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Abstract. This study focuses on formulation of the Augmented Lagrangian and ap-
plication of the Uzawa’s algorithm to solve the homogenization problem of microscopic
periodic media as in composites. Unlike in the finite element model, an equally spaced
grid system associated with the microstructure domain is used instead of a finite element
mesh topology. Moreover, the trigonometric interpolations for the field variables at every
grid point help to handle the periodic conditions. The proposed approach is a compromise
between Lagrange multiplier and penalty methods, in that it enables exact representation
of constraints while using penalty terms to facilitate the iteration procedure. A typical
homogenization problem will be solved using this approach. The results show good con-
sistency with those in literatures. Effects of the grid density and the penalty parameter
on the convergence have also been investigated.
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1. INTRODUCTION

For composites of complex microstructures, there are two different scales associ-
ated with microscopic and macroscopic behaviors to deal with: the slowly varying global
variables and the rapidly oscillating local variables. To model a structure of such kind of
material using the finite element method (FEM) one should utilize very fine mesh density
so that the details at the microscale size can be captured. That leads to a very high com-
putational cost and sometimes it is impossible to perform the analysis due to extremely
high requirements of computer resources. Instead, a process so-called homogenization is
used to characterize the heterogeneous material as a homogenized one and the equivalent
material properties are then used in the simulation of the whole structure as in a regular
FEM analysis.

For the sake of simplicity, the materials can be considered as an assembled body of
periodic unit cells as shown in Fig. 1. The assumption of such periodic media has been
widely used to develop in both the mathematical analysis and the numerical models [1, 12].
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Among various approaches to predict the effective properties of composites, the mathe-
matical homogenization method is preferable due to its systematic background and the
ease to implement [1, 10, 11]. One may use a FEM program with a slight modification
to solve the homogenization problem to obtain the homogenized coefficients without dif-
ficulty [4, 5, 9]. Note that the periodicity conditions must be imposed through constraint
equations to reflect the repeatability of the microstructure. Evaluation of several treat-
ments of periodicity was discussed in [2]. However, using FEM to solve the homogenization
problem may have limitation in meshing the complicated microstructures and handling
with a large number of degree of freedom (DOF) in analysis [8].

Fig. 1. The macroscale and microscale of the homogenization problem

The objective of this study is to develop an effective approach to solve the homog-
enization problem. The variable decomposition technique [3] together with formulation of
an Augmented Lagrangian is used leading to a saddle-point problem. The Uzawa’s algo-
rithm [6] is then applied to solve the saddle-point problem by iterations. This method
is reliable due to the fact that it is proved to be converged [3]. To eliminate the condi-
tion on periodicity of the field variables, we employ the trigonometric interpolations. The
field variables will then automatically satisfy the periodicity conditions. A grid system
associated with the microstructure domain is utilized in this approach instead of a mesh
configuration as in the finite element analysis. The meshing and the handling large num-
ber of degrees of freedom issues will not be encountered regardless the complexity of the
composite microstructure.

2. HOMOGENIZATION OF PERIODIC MEDIA

From the asymptotic expansion [1, 11], the homogenized elasticity tensor can be
determined explicitly by:

ahom
ijkh =

1

|Y|

∫

Y

(

aijkh(y) + aijrs(y)ers(χ
kh)

)

dy (1)

where Y =
{

y ∈ <n, 0 ≤ yi ≤ Yi, i = 1, n
}

,
|Y| is the volume of the unit cell,
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〈•〉 =
1

|Y|

∫

Y

(•) dy denotes the average over the unit cell Y,

χkh in (1) is the solution of the cell problem:






−
∂

∂yj

aijrs(y)ers(χ
kh ) =

∂

∂yj

aijkh(y)

χkh is Y − periodic

(2)

with the periodicity condition defined by:
If y ∈ Y 7→ vi (y) : Y − periodic or vi (y) ∈ Vper (Y) then vi (y) takes equal values

on the opposite faces of Y.

Generally, we can obtain the solution vE = χkh by solving the six cell problems and
then compute the homogenized elasticity coefficients according to (1).

As an alternative, the homogenization problem (2) with periodicity conditions can
be formulated in the following forms:

For a given macroscopic strain E,

(PE) { Find vE ∈ Vper (Y) such that JE (vE) ≤ JE (v) , ∀v∈ Vper (Y)} (3)

where JE (v) =
1

2 |Y|

∫

Y

a (E+e (v)) (E+e (v))dy

Note that the problems (2) and (3) are equivalent. Moreover, the variational formu-
lation (3) is equivalent to a problem of minimization with constraints:







Find v ∈ Vper (Y) such that J (v) → min

J (v) =
1

2
a (v, v)− l (v)

(4)

where a (v, v) =
1

|Y|

∫

Y

ae (vE) e (v)dy, l (v) = −
1

|Y|

∫

Y

aEe (v)dy

Again, by solving 6 problems of formulation (3) or (4) with the imposed macroscopic

strains Eij =
(

T kh
)

ij
=

1

2
(δikδjh + δihδjk), where δij is the Kronecker delta symbol; the

homogenized coefficients are determined by:

ahom
ijkh =

〈

σkh
ij

〉

=
1

|Y|

∫

Y

σkh
ij dy =

1

|Y|

∫

Y

a
(

Tkh + e (vTkh)
)

dy (5)

In the following sections, we will briefly review the trigonometric interpolation tech-
nique and the discrete Fourier transforms. Then, we reformulate the minimization problem
(5) by using the Augmented Lagrangian method and the variable decomposition technique.
Based on these variational equations, an in-house code will be developed.

