Among methods for SHM, the vibration-based method has emerged as
one possible approach to the problem of structural damage identification and localization.
The structural dynamic characteristics such as frequencies, mode shapes, flexibility, etc.
can be extracted from the dynamic response and analyzed to track the changes of these
parameters caused by cracks [1, 2]. Other non-modal-based methods have been applied
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such as auto-regressive approaches [3, 4], fuzzy logic and neural networks [5, 6], time-series
dimensionality [7], and genetic algorithms [8].

In practice, the structures most often damaged by natural calamities are buildings
and bridges. Of the studies conducted many focus on extracting the relevant information
from dynamic responses of damaged buildings and bridges under ambient excitation such
as storm, earthquake etc. for damage detection. Bassam et al. [9] reported a simple quan-
titative approach for post earthquake damage assessment of flexure dominant reinforced
concrete bridges that considers the effect of cyclical loading on the state of damage. Park
et al. [10] presented a moving time window technique to monitor abrupt structural damage
induced by an earthquake. Todorovska et al. [11] presented a structural health monitor-
ing method using changes in wave travel times during earthquake excitation. In other
research, Sakellariou et al. [12] proposed a stochastic output error vibration-based method
for damage detection of structures under earthquake excitation. The authors reported
the method based on stochastic output error model identification, statistical hypothesis
testing procedures for damage detection, and a geometric method for damage assessment.
Magalhaes et al. [13] presented algorithms to perform the continuous on-line identification
of modal parameters based on structural responses to ambient excitation based on modal
parameters tracking for structural health monitoring of bridges. Limongelli [14] proposed
a method for damage detection based on the accuracy of a spline function in interpolating
the operational mode shapes of frames under earthquake excitation. Yinfeng et al. [15] ap-
plied an unscented Kalman filter for time varying spectral analysis of earthquake ground
motions for damage detection of a building.

In SHM methods, the frequency based methods are most interesting because the
frequency is a global parameter of the structure which can easily be measured in practice.
The change in natural frequency of a damaged structure can be used for damage detection.
By conventional approach, the natural frequency can be extracted by Fourier transform
method. In general, this method is only useful for analysing stationary responses, while the
responses of structures such as bridges, especially cracked bridges subjected to ambient
loads, are not stationary. Moreover, in this transform the information of the time when the
frequency changes will be lost. Therefore, Fourier transform method for damage detection
in these cases is not suitable. Recently, time-frequency based methods which can analyse
the frequency change while the information of time is still kept, called time-frequency anal-
ysis, have been applied widely for SHM such as Short Time Fourier transform (STFT),
Wigner-Ville Transform (WVT), Auto Regressive (AR), Moving Average (MA), Auto Re-
gressive Moving Average, and Wavelet Transform (WT) wavelets [16-19]. In these methods,
the wavelet transform has emerged as an efficient tool for signal processing due to its flexi-
bility and precision in time and frequency resolution. However, most of the current research
in the field of SHM focuses on existing cracks. A limited amount of research considers the
sudden crack detection problem [11, 12], however, in these studies the damage models were
not presented.

To this end, the present study aims to extend the SHM techniques by proposing a
wavelet based technique to monitor a sudden crack of a beam-like bridge induced during
earthquake excitation. The sudden crack is monitored by using the IF of the bridge. The
method is simple since only one acceleration signal is needed and the change in frequency
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can be tracked without the base line information. The wavelet power spectrum and the
derivation of 3D crack model adopted from fracture mechanics are presented. In this work,
acceleration signal obtained from numerical simulation is used for wavelet analysis and the
results are also provided.

2. VIBRATION OF THE BEAM-LIKE STRUCTURE

SUBJECTED TO EARTHQUAKE EXCITATION

2.1. Intact beam like structure

In this study, the beam-like bridge is considered as a 3D Timoshenko beam subjected
to earthquake excitation as shown in Fig. 1. The beam is modeled as R elements in finite
element analysis. Under these assumptions, and applying the finite element method, the
governing equation of motion of the beam can be deduced as follows [20]

Mür + Cu̇r + Kur = −MId̈g (1)

( )gd t&& ( )gd t&&

Fig. 1. A beam-like bridge under ground excitation

Here M, C, K are structural mass, damping and stiffness matrices respectively; I

is a vector of order N with each element equal to unity, where N is the number of DOFs;
d̈g(t) is the ground acceleration time history; ur is a column vector which denotes the
relative nodal displacement of the beam in comparison with the ground.

