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A NONLILEAR CONTROLLER FOR
SHIP AUTOPILOTS

Le Thanh Tung
Hanoi University of Science and Technology, Vietnam

Abstract. Conventional ship autopilots are designed based on a linear ship model us-
ing pole - placement technique or linear optimal theory. However, in operation, the ship
kinematical parameters can go out the linear limits. In this paper, a nonlinear optimal
control law based on aggregated variables is presented. The criterion is chosen so that the
dynamic characteristics of object are included. The stability of the closed-loop system
is global according to the Lyapunov stability theory. The control law depends explicitly
on ship model parameters, so that it is can be easily to tune when the parameters change.
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1. INTRODUCTION

Conventional ship autopilots are designed based on a linear ship model using pole
- placement technique or linear optimal theory without considering steering dynamics.
However, in operation, the ship kinematical parameters can go out the linear limits; the
steering mechanism has limit speed of deflection. In such a case the stability of the closed -
loop system may not be guaranteed. More ever, neglecting the nonlinearity and dynamics
of steering machine may effect on system performance, usually reduces it. For a nonlinear
system the back stepping or state feedback linearization techniques can be used [1, 2], but
no optimal criterion is considered in these approaches. In this paper, a nonlinear optimal
control law based on so - called aggregated variables is presented. The criterion is chosen
so that the dynamic characteristics of object are included. The stability of the closed -
loop system is global according to the Lyapunov stability theory. The control law depends
explicitly on ship model parameters, so that it is can be easily to tune when the parameters
change. The structure of the paper is organized as follows. A brief description of controller
design method and ship motion model is presented in the next section. Controller designing
and simulation are presented in the Sections 3 and 4 respectively. Conclusion is presented
in the last section.
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2. A BRIEF DESCRIPTION ON CONTROLLER DESIGN METHOD,
SHIP STEERING EQUATIONS OF MOTION AND WAVE MODEL

2.1. Controller design method based on aggregated variables

A framework of design method based on so - called aggregated variables is proposed
by Kolesnikov [3]. In this section, the theoretical basics is taken from [4]. Consider a
dynamic system

ẋi = fi(x), i = 1÷ n−m,
ẋn−m+j = fn−m+j(x) + bjuj , j = 1÷m,
x = (x1, x2, ..., xn)T ,

(1)

where x = (x1, x2, ..., xn)T - vector of state variables, uj - control actions.
Let Ψj(x) = 0, j = 1 ÷m - aggregated macro variables. The motion of synthesis

system has to satisfy minimum of cost functions defined as

Jj =

t∫
t0

(
Ψ̇2

j + φ2
j (Ψj)

)
dτ, (2)

where φj(Ψj) - a function of Ψj(x), which must be chosen so that, the differential equation
Ψ̇j + φj(Ψj) = 0 has stable solution Ψj(x).

Stable minimum of the cost function is solution of the following differential equations

Ψ̇j + φj(Ψj) = 0. (3)

Define Ψ̇j as

Ψ̇j =
n∑

i=1

∂Ψj

∂xi
fi(x) +

n∑
i=n−m+1

∂Ψj

∂xi
bn−iun−i. (4)

We have the control law

uj = −
(

∂Ψj

∂xn−m+j
bj

)−1


n∑

i=1

∂Ψj

∂xi
fi(x) + φj(Ψj) +

n∑
i = n−m+ 1
i 6= n−m+ j

∂Ψj

∂xi
bn−iun−i

 (5)

2.2. Ship steering equations of motion

For heading problem, the most used ship mathematical models are following:
The models of Nomoto et al [1, 5]
For small rudder angles, the transfer function between the rudder angle δ and the

yawing rate ω of a surface ship can be described by the linear models of Nomoto et al.
Nomoto’s 2nd order model is written as

ω(s)
δ(s)

=
K(1 + T3s)

(1 + T1s)(1 + T2s)
, (6)
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where s is used to denote the variable of Laplace operator, K is the gain constant and
Ti (i = 1, 2, 3) are three time constants. A first - order approximation is obtained by
defining the effective time constant as: T = T1 + T2 − T3. Hence,

ω(s)
δ(s)

=
K

1 + Ts
. (7)

The yaw angle (course) ϕ(t) is related to yaw rate ω(t) as

ϕ̇(t) = ω(t). (8)

The model of Bech and Wagner Smith [1, 6]
The linear ship steering equations of motion can be modified to describe large rudder

angles and course - unstable ships by simply adding a nonlinear maneuvering characteristic
to Nomoto’s 2nd order model. Bech and Wagner proposed the model

T1T2ϕ
(3) + (T1 + T2)ϕ̈+KHB(ϕ̇) = K(δ + T3δ̇), (9)

where the function HB(ϕ̇) describes the nonlinear maneuvering characteristic produced
by Bech’s reverse spiral maneuver, that is

HB(ϕ̇) = b3ϕ̇
3 + b2ϕ̇

2 + b1ϕ̇+ b0. (10)

For a course - stable ship, the b1 > 0. A single screw propeller or ship with asym-
metry in hull has b2 of non - zero value. Hence, b2 = 0 for a symmetrical hull.

