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Abstract. The main purpose of this paper is to derive explicit homogenized equations of
the linear piezoelectricity in two-dimensional domains separated by a very rough interface
of comb-type. In order to do that, first, the basic equations of the theory of piezoelectric-
ity are written down in matrix form. Then, following the techniques presented recently
by these authors, the explicit homogenized equation in matrix form and the associate
continuity condition, for generally anisotropic piezoelectric materials, are derived. They
are then written down in component form for a special case when the solids are made of
tetragonal crystals of class 4̄2m. Since the obtained equations are totally explicit, they
are significant in use.
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1. INTRODUCTION

Boundary-value problems in domains with rough boundaries or interfaces appear
in many fields of natural sciences and technology such as: scattering of waves on rough
boundaries [1, 4], transmission and reflection of waves on rough interfaces [5]-[8], mechan-
ical problems concerning the plates with densely spaced stiffeners [9], flows over rough
walls [10], vibrations of strongly inhomogeneous elastic bodies [11], propagations of sur-
face waves in half-spaces with cracked surfaces [12]-[13], nearly circular holes and inclusions
in plane elasticity and thermoelasticity [14]-[15], and so on. When the amplitude (height)
of the roughness is much small in comparison with its period, the problems are usually an-
alyzed by perturbation methods [16]. When the amplitude is much larger than its period,
i.e. the boundaries and interfaces are very rough, the homogenization method is required,
see for instance: [17]-[19]. The mentioned above boundary-value problems are originated
from various physical theories.

For the elasticity theory, Nevard and Keller [20] examined the homogenization of
a very rough three-dimensional interface that oscillates between two parallel planes and
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separates two linear anisotropic solids. By applying the homogenization method, the au-
thors have derived the homogenized equations, but these equations are still implicit. They
are therefore not convenient in use. In some recent papers [21, 22, 23], the explicit ho-
mogenized equations of the linear elasticity in two-dimensional domains with interfaces
rapidly oscillating between two parallel straight lines and between two concentric circles
have been obtained.

Because piezoelectric materials exhibit electromechanical coupling phenomenon,
they have been widely used in various fields of the modern engineering, such as the field of
electroacoustics, transducers and control of structure vibration, etc (see [24]). The consid-
eration the boundary-value problems of the piezoelectricity theory in domains with very
rough boundaries or interfaces is therefore significant and of great theoretical and practical
as well interest.

The main aim of this paper is to find explicit homogenized equations of the lin-
ear theory of piezoelectricity in two-dimensional domains including a very rough interface
which is assumed to be of the comb-type (see Fig. 1). Note that interfaces and boundaries

Fig. 1. Two-dimensional domains Ω+ and Ω− are separated by a very rough
interface L of comb-type (0 < a + b << A)

of the comb-type have been the subject of many investigations of wave scattering and
wave reflection/transmission, see, for examples, studies [25, 26, 27] and references therein.
To derive the explicit homogenized equation, first, the basic equations of the linear theory
of piezoelectricity are written down in matrix form. Then, following the techniques pre-
sented recently by these authors [21, 22, 23], the homogenized equation and the associate
continuity condition in explicit form, for generally anisotropic piezoelectric materials, are
derived. They are written down in component form, as an example, for a special case when
the solids are made of tetragonal crystals of class 4̄2m.
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2. BASIC EQUATIONS

Consider a linear piezoelectric body occupied two-dimensional domains Ω+ and Ω−

of the plane x1x3 whose interface is the curve L of comb-type as illustrated in Fig. 1. We
consider the generalized plane strain (see [28]) for which the displacement components
u1, u2, u3 and the electric potential φ are of the form

u1 = u1(x1, x3, t), u2 = u2(x1, x3, t), u3 = u3(x1, x3, t), φ = φ(x1, x3, t) (1)

The strain εij and the components of the electric field vector Ei are expressed as [29, 30, 31]

εij =
1

2

(∂ui

∂xj

+
∂uj

∂xi

)

, Ei = −
∂φ

∂xi
(2)