3. TRIGONOMETRIC INTERPOLATION AND THE DISCRETE

FOURIER TRANSFORMATIONS

Consider a unit cell Y = ]0, 1[3, with a given positive number n we define the grid

points: (xj, yk, zl) =

(

j

n
,
k

n
,
l

n

)

, where j, k, l ∈ {0, 1, ..., n− 1} as shown in Fig. 2.
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Fig. 2. Grid system of the periodic unit cell

Due to the periodicity of the field variables, the trigonometric interpolation of a
function f (x, y, z) is defined through the values at grid points f (xj , yk, zl) in the system
by using the inverse discrete Fourier transform:

f̂ (xj, yk, zl) =
∑

r,s,t

f̂jkl

n3
w−1

jkl (xr, ys, zt) =
∑

r,s,t

f̂jkl

n3
e2iπjxre2iπkyse2iπlzt , r, s, t ∈ {0, 1, ..., n− 1}

where, the coefficients f̂jkl of the interpolated function f̂ (x, y, z) are determined by the
discrete Fourier transform:

f̂jkl =
∑

r,s,t

f (xr, ys, zt)wjkl (xr, ys, zt) =
∑

r,s,t

f (xr, ys, zt) e
−2iπjxre−2iπkyse−2iπlzt

The values of the interpolated function f̂ (x, y, z) should be equal to the given values
of the function f (x, y, z) at grid points:

f̂ (xj , yk, zl) = f (xj, yk, zl) , ∀j, k, l ∈ {0, 1, ..., n− 1}

With the above definition of trigonometric interpolation, the field variables in the
homogenization problem will then automatically satisfy the periodicity conditions. This
benefit helps to eliminate constraints on variables and, as a consequence, to reduce the
complexity of the problem.

4. THE AUGMENTED LAGRANGIAN FORMULATION

By introducing a supplementary variable q, linked to v through the relation q = ∇v,
the problem (4) can be reformulated in the following form:
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For a given macroscopic strain E, find

min







1

|Y|

∫

Y

1

2
a (E + qs) . (E + qs) dy, ∀v ∈ Vper (Y) and q = ∇v







(6)

where qs =
1

2

(

q + qT
)

is the symmetric part of the tensor q = ∇v. The problem (6) is a

minimization problem in {q, v} with the supplementary constraint q=∇v. To handle this
constraint we use a Largrange multiplier to reduce the problem (6) (and also the problems
(2), (3) and (4)) to a saddle-point problem:

L (v, q, µ) =
1

|Y|

∫

Y

1

2
a (E + qs) (E + qs) dy +

1

|Y|

∫

Y

µ (∇v − q) dy

where µ is a Lagrange multiplier. For r ≥ 0, the Augmented Lagrangian is defined by:

Lr (v, q, µ) =
1

|Y|

∫

Y

a

2
(E + qs) (E + qs) dy+

1

|Y|

∫

Y

µ (∇v−q)dy+

∫

Y

r

2
|∇v − q|2dy (7)

Then, the problem (7) is equivalent to:
Find the saddle-point (u,p, λ) such that:

Lr (u,p, λ) = min
v,q

max
µ

Lr (v, q, µ) (8)

Note that if vE is the solution of the problem (3) and (4) then it is equivalent to
the fact that {vE, qE = ∇vE, λ} is a saddle-point of Lr. Thus, we have:

Lr (vE, qE, µ) ≤ Lr (vE, qE, λ) ≤ Lr (v, q, λ) , ∀ {v, q, µ}

Consequently, instead of solving the problem (3) or (4) for vE, we aim to find the
saddle-point {vE, qE, λ} of Lr by using the so-called Uzawa’s algorithm [3, 6]. The three-
step process at each iteration and the details of the method are given below:

Initialization:
{

q0
E, λ

1
}

are given arbitrarily.