The model of Norrbin [1, 7]
An extension of Nomoto’s 1st order model can be made by defining

Tϕ(2) +HN (ϕ̇) = Kδ, (11)

where the maneuvering characteristic HN (ϕ̇) is defined as

HN (ϕ̇) = n3ϕ̇
3 + n2ϕ̇

2 + n1ϕ̇+ n0. (12)

The Norrbin coefficients: ni(i = 0 ÷ 3) are related to those of Bech’s model by:
ni = bi/ |b1|. n1 = ±1 for stable and unstable - course ship respectively. Since a constant
rudder angle is required to compensate for constant or slowly - varying wind and current
disturbances, the bias term n0 could be treated as an additional rudder off - set. That is,
a large number of ships can be described by

HN (ϕ̇) = n3ϕ̇
3 + n1ϕ̇. (13)

2.3. The wave model

The following wave model is adopted from Paulsen et al [8]

ẋw = Awxw + bwη, w = CTxw, (14)

where

Aw =
[

0 1
−ω2

n −2ξωn

]
, bw =

[
0
Kw

]
, Cw =

[
0
1

]
, (15)
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η is a zero mean Gaussian white noise sequence, ωn - the dominating wave frequency, ξ -
the relative damping ratio of the wave, Kw is the gain that is dependt on the wave energy.
In the transfer function form the model is

w = CT (sI −Aw)−1B =
Kws

s2 + 2ξωns+ ω2
n

. (16)

3. CONTROLLER DESIGN

For designing of control law, the model of Norrbin is chosen. By combining the
steering mechanism dynamics, described by equation δ̇ = u, the ship steering equation of
motion, wave model and denoting x1 = ϕ, x2 = ω = ϕ̇, x3 = δ, we have the augmented
system dynamics on the wave as

ẋ1 = x2,

ẋ2 = −n1

T
x2 −

n3

T
x3

2 +
K

T
(x3 + w),

ẋ3 = u.

(17)

To design the control law we use the system dynamics on the still water w = 0.
Then, the autopilot performance is tested in 2 cases: still water and in wave. Define the
aggregated variable as

ψ = c1x1 + c21x2 + c23x
3
2 + c3x3. (18)

Choose the cost function as

J =

t∫
t0

(
T 2

1 Ψ̇2 + Ψ2)
)
dτ, T1 > 0. (19)

Then, the control signal u is defined from the equation T1ψ̇ + ψ = 0 as

u = − 1
c3

[
c1

1
T1
x1 + (c1 − c21

n1

T
+
c21
T1

)x2 + (
c23
T1
− c21

n3

T
− 3c23

n1

T
)x3

2−

−3c23
n3

T
x5

2 + (
c3
T1

+ c21
K

T
)x3 + 3c23

K

T
x2

2x3

]
.

(20)

Under the action of this control signal, the point defining system position in state
space is moved into neighborhood of the surface Ψ = 0. In this case, system motion along
it is described by a set of differential equations as following

ẋ1 = x2,

ẋ2 = −K
T

c1
c3
x1 − (

n1

T
+
K

T

c21
c3

)x2 − (
n3

T
+
K

T

c23
c3

)x3
2.

(21)

The design parameters c1, c21, c23, c3 must be chosen so that the motion is stable.
Consider a Lyapunov function candidate as

V =
1
2
p1x

2
1 +

1
2
p2x

2
2, pi > 0, i = 1, 2. (22)
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Time differentiation gives

V̇ = p1ẋ1x1 + p2ẋ2x2 = x1x2(p1− p2
K

T

c1
c3

)−x2
2(
n1

T
+
K

T

c21
c3

)p2−x4
2(
n3

T
+
K

T

c23
c3

)p2. (23)

By the choice of

c1
c3

=
p1

p2

T

K
,
c21
c3

> −n1

K
,
c23
c3

> −n3

K
. (24)

we have
n1

T
+
K

T

c21
c3

> 0,
n3

T
+
K

T

c23
c3

> 0. (25)

Hence V ≥ 0

V̇ = −x2
2(
n1

T
+
K

T

c21
c3

)p2 − x4
2(
n3

T
+
K

T

c23
c3

)p2 ≤ 0. (26)

Obvioualy, when t→∞, x2 → 0, from the 2nd equation of (21) we get

K

T

c1
c3
x1 = 0. (27)

Since
K

T

c1
c3
6= 0, then x1 = 0. Then the global stability is guaranteed.

4. SIMULATION STUDY

The ship model used in the simulation study is adopted from Fossen [1]. The ship
parameters are following: K = 0.5(1/s), T = 31(s), n1 = 1, n3 = 0.4(s2).
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Fig. 1. Wave disturbance w versus time
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Clearly it is a course - stable ship. The parameters of the wave model are chosen as:
ωn = 0.7, ξ = 1, Kw = 1.0 [8], the wave characteristic in the time domain is presented in
Fig. 1. The domain of design parameters variation and the phase portrait of the closed -
loop system are shown in Figs. 2, 3 respectively.
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Fig. 3. Phase portrait of closed - loop system

The desired yaw angle is ϕr = 0. The design parameters are chosen to be:

p1 = 0.06, p2 = 1, c1 = 0.0037, c21 = 0.008, c23 = 0.992, c3 = 0.001, T1 = 7.5.
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At first we assume no wave disturbance, that is w = 0. The transition characteristics
of closed - loop system are shown in Fig. 4a. We see that the yaw angle and yaw rate
converge to the desired value in finite time.
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(a) without wave disturbance w
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Fig. 4. Closed - loop system characteristics: 1 - yaw angle ϕ (deg), 2 - yaw rate
ω (deg/s), 3 - rudder angle δ(deg), 4 - control signal u(deg/s)

In the Fig. 4b, the change of state variables and control signal in presence of the
disturbance is presented. We see that, the yaw angle is bounded approximately by the
value of 1 deg after about 70 s, the rudder angle - 5 deg after the same time.

5. CONCLUSIONS

A nonlinear autopilot based on aggregated macro variables has been derived. The
domain of design parameters has been defined. The control law depends explicitly on the
ship parameters so that it is flexible to change. The performance of the controller was
illustrated through a simulation study. Global stability of closed - loop system was proven
by applying Lyapunov stability theory.
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