The stress σij and the components of the electric displacement vector Di are related to
the strains εij and the components Ei of the electric field vector by the following relations
[29, 31, 32]

σij = cijklεkl − elijEl, Di = eiklεkl + εilEl (3)

where commas indicate differentiation with respect to xi, cijkl, eijk and εij are respectively
the elastic (measured in a constant electric field), piezoelectric (measured at a constant
strain or electric field) and the dielectric(measured at a constant strain) moduli which
have the following classical properties of symmetry

cjikl = cijkl = cklij, ekij = ekji, εij = εji (4)

and they are defined as

cijkl, eijk, εij =

{

cijkl+, eijk+, εij+ for (x1, x3) ∈ Ω+

cij−, eijk−, εij− for (x1, x3) ∈ Ω−

(5)

cijkl+, eijk+, εij+, cijkl−, eijk−, εij− are constant.
Using the Voigt contracted notations, the relations (3) are written in matrix form

as (see [29])




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
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








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σ11
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σ23

σ13

σ12
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














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
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
























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c11 c12 c13 c14 c15 c16 e11 e21 e31

c12 c22 c23 c24 c25 c26 e12 e22 e33

c13 c23 c33 c34 c35 c36 e13 e23 e33

c14 c24 c34 c44 c45 c46 e14 e24 e34

c15 c25 c35 c45 c55 c56 e15 e25 e35

c16 c26 c36 c46 c56 c66 e16 e26 e36

e11 e12 e13 e14 e15 e16 −ε11 −ε12 −ε13
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














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
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


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




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


















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





(6)
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Equations of motion and Gauss’s law are [29, 31]

σ11,1 + σ13,3 + f1 = ρü1

σ12,1 + σ23,3 + f2 = ρü2

σ13,1 + σ33,3 + f3 = ρü3

D1,1 + D3,3 − q = 0

(7)

for (x1, x3) /∈ L, where ρ is the mass density (taking different constants ρ+, ρ− in Ω+ and
Ω−, respectively), f1, f2 and f3 are the components of body forces, q is the electric charge
density, a dot indicates differentiation with respect to the time t. In addition to Eqs. (7)
is required the continuity condition on the interface L, namely

[uk]L = 0 (k = 1, 2, 3), [φ]L = 0, [Σnk]L = 0 (k = 1, 2, 3), [Dn]L = 0 (8)

where [w]L = w+ − w−, and

Σnk = σk1n1 + σk3n3 (k = 1, 2, 3), Dn = D1n1 + D3n3 (9)

nk are the components of the unit normal to the curve L.

3. EXPLICIT HOMOGENIZED EQUATION IN MATRIX FORM

Using (6) in (7) and taking into account (1) and (2) yield a system of equations for
the displacement components and the electric potential whose matrix form is

(Ahku,k),h
+ F = ρIü (10)

where u = [u1, u2, u3, φ]T , F = [f1, f2, f3,−q]T and

A11 =









c11 c16 c15 e11

c16 c66 c56 e16

c15 c56 c55 e15

e11 e16 e15 −ε11









, A13 =









c15 c14 c13 e31

c56 c46 c36 e36

c55 c45 c35 e35

e15 e14 e13 −ε13









A31 =









c15 c56 c55 e15

c14 c46 c45 e14

c13 c36 c35 e13

e31 e36 e35 −ε13









, A33 =









c55 c45 c35 e35

c45 c44 c34 e34

c35 c34 c33 e33

e35 e34 e33 −ε33









(11)

I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









here, symbol "T" indicates the transpose of a matrix. In addition to Eq. (10) is required
the continuity condition on L, namely

[u]L = 0 (12)
[

(A11u,1 + A13u,3)n1 + (A31u,1 + A33u,3)n3

]

L
= 0 (13)

which originate from (8).
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Following Bensoussan et al. [18], Bakhvalov & Panasenko [19], Kohler et al. [17] we
suppose that u(x1, x3, t, ε)=U(x1, y, x3, t, ε), and we express U as follows (see [21, 22, 23])