Let us consider a linear elastic structure subjected to static loads. The response of
such structure can be calculated by using finite element method. From the compatibility
condition, the response of an element of the beam structure can be written as the following
equation [21]

εεε
T
e = Deue (2)

Where εεεe is the vector of element deformation or generalized strain; ue is the vector
of nodal displacement; De is the compatibility matrix, and

De =

















0 0 0 −1 0 0 0 0 0 1 0 0
0 0 −1/l 0 1 0 0 0 1/l 0 0 0
0 0 −1/l 0 0 0 0 0 1/l 0 1 0
0 1/l 0 0 0 1 0 −1/l 0 0 0 0
0 1/l 0 0 0 0 0 −1/l 0 0 0 1
−1 0 0 0 0 0 1 0 0 0 0 0

















(3)
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From the equilibrium condition, the relationship between external nodal forces Qe

and internal forces Pe can be expressed as follows

DT
e Qe = Pe (4)

The nodal force vector is defined as follows (see in Fig. 2)

PT
e =

[

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

]

(5)
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Fig. 2. Three-dimension Timoshenko beam element and its nodal forces

Where P1 and P7 are axial forces, P2, P3, P8, P9 are shear forces, P5, P6, P11, P12 are
bending moments, and P4, P10 are torques acting at the crack cross section.

The constitutive condition expressing the relation of the generalized strains and
internal forces or generalized stresses can be presented in the form of

εεεe = CeQe (6)

where Ce is the compliance matrix.
From Eqs. (2) and (6) we have

Qe = C−1
e Deue (7)

Substituting Eq. (7) into Eq. (4), the relation between the external force vector and
displacement vector is derived

Pe = DT
e C−1

e Deue (8)

Therefore, from (7) the stiffness matrix ke of an element can be obtained as

ke = DT
e C−1

e De (9)

The components of the compliance matrix Ce of an element can be calculated from
Castingliano’s theorem

cij =
∂2W (0)

∂Pi∂Pj
; i, j = 1, 2, ..., 6 (10)

Where W (0) is the elastic strain energy of the intact element and can be expressed
as follows

W (0) =
1

2

l
∫

0

(

P 2
1

AE
+
κP 2

2

GA
+
κP 2

3

GA
+

(P2x+ P6)
2

EIz
+

(P3x− P5)
2

EIy
+
P 2

4

GJ

)

dx (11)
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2.2. Cracked beam like structure

Consider the cracked element with rectangular cross section as presented in Fig. 3.
It is assumed that the crack influences on the stiffness matrix only, not the mass matrix.
Due to the presence of the crack, the compliance of the cracked element is expected to
increase. The axial force Nc gives an additional elongation ∆uc and together with an
additional rotation ∆θzc. While, bending moment Mzc causes an additional rotation ∆θzc

together with an additional elongation ∆uc. Besides, bending moment Myc gives rise to an
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Fig. 3. Three-dimension element with edge crack

additional rotation ∆θyc. While the shear force Syc causes and additional deflection ∆vc,
the shear force Szc causes an additional ∆wc together with an additional rotation ∆θxc.
Finally, the torsion Tc will cause an additional rotation ∆θxc. This leads to the following
relation [21]

∆∆∆uc =

















∆uc

∆vc

∆wc

∆θxc

∆θyc
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= C̃c
ePc = C̃c
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(12)

Where C̃c
e is the local compliance matrix of the cracked element and

C̃c
e =

















cN 0 0 0 0 cNMz

0 cSy
0 0 0 0

0 0 cSz
cSzTx

0 0
0 0 cSzTx

cTx
0 0

0 0 0 0 cMy
0

cNMz
0 0 0 0 cMz

















(13)

Where cN is the axial compliance related to the axial force N ; cSy is the shear
compliance related to the shear force Sz; cSz is the shear compliance related to the shear
force Sz; cMy is the bending compliance related to the bending moment Mz, cT is the
torsional compliance related to the torque Tx, cMz is the coupled compliance related to
the shear force Sz and the torque Tx, and cNMz is the coupled compliance related to the
axial force Sz and bending moment Mz.

