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Abstract. A new approach for the treatment of strain localization in inelastic material
is proposed. It is based on energy minimization principles associated with micro-structure
developments. Shear bands are treated as micro-shearing of rank-one laminates. It is as-
sumed that the thickness of the shear band represented by its volume fraction tends to
zero, and the energy inside the shear band is a function of the norm of the strain field.
The existence of shear bands in the structure leads to an ill-posed problem which can
be solved by means of energy relaxation. The performance of the proposed concept is
demonstrated through numerical simulation of tension test under plane strain conditions.
Numerical results show that mesh sensitivity can be completely removed.
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1. INTRODUCTION

Regions of high strain localization by intense shearing are referred to as shear bands.
The formation of shear bands is accompanied by a softening response, characterized by
a decrease in strength of the material with accumulated inelastic strain, often leading
to complete failure [1, 2]. Predictions of the onset and evolution of shear bands play an
important role in determining the safety of structures, improving mechanical properties of
material and designing material microstructure.

In recent years a new methodology based on energy relaxation has been developed to
simulate the development of material microstructures [3]-[9]. The advantage of this theory,
when applied to the problem at hand, is the natural formation of shear bands based on
the energy minimization principles associated with micro-structure developments.

In this paper a theoretical framework for the treatment of shear localizations in in-
elastic materials at small strains is developed. The theory is based on energy minimization
principles associated with micro-structure developments under the assumption of a shear
band of zero thickness and of a special form of the energy within the shear band. Shear
bands are treated as laminates of first order. The problem of the non-convex energy aris-
ing due to the formation of shear bands is solved by energy relaxation in order to ensure
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that the corresponding problem is well-posed. Numerical simulations of a tension test are
shown in order to evaluate the performance of the proposed concept.

2. SHEAR BANDS AS SPECIAL LAMINATES

In this paper localization phenomena are regarded as micro-structure developments
associated with nonconvex potentials. We assume the micro-structures to consist of two
domains: a low-strain domain and a high-strain one. Let us consider a so-called RVE
(representative volume element) obtained by zooming in on the region around the point
A as shown in Fig. 1. The RVE is split into two volume fractions: the volume fraction ξ
of the low-strain domain and the volume fraction (1− ξ) of the high-strain domain.
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Fig. 1. Shear band is treated as the micro-shearing of a rank-one laminate

When strain localization occurs, the following assumptions related to the volume
fraction ξ are made:

(1) After the onset of localization, the width of the shear band represented by the
volume fraction ξ tends to zero

ξ → 0. (1)
(2) Most of the deformation is concentrated parallel to the band

m.n = 0 (2)

where m and n are two unit vectors giving the direction of shear band evolution.
(3) The potential (energy) inside the shear band W2 is assumed to satisfy

W2(ξε) = |ξ|W2(ε). (3)

For example W2(ε) may be taken in the following form

W2(ε) = A ‖ε‖ (4)

where A is a material parameter.
The first assumption is based on the observations that the width of shear bands is

normally very small relative to the overall dimension of the system under consideration
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[10, 11]. This assumption corresponds to the concept of strong discontinuities proposed in
[12, 13] among others.

The second assumption based on the results of the experiment by Finno et al, 1996
[14]. In their experiment, they showed that the normal movements are much smaller than
those in the tangent direction inside the shear band. This assumption implies the two
vectors m and n being orthogonal.

According to the third assumption, the potential inside a shear band is positive
homogeneous of first-order in the strain field (3). We will see later on, that only for this
very form of the potential as given in eq. (4), it has the desired property leading to strong
discontinuities.

In the following considerations we develop a simple approach to the treatment of
shear localization based on these assumptions.

3. TWO-DIMENSIONAL PROBLEM

3.1. Micro-strain

In the two-dimensional problem the micro-strains ε1 and ε2 can be written as

ε1 = ε− ξ(a⊗ n)s (5)

ε2 = ε + (1− ξ)(a⊗ n)s = ε− ξ(a⊗ n)s + (a⊗ n)s (6)

where (a⊗ n)s =
1
2
(a⊗ n + n⊗ a).

Let us define s by

ξa = sm, (7)

where ‖m‖ = 1. Herein m and n are two unit vectors giving the direction of shear band
evolution, s is an appropriately rescaled variable.