U = V + ε
(

N
1
V + N

11
V,1 + N

13
V,3

)

+ ε2
(

N
2
V + N

21
V,1 + N

23
V,3

+ N
211

V,11 + N
213

V,13 + N
233

V,33

)

+ O(ε3)
(14)

where V=V(x1, x3, t) (being independent of y), N1, N11, N13,N2, N21, N23, N211, N213,
N233 are 4×4-matrix functions of y and x3 (not depending on x1, t), and they are y-
periodic with the period 1. The matrix functions N1, ..., N233 are determined so that
equation (10) and boundary conditions (12) and (13) are satisfied.

Our main purpose is to find the explicit homogenized equation of the value-boundary
problem (10), (12) and (13), i. e. the equation for the leading term V = [V1, V2, V3, Φ]T

in the asymptotic expansion (14), and the associate continuity conditions. Following the
same procedure as was carried out in [21, 22, 23], the explicit homogenized equation of
the problem (10), (12) and (13) in matrix form is

(A+
hkV,k),h + F+ = ρ+IV̈, x3 > 0

〈A−1
11

〉−1V,11 +
[

〈A−1
11

〉−1〈A−1
11

A13〉 + 〈A31A
−1
11

〉〈A−1
11

〉−1

]

V,13

+
[

〈A33〉 + 〈A31A
−1
11

〉〈A−1
11

〉−1〈A−1
11

A13〉 − 〈A31A
−1
11

A13〉
]

V,33 (15)

+〈F〉 = 〈ρ〉IV̈, −A < x3 < 0

(A−

hkV,k),h
+ F

− = ρ−IV̈, x3 < −A

and the continuity conditions on the straight lines x3 = 0 and x3 = −A have the form

[

〈A31A
−1
11

〉〈A−1
11

〉−1
V,1 +

(

〈A33〉 + 〈A31A
−1
11

〉〈A−1
11

〉−1〈A−1
11

A13〉

− 〈A31A
−1
11

A13〉

)

V,3

]

L∗

= 0, [V]L∗ = 0

(16)

where L∗ is lines: x3 = 0, x3 = −A.
Here, matrices Ahk are given by (11), and

〈g〉 =
1

a + b
(ag− + bg+) (17)

where g+ and g− are the values of g in Ω+ and Ω−, respectively (see Fig. 1). Note that
due to the positive definiteness of the strain energy, detA11 6= 0, the matrix A

−1
11

therefore
exists.
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4. EXPLICIT HOMOGENIZED EQUATIONS IN COMPONENT

FORM FOR TETRAGONAL CRYSTALS OF CLASS 4̄2m

Consider tetragonal crystals of class 4̄2m (see [29]), for which the matrices Ahk are
of the form

A11 =









c11 0 0 0
0 c66 0 0
0 0 c55 0
0 0 0 −ε11









, A13 =









0 0 c13 0
0 0 0 e36

c55 0 0 0
0 e14 0 0









A31 =









0 0 c55 0
0 0 0 e14

c13 0 0 0
0 e36 0 0









, A33 =









c55 0 0 0
0 c55 0 0
0 0 c33 0
0 0 0 −ε33









(18)

From (6) one can see that

σ13 = c55(u1,3 + u3,1), σ23 = e14φ,1 + c55u2,3

σ33 = c13u1,1 + c33u3,3, D3 = e36u2,1 − ε33φ,3 (19)

Substituting (18) into (15), (16) and after some manipulations, we obtain the explicit
homogenized equations in component form and the associate continuity conditions, namely
- For x3 > 0



















c11+V1,11 + c55+V1,33 + (c13+ + c55+)V3,13 + f1+ = ρ+V̈1

c66+V2,11 + c55+V2,33 + (e14+ + e36+)Φ,13 + f2+ = ρ+V̈2

c55+V3,11 + c33+V3,33 + (c13+ + c55+)V1,13 + f3+ = ρ+V̈3

(e14+ + e36+)V2,13 − ε11+Φ,11 − ε33+Φ,33 − q+ = 0

(20)