The nodal forces acting on the cracked element can be related to the internal forces
as follows

Pc = TQe (14)
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The additional strains at the cracked section can be calculated from the additional
displacements by the following equation

εεεc = TT ∆uc (15)

Where the transformation matrix T depends on the crack location ξ = x/l, where
l is the length of the element

T =

















0 0 0 0 0 1
0 0 0 1/l 1/l 0
0 −1/l −1/l 0 0 0
1 0 0 0 0 0
0 −ξ + 1 −ξ 0 0 0
0 0 0 ξ − 1 ξ 0

















(16)

Obviously, the additional strains due to the crack can be expressed in the form of
Eq. (2)

εεεc = Cc
eQe (17)

From Eqs. (12)-(17) we have

Cc
eQe = TT ∆uc = TT C̃c

ePc = TT C̃c
eTQe (18)

Therefore, the overall additional compliance due to the crack can be derived as
follows

Cc
e = TT C̃c

eT (19)

The total compliance of the cracked element is the sum of the compliance of the
intact element and the overall additional compliance due to crack

Ĉc
e = Ce + Cc

e (20)

Therefore, if the local additional compliance matrix C̃c
e is known, the total compli-

ance of the cracked element can be obtained by using Eqs. (19) and (20). The components

of the local additional compliance matrix C̃c
e can be calculated from the fracture mechan-

ics. Using Castingliano’s theorem

c̃cij =
∂2W (1)

∂Pi∂Pj
; i, j = 1, 2, ..., 6 (21)

Where W (1) is the additional strain energy due to crack

W (1) =

∫

A

1

E ′





(

6
∑

1

KIi

)2

+

(

6
∑

1

KIIi

)2

+ µ

(

6
∑

1

KIIIi

)2


dA (22)

where E ′ =
E

1 − ν2
and µ = 1+ν, and KII , KIIi, KIIIi are stress intensity factors for

opening type, sliding type and tearing type cracks respectively; i = 1, 2, ..., 6
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Substituting Eq. (21) into Eq. (20) we have

c̃cij =
1

E ′

∂2

∂Pi∂Pj











b/2
∫

−b/2

a
∫

0





(

6
∑

1

KIi

)2

+

(

6
∑

1

KIIi

)2

+ µ

(

6
∑

1

KIIIi

)2


dādz











(23)

Where b is the width of the beam, a is the crack depth. The intensity factors KI,
KII and KIII available in the references [22, 23] will be applied in this study.

Finally, applying Eq. (9), the stiffness matrix of the cracked element can be obtained
as follows

kc
e = DT

e

[

Ĉc
e

]−1
De (24)

3. WAVELET SPECTRUM

The continuous wavelet transform is defined as follows [24]

W (a, b) =

+∞
∫

−∞

f(t)ψa,bdt (25)

Where ψa,b(t) = 1√
a
ψ∗
(

t−b
a

)

, a is a real number called scale or dilation, b is a real

number called position, W (a, b) are wavelet coefficients at scale a and position b, f(t)

is the input signal, ψ
(

t−b
a

)

is the wavelet function and ψ∗
(

t−b
a

)

is a complex conjugate

of ψ
(

t−b
a

)

. In order to be classified as a wavelet a function must satisfy the following
mathematical criteria

1) A wavelet must have finite energy

E =

+∞
∫

−∞

|ψ (t)|2 dt <∞ (26)

2) If ψ̂ (ω) is Fourier transform of ψ (t), i.e.

ψ̂ (ω) =

+∞
∫

−∞

ψ (t) e−iωtdt (27)

then the following condition must be satisfied

Cg =

∞
∫

0

∣

∣

∣
ψ̂ (ω)

∣

∣

∣

2

ω
dω <∞ (28)

This implies that the wavelet has no zero frequency component: ψ̂(0) = 0,

+∞
∫

−∞

ψ(t)e−jωtdt = 0 when ω = 0 (29)
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or in other words, the wavelet must have a zero mean

+∞
∫

−∞

ψ(t)dt = 0 (30)

3) An additional criterion is that, for complex wavelets, the Fourier transform must
be both real and vanish for negative frequencies.

In order to monitor the IF of the beam bridge during vibration, the wavelet power
spectrum S(a, b) is used in this study. The wavelet power spectrum is defined simply as
the square modulus of the wavelet transform

S(a, b) = |W (a, b)|2 (31)

The frequency of the vibration with main energy in time can be tracked using the
wavelet power spectrum, the variation of the frequency during vibration or the IF can
then be determined.