On inserting eq. (7) into eqs. (5) and (6), we have

ε1 = ε− s(m⊗ n)s, (8)

ε2 = ε− s(m⊗ n)s +
s

ξ
(m⊗ n)s. (9)

As ξ tends to zero
s

ξ
will grow out of bounds. Thus, eq. (9) can be simplified as

ε2 ≈
s

ξ
(m⊗ n)s. (10)

3.2. Relaxed potential

The mixed potential of the two domains can be written in the following form

Wmix(ε) = W1(ε− s(m⊗ n)s) + |s|W2((m⊗ n)s). (11)

The relaxed potential is computed in order to ensure the well-posedness of the
boundary-value problem governing the emergence of a shear band. It is obtained by the
minimization procedure

WR(ε) = inf
{
Wmix(ε) | s,m,n : ‖m‖ = ‖n‖ = 1

}
. (12)
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Table 1. Minimization problem: inf
s

W (s)

Scalar minimization problem: inf
s

W (s)

Potential: W (s) = as2 + bs + c |s| with c > 0, a > 0

Solution: inf
s

W (s) = − 1
4a

(|b| − c)2+

Minimizer: s = − 1
2a

(|b| − c)+sign(b)

Abbreviations: (|b| − c)+ =

{
0 for |b| ≤ c

|b| − c for |b| > c

sign(b) =
|b|
b

for b 6= 0

Let us consider two specific potentials representing the behaviour at small and large
strains, respectively

W1(ε) =
1
2
ε : C : ε, (13)

W2(γ) = A ‖γ‖ , (14)

where C is symmetric fourth-order, positive definite tensor. Substituting (13) and (14)
into (11), one gets

Wmix(ε) =
1
2

(ε− sγ) : C : (ε− sγ) + A |s| ‖γ‖ (15)

where γ = (m⊗ n)s.
On inserting (2) into (15) we have the simplified form of the mixed energy

Wmix(ε) =
1
2

(ε− sγ) : C : (ε− sγ) +
A√
2
|s| . (16)

Using the results in Table 1, minimization of (16) with respect to s yields

s =
sign(ε : C : γ)

(γ : C : γ)

[
|ε : C : γ| − A√

2

]
+

, (17)

and the potential (16) with s given by (17) takes the form

inf
s

Wmix(ε) =
1
2
ε : C : ε− 1

2

[
|ε : C : γ| − A√

2

]2

+

γ : C : γ
. (18)

Herein a =
1
2
γ : C : γ, b = −ε : C : γ, c =

A√
2
. Easily one can recognise that a is

positive due to the positive definiteness of the fourth-order tensor C.
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3.3. Computation of stress and the tangent operator

The stress and the tangent operator are derived from the direct derivative of the
relaxed potential (12). The derivative of (12) reads

∂WR

∂ε
=

∂Wmix

∂ε
+

∂Wmix

∂s

∂s

∂ε
+

∂Wmix

∂m

∂m

∂ε
+

∂Wmix

∂n

∂n

∂ε
. (19)

It is observed that the three last terms in eq. (19) vanish due to the stationarity condition
of the minimization problem (12). Thus, the relaxed stress which is an appropriate average
of the two micro-stresses has the form

σ =
∂Wmix

∂ε
. (20)

Considering the form of the potential (18) we obtain

σ = C : ε− sC : γ. (21)

The tangent operator is given by

A =
∂2WR

∂ε2
=

∂σ

∂ε
= C − (C : γ)⊗ ∂s

∂ε
− s

∂ (C : γ)
∂ε

. (22)

3.4. Localization criterion

In the derivations above a central role is played by the quantity

L =
[
|ε : C : γ| − A√

2

]
. (23)

As the process of deformation progresses, L may be negative, zero or positive. A positive
value in turn signals the onset of localization. A criterion that can be shown to be equivalent
to the well-known notion of loss of ellipticity.

i. L ≤ 0: we have s = 0. The relaxed potential WR(ε) reduces to the elastic strain
energy W1(ε).

ii. L > 0: we have s 6= 0. A shear band starts to develop. The homogeneous de-
formation ε decomposes into the two micro-strains ε1 and ε2. The nonconvex potential
energy Wmix is replaced with the approximated rank-one convexification WR(ε) to ensure
well-posedness of the problem.

4. APPLICATION OF RELAXATION THEORY TO LINEAR ISOTROPIC
MATERIAL

The fourth-order isotropic elastic tensor C takes the form

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (24)

or in the tensor notation

C = λ I ⊗ I + µ
(
I + Ī

)
, (25)
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where λ and µ are Lamé constants.
The simplified form of the mixed energy is obtained by substituting (24) into eq. (16)

Wmix(ε) =
λ

2
(trε)2 + µ

(
‖ε‖2 − 2 sm · εn +

s2

2

)
+

A√
2
|s| . (26)

Based on the minimization procedure the relaxed potential (12) reads

WR = inf
s,m,n

Wmix =
λ

2
tr (ε)2 + µ ‖ε‖2 − 2µ

[
|εmn| −

α

2

]2

+
, (27)

where α =
A√
2µ

, |εmn| is the maximum shear strain.