- For −A < x3 < 0

〈c−1
11

〉−1V1,11 +
[

〈c−1
55

〉−1 + 〈c13c
−1
11

〉〈c−1
11

〉−1
]

V3,13 + 〈c−1
55

〉−1V1,33 + 〈f1〉 = 〈ρ〉V̈1

〈c−1
66

〉−1V2,11 +
[

〈e36c
−1
66

〉〈c−1
66

〉−1 + 〈e14ε
−1
11

〉〈ε−1
11

〉−1
]

Φ,13 +
[

〈c55〉 + 〈e2
14ε

−1
11

〉

− 〈e14ε
−1
11

〉2〈ε−1
11

〉−1
]

V2,33 + 〈f2〉 = 〈ρ〉V̈2

〈c−1
55

〉−1V3,11 +
[

〈c−1
55

〉−1 + 〈c13c
−1
11

〉〈c−1
11

〉−1
]

V1,13 +
[

〈c13c
−1
11

〉2〈c−1
11

〉−1

− 〈c−1
11

c2
13〉 + 〈c33〉

]

V3,33 + 〈f3〉 = 〈ρ〉V̈3

− 〈ε−1
11

〉−1Φ,11 +
[

〈e14ε
−1
11

〉〈ε−1
11

〉−1 + 〈e36c
−1
66

〉〈c−1
66

〉−1
]

V2,13

+
[

〈e36c
−1
66

〉2〈c−1
66

〉−1 − 〈e2
36c

−1
66

〉 − 〈ε33〉
]

Φ,33 − 〈q〉 = 0

(21)
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- For x3 < −A


















c11−V1,11 + c55−V1,33 + (c13− + c55−)V3,13 + f1− = ρ−V̈1

c66−V2,11 + c55−V2,33 + (e14− + e36−)Φ,13 + f2− = ρ−V̈2

c55−V3,11 + c33−V3,33 + (c13− + c55−)V1,13 + f3− = ρ−V̈3

(e14− + e36−)V2,13 − ε11−Φ,11 − ε33−Φ,33 − q− = 0

(22)

and

V1, V2, V3, Φ, σ0
13, σ

0
23, σ

0
33, D

0
3 are continuous on lines x3 = 0, x3 = −A (23)

where σ0
ij, D0

3 are the coefficients of ε0 (i. e. they are leading terms) in their asymptotic
expansions, and they are given by

σ0
13 = 〈c−1

55
〉−1(V3,1 + V1,3)

σ0
23 = 〈ε−1

11
〉−1〈ε−1

11
e14〉Φ,1 +

(

〈c55〉 + 〈ε−1
11

e2
14〉 − 〈ε−1

11
〉−1〈ε−1

11
e14〉

2

)

V2,3

σ0
33 = 〈c−1

11
c13〉〈c

−1
11

〉−1V1,1 +

(

〈c33〉 + 〈c−1
11

〉−1〈c−1
11

c13〉
2 − 〈c−1

11
c2
13〉

)

V3,3

D0
3 = 〈c−1

66
〉−1〈c−1

66
e36〉V2,1 +

(

〈c−1
66

〉−1〈c−1
66

e36〉
2 − 〈c−1

66
e2
36〉 − 〈ε33〉

)

Φ,3

(24)

It is readily to see that, when the materials of Ω+ and Ω− are the same, equations (20),
(21) and (22) coincide with each other, and σ0

k3
and D0

3 become, respectively, σk3 and D3

given by (19). Also note that, for this case V1 and V3 are decoupled from V2 and Φ.

5. CONCLUSIONS

In this paper, we consider the homogenization of a two-dimensional very rough inter-
face of comb-type which separates two piezoelectric solids. Following the same procedure
as was carried out in [21, 22, 23], the explicit homogenized equation and associate conti-
nuity conditions are derived. They are written down in component form for a special case
when the solids are made of tetragonal crystals of class 4̄2m. Since obtained homogenized
equations are totally explicit, they are very useful in use.
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