With values of
{

qn−1
E , λn

}

calculated at the n-th iteration, vn
E, q

n
E and λn+1 at the

(n+ 1)-th iteration are to be determined successively by:
STEP 1: Minimization of Lr in v

Taking the variation of Lr in v, the condition of minimization leads to:
∫

Y

[

(−λn∇ψ) +
(

−rqn−1
E ∇ψ + r∇vn

E∇ψ
)]

dy = 0, ∀ψ ∈ Vper (Y) (9)

By applying the divergence theorem and the periodicity condition of ψ to (9), we
yield:

∆vn
E = div

(

qn−1
E +

λn

r

)

STEP 2: Minimization of Lr in q

Taking the variation of Lr in q, the condition of minimization leads to:

a (qn
E)s + rqn

E = −aE + r∇vn
E − λn (10)
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By solving (10) we can obtain the symmetric and the anti-symmetric parts of qE.
The updated values of qn

E are: qn
E = (qn

E)
s
+ (qn

E)
a

STEP 3: Updating λn

λn+1 = λn + r (∇vn
E − qn

E) (11)

The solutions of (8) are obtained by iterations. For each iteration, there are three
steps, in which (9), (10) and (11) are readily to be processed by using the above-mentioned
trigonometric interpolations and the Fourier transforms of displacement field variables. To
avoid obtaining a local minimizer solution, the convergence criteria is employed such that
the iterating process terminates when the relative error of a variable is smaller than a
chosen value ε for a NCONV number of successive iteration. The relative error is taken in
L2−norm, i.e.

∥

∥

∥
uk+1

i − uk
i

∥

∥

∥

L2

/

∥

∥uk
i

∥

∥

L2
≤ ε. The variable value ui can be the displacement

at grid points v, divergence of the displacement q or the Lagrange multiplier λ. Once
convergence has been reached, qE coincides with ∇vE. The Uzawa’s algorithm with a
suitable choice of the initial and the multiplier values has been proved to achieve better
convergence.

5. NUMERICAL EXAMPLE

To verify the proposed method, we investigate a typical example of a unidirectional
fiber-reinforced composite material using 2D model to compare with results in [7].

Fig. 3. Grid system of the unit cell

A grid system of the unit cell for the 2D model is used to predict the properties of
the glans fiber/epoxy reinforced composite system as shown in Fig. 3. The volume fraction
of fibers is 45%. The plane strain and perfect bonding between constituents assumptions
are made. The data on Young’s modulus and Poisson’s ratio of glass fiber and epoxy resin
are given in Table 1.

Note that for a 2D problem, we use an exchange in notation between the tensor aijkh

and its matrix form Cij . Explicitly, in this problem we denote: C11 = a1111, C22 = a2222,
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Table 1. Material properties of glass fiber and epoxy

Material E (GPa) ν

E-glass fibers 70 0.2
Epoxy resin 3.5 0.35

C12 = a1122 and C66 = a1212. To obtain the homogenized modulus, we will solve 3 cell
problems by successively impose the three macroscopic strains:

E =
(

T11
)

=

[

1 0
0 0

]

,E =
(

T22
)

=

[

0 0
0 1

]

and E =
(

2T12
)

=

[

0 1
1 0

]

Fig. 4. Comparison between the results obtained by the present study and those
of three FEM models in [7]: (a) C11 = C22 coefficients, (b) C12 = C21 coefficients,
(c) C66 coefficient

Calculations of the homogenized values and comparisons with [7] are shown in Fig.
4. A quite good agreement can be observed. Note that [7] used the finite element method to
solve the problem with different geometries and sizes of the unit cell. The obtained results
of the present study also closely match with those in [9]. With a coarser grid density,
the solutions show a small discrepancy with the referred values. However, for finer grid
density the solutions are stable and almost identical to those of [7]. The sensitiveness of
the solution on the grid density is thus negligible after a certain level. Hence, to employ
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the developed program efficiently we can use a rather coarse grid system to obtain results
with the same accuracy as in case of fine grid resolution.

Fig. 5. Effects of the penalty parameter r on the convergence

The influence of the parameter r on the convergence is shown in Fig. 5. We may
find that the penalty parameter needs not to tend to infinity to obtain the exact solution
as in the ordinary penalization methods, it can be small. That is one of the advantages
of the Augmented Lagrangian method, appearance of the last term in (7) improves the
convergence properties of the algorithm.

6. CONCLUSION

The Augmented Lagrangian approach associated with the trigonometric interpo-
lation in this study shows its effectiveness in solving the homogenization problems. The
trigonometric interpolation helps to remove the constraint on periodicity. Furthermore,
the Augmented Lagrangian method is a compromise between Lagrange multiplier and
penalty methods, in that it enables exact representation of constraints while using penalty
terms to facilitate the iterative procedure. Combination of these two advantages leads
to a quite promising and potential way for handling the homogenization problems, espe-
cially for predicting properties of very complicated microstructured materials. Besides, the
concept in this approach makes it ready to be used with a microscope image of the real
microstructures. The meshing and the handling large number of DOF issues will not be
encountered because the grid system is used instead of a topology of the finite element
nodes. The applicability of the algorithm discussed in this study is broad, ranging from
linear elasticity to nonlinear and/or plasticity applications.
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