Instantaneous frequency

A sudden crack will lead to a sudden change in the stiffness of the beam and as
a result the frequency of the beam will be changed. Therefore, monitoring the change in
frequency can answer the questions whether there is a crack in the beam and when the
crack occurs. However, this change in frequency and the moment when the crack is induced
are generally very difficult to detect by visually inspecting the vibration signal in the time
domain, even in the frequency domain. Meanwhile, the wavelet analysis transforms the
signal into the frequency domain while the time information is still kept. Therefore, the
wavelet transform is useful for monitoring the change in frequency of the beam during
vibration. For this purpose the wavelet spectrum as defined in (31) is applied. The energy
of a vibration signal is mainly concentrated on the time-scale plane around the ridges of the
wavelet spectrum. Thus, the instantaneous frequency (IF) of the signal can be monitored
by tracking the change in ridges of the time-scale plane. In wavelet spectrum, the scale is
use instead of the frequency, so for the purpose of convenience, the time-scale is converted
to the time-frequency plane by relating the scale to the pseudo-frequency as follows

Fa =
Fc

a∆
(32)

where a is a scale, ∆ is the sampling period, Fc is the center frequency of a wavelet function
in Hz, Fa is the pseudo-frequency corresponding to the scale a, in Hz.

4. THE PROCEDURE FOR SUDDEN CRACK DETECTION

The procedure for monitoring a sudden crack in the beam-like bridge is performed
in the following steps:

- In the first half of the excitation, bridge is modeled as an intact beam with the
global matrices M and K assembled from element matrices me and ke in finite element
analysis. Rayleigh damping in the form of C = αM + βK is used for the beam. Where α
and β are calculated from [25].
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- In the second half of the excitation, the bridge is modeled as a cracked beam
with the stiffness matrix of the cracked element kc

e is calculated from Eq. (24). The global
stiffness matrix K of the cracked beam is assembled from the intact element matrix ke

and cracked element stiffness matrix kc
e.

- Substituting matrices M, K and C into Eq. (1) and solving this equation by
Newmark algorithms, the vertical acceleration of the beam will be obtained.

- Extracting the IF from the wavelet spectrum of the vertical acceleration. The
existence of the crack is monitored by a decrease in the IF during the excitation. The
moment of appearance of the crack is the time at which the IF starts to decrease.

5. SIMULATION RESULTS AND DISCUSSIONS

A numerical simulation of a beam-like bridge under earthquake excitation has been
carried out. Parameters of the beam are: Mass density is 7855 kg/m3; modulus of elasticity
E = 2.1× 1011 N/m2; L = 50 m; b = 1 m; h = 2 m. Modal damping ratios for all modes
are equal to 0.002. The crack is located at the location Lc = L/2.

Five levels of the crack from zero to 40% were examined. These five cases are num-
bered as in Tab. 1.

Table 1. Five cases with cracks of varying depths

Case Crack depth (%)

1
2
3
4
5

0
10
20
30
40

Fig. 4 presents the 1500 sampling points for the first duration of T = 30 s of the
records El Centro (1940) in N–S, E-W and vertical directions with dt = 0.02 s. It is
assumed that the N-S direction coincides with the z-axis, E-W direction coincides with
the x-axis, and vertical direction coincides with the y-axis of the beam bridge (see Fig.
2). In order to setup the sudden crack, the amplitude of displacement of the intact beam
is first investigated. As can be seen from Fig. 5, the amplitude of displacement becomes
significant in the duration from 7 s to 22 s. Therefore, the crack might be occurred in this
duration. In this study, it is assumed that the crack is appeared suddenly at the moment
t = 15 s. During the first half of the excitation, the stiffness matrix of the intact beam is
used and in the second half of the excitation, the stiffness matrix of a cracked element is
applied to Eq. (1). Solving this equation by Newmark algorithms, the dynamic response
of the beam is obtained. In practice, the acceleration signal is easily measured, thus the
vertical acceleration time history at the centre of the bridge is obtained during earthquake
excitation for crack detection purposes.

Wavelet coefficients are usually used to detect small and local changes in the signal.
However, the acceleration signal of the bridge depends on the earthquake excitation and
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Fig. 4. Ground acceleration: a) N-S direction; b) E-W direction; c) Vertical direction
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Fig. 5. Displacement of the beam under ground excitation, crack depth is 0%

may have local changes which are more significant than the local change caused by the
crack. While, the change in natural frequencies of the bridge presented in this study
depends only on the appearance of crack, not the excitation. Therefore, instead of using
wavelet coefficients the IF extracted from the wavelet power spectrum is applied in order
to monitor the sudden crack during earthquake excitation. In this study, wavelet families
have been tested to select the best wavelet. Experience has shown that the Wavelet Symlet
is most suitable for this work. Therefore, the wavelet functions “Symlet” is chosen as the
most suitable for signal processing. The vertical acceleration of the bridge during the
ground excitation is first used to calculate the wavelet power spectrum the IF is then
extracted from the main ridge of the wavelet power spectrum.