Solution s yields

s = (2 |εmn| − α)+sign(εmn) =

{
0 if |εmn| < α/2
(2 |εmn| − α) sign(εmn) if |εmn| ≥ α/2

(28)

The relaxed stress is obtained from eqs. (21) and (27)

σ = λtrε I + 2µε− 2µs (m⊗ n)s . (29)

On inserting (27) into (22) we get the tangent operator

A = λI ⊗ I + µ(I + Ī)− 2µ

[
(m⊗ n)s ⊗ ∂s

∂ε
+ s

∂ (m⊗ n)s

∂ε

]
. (30)

The capability of the proposed model is demonstrated through numerical simulation of a
tension test in the next Section.

5. TENSION TEST

In this section the model presented in Section 4 are implemented into the finite
element code FEAP [15]. In what follows we investigate a tension test under plane strain
conditions. Different kinds of elements are used in this example as summarized in Fig. 2.

PAMM header will be provided by the publisher 2

Table 2 Notation of element type

Element type Method Number of Gauss points Notation
MES1 2x2 MES
EAS2 2x2 EAS
QM63 2x2 QM6
Disp4 2x2 Q4

MES1: Mixed enhanced strain method
EAS2: Enhanced assumed strain method
QM63: Method of incompatible mode
Disp4: Displacement method

Table 3 Notation of element type

Element type Method Number of Gauss points Notation
MES1 2x2 MES
Disp2 2x2 Q4
Disp2 1x1 Q4-1Gauss

MES1: Mixed enhanced strain method
EAS2: Enhanced assumed strain method
QM63: Method of incompatible mode
Disp4: Displacement method

Copyright line will be provided by the publisher

Fig. 2. Notation of element type: MES1 - the mixed enhanced strain method
[16], EAS2 - the enhanced assumed strain method [17], QM63 - the method of
incompatible mode [18], Disp4 - the displacement method [19]

A sample is subjected to a prescribed vertical displacement under plane strain condi-
tions. The geometry of the specimen and the boundary conditions imposed on the displace-
ments as well as the material parameters are given in Fig. 3. In order to trigger the shear
band formation a geometrical imperfection along the height of specimen is introduced.
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Fig. 3. Localization in tension. Geometry and boundary conditions

Four discretizations of the domain are considered: 3x8, 7x18, 14x36, 21x54 elements.
The load-displacement curves behave identically for v < 0.3126mm as shown in Figs.
4a and 5a. The localization is delayed until the maximum shear strain is equal to

α

2
corresponding to v ≈ 0.3126mm, then the performance of diverse finite element methods
starts to differ. The localization band is straight, at 45◦ with the direction of principal
strain.
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Fig. 4. Localization in tension by use of Q4 element (the displacement method)

The displacement method is unable to capture the localization and shows hardening
behaviour as depicted in Fig. 4a and 4b.
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Fig. 5. Localization in tension by use of MES element (the mixed enhanced strain
method), EAS element (the enhanced assumed strain method) and QM6 element
(the incompatible mode method)

As we expected in Fig. 5a, the solutions obtained by using MES, EAS and QM6
elements are practically coincident in term of vertical reactions, thus showing mesh inde-
pendence of the proposed relaxed theory. The distribution of the relaxed energy shown in
Fig. 5b points out the localized elements.

The behaviour of the relaxed potential as well as the relaxed vertical stress σy of the
element 356 at the first gauss point inside the shear band is depicted in Fig. 6. After the
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Fig. 6. Relaxed energy and relaxed normal stress σy by use of MES element (the
mixed enhanced strain method) at the first Gauss point of the element 356
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bifurcation point, the relaxed potential of the small-strain domain approaches asymptot-
ically a constant value, whereas the relaxed potential of the large-strain domain is active
inside the shear band only and increases continuously with the prescribed displacement v.
As a result, the relaxed stress approaches nearly a constant value.
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Fig. 7. Localization in tension. Comparison of the different finite element meth-
ods: Distribution of shear strain at v = 1.0 mm
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It is very interesting to see the performance of the different finite element formu-
lations by considering the deformation shape of sample (Fig. 7). It is observed that the
solution obtained by use of the Q4 element fails to capture effects of strain localization.

6. CONCLUSIONS

The paper focuses on a new approach for the treatment of strain localization in solid
materials. The theory is based on minimization principles associated with micro-structure
developments under the assumptions of a shear band of a zero thickness and the presence
of a mixed potential inside the shear band.

Localization phenomena are regarded as micro-structure developments associated
with nonconvex potentials. The nonconvexity of the mixed potential occurring due to
the formation of strain localization is resolved by relaxation in order to ensure the well-
posedness of the associated boundary value problem. The relaxed potential is obtained
via local minimization problem of the mixed potential. The onset of localization is de-
tected through the proposed optimization process. Numerical results show clearly mesh-
independent behavior in the sense that shear bands are as narrowly as the mesh-resolution
allows, while all other features of the solution are independent of the chosen discretization.
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