Fig. 6 presents the Fourier spectrum calculated from the vertical acceleration of
the beam during earthquake excitation when the crack with depth of 40% appeared at
moment t = T/2. In this figure the frequency of 1.78 Hz corresponds to the first frequency
in the first half of the excitation when there the crack depth is zero. While the frequency
of 1.3 Hz corresponds to the first frequency in the second half of the excitation when there
is a crack with depth of 40%.

Fig. 7 presents the IF calculated from the vertical acceleration of the beam during
the ground excitation with the crack depth from zero to 40% of the beam height. In graph
a) of this figure when the crack depth is zero the IF is about 1.78 Hz corresponds to the
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Fig. 6. Fourier spectrum of the vertical acceleration, crack depth is 40%
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Fig. 7. The IF vs. time: a) crack depth = 0%; b) crack depth = 10%;
c) crack depth = 20%; d) crack depth = 30%; e) crack depth = 40%;

first frequency in case of intact beam as can be seen in Fig. 6. This value of 1.78Hz of
the IF remains the same during the entire time of excitation because there is no crack
appearing during earthquake excitation.

However, when there is a small crack of 10% of the beam height appearing at t = T/2
as can be seen from graph b) of Fig. 7, the IF is about 1.78 Hz in the first half of the
ground excitation duration, while in the second half of the ground excitation duration the
IF moves decreases slightly to the smaller value of about 1.7 Hz. The reason is that, in the
first half of the excitation when there is no crack present, the beam is intact beam so the
IF remains at about 1.78 Hz. Meanwhile, in the second half of the excitation the beam is
cracked leading to a reduction of the stiffness of the beam and as a result, the IF of the
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beam decreases to 1.78 Hz and remains at this value during the whole second half of the
excitation.

As can be seen from graphs c) to e) of Fig. 7, when the crack depth increases to
20%, 30% and 40% respectively, in the first half of the excitation the IF remains within
the frequency range centered at about 1.78 Hz which corresponds to the case of an intact
beam. Meanwhile, in the second half of the wavelet spectrum, the IF decrease to about
1.3 Hz as the crack depth increases up to 40%. Therefore, the moment of appearance
of a sudden crack in the bridge can be determined by the time at which the IF starts
to decrease. A conclusion can be drawn from these Figs is that, when the crack depth
increases, the IF in the second half of the excitation duration decreases.

Influence of noise

In order to simulate the polluted measurements, white noise is added to the cal-
culated responses of the bridge. The noisy response is calculated as following formula
[26]

anoisy = a+ EpNσ(a) (33)

where a is the vertical acceleration of the bridge obtained from the numerical simulation.
Ep is the noise level and N is a standard normal distribution vector with zero mean value
and unit standard deviation. anoisy is the noisy acceleration, and σ(a) is its standard
deviation.
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Fig. 8. The IF vs. time: a) Crack depth = 0%; solid line: 0% noise; dotted line:
10% noise; b) Crack depth = 10%; solid line: 0% noise; dotted line: 15%

Fig. 8 presents the IFs of the noisy and unnoisy responses of the bridge with the
crack depth of 10% and 40%. When the crack depth is as small as 10%, the crack can
be detected with the noise level of 10%. When the crack depth is 40%, the crack can be
detected with the noise level up to 15%.

6. SUMMARY AND CONCLUSION REMARKS

In this study a technique for monitoring a sudden crack induced in earthquake
excitation based on the wavelet power spectrum has been presented. Some remarks can
be presented as follows:
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- The existence of the crack is monitored by a decrease in the IF during the ex-
citation. The moment of appearance of the crack is the time at which the IF starts to
decrease.

- When the crack depth increases, the change in the IF increases. The level of change
in the IF can be used to describe the crack extent.

- The advantage of the proposed method is that it does not require any information
of the intact structure sine the change in IF can be detected from only one measured time
history signal.

- Another advantage of the proposed method is that the crack with depth as small
as 10% of the beam height can be detected.

- Since the IF, a global parameter of structures, is used for monitoring the crack, it
can be extended to apply to more complicated structures.

- The proposed method can be applied with the noise level up to 15%.
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