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Abstract. This paper deals with the bending and vibration analysis of multi-folding
laminate composite plate using finite element method based on the first order shear
deformation theory (FSDT). The algorithm and Matlab code using eight nodded rect-
angular isoparametric plate element with five degree of freedom per node were built for
numerical simulations. In the numerical results, the effect of folding angle on deflections,
natural frequencies and transient displacement response for different boundary condi-
tions of the plate were investigated.
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1. INTRODUCTION

Folded plate structures can be found in roofs, sandwich plate cores, cooling towers,
and many other structures. They have some specific advantages: lightweight, easy to form
and economical, and have a much higher load carrying capacity than flat plates. Their
superior characteristics and wide application have aroused much interest from researchers
to provide useful information for the design of such structures in engineering.

A host of investigators using a variety of approaches has studied behavior of isotropic
folded plates previously. Goldberg and Leve [1] developed a method based on elasticity
theory. According to this method, there are four components of displacements at each point
along the joints: two components of translation and a rotation, all lying in the plane normal
to the joint, and a translation in the direction of the joint. The stiffness matrix is derived
from equilibrium equations at the joints, while expanding the displacements and loadings
into the Fourier series considering boundary conditions. Bar-Yoseph and Herscovitz [2]
formulated an approximate solution for folded plates based on Vlassov’s theory of thin-
walled beams. By this way, the structure is divided into longitudinal beams connected to
a monolithic structure. Cheung [3] was the first author developing the finite strip method
for analyzing isotropic folded plates. Then, additional works for the finite strip method
have been presented. The difficulties encountered with the intermediate supports in the
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finite strip method [4] were overcome and subsequently Maleki [5] proposed a new method,
known as compound strip method. The compound strip method, which is basically the
finite strip method with the provision for including the effect of an intermediate support
by taking an additional stiffness matrix for the support element. Lavy et al. [6] developed
a finite strip based on a mixed-hybrid formulation. Irie et al. [7] used Ritz method for the
analysis of free vibration of an isotropic cantilever folded plate.

L. X. Peng et al. [8, 9] presented a analysis of folded plates subjected to bending load
by the FSDT and meshless method. In that, a meshfree Galerkin method for the elastic
bending analysis of isotropic [8] and folded laminated plates [9] are presented. Results of
those works were compared with the results from Ansys software.

For laminated folded composite plates, Niyogi et al. [10] reported dynamic analysis
of laminated composite two folded plates using FSDT and nine nodes elements. In their
works, only in axis symmetric cross-ply laminated plates were considered. So that, there
is uncoupling between the bending deformations and shear strains, and also between the
bending and twisting.

Haldar and Sheikh [11] also presented a free vibration analysis of isotropic and
composite folded plate having one - and two - folds by using a sixteen nodes triangular
element. By using the element, it is difficult for modeling a large structures because of
computer cost.

All these works have limited, in that they analyzed only the structural members
made of isotropic materials or modeled as an equivalent orthotropic plate or special cases
of one -, two - folds folded laminate composite plates, or used otherwise method to simulate
the folded plate structures.

In this paper, we used the eight-nodded isoparametric rectangular flat plate element
to build home-made Matlab computer code based on the first-order shear deformation
theory to analyze a composite multi-folding composite plates. The considering plates are
made of angle-ply laminate scheme, the coupling stiffness matrix does not equal to zero.

Contributions of this paper are bending analysis, free and transient vibration anal-
ysis of the composite multi-folding composite plates. The effects of folding angle, loading
condition, boundary conditions, fiber orientation on: deflections, natural frequencies and
transient responses of multi-folding composite plate were investigated. The present re-
sults are compared with published ones (where available) to check the model. The results
indicate that a good agreement is obtained between the two sets of results.

2. THEORETICAL FORMULATION

2.1. Displacement, strain and stress yield

According to the Reissner-Mindlin plate theory, the displacements (u, v, w) are re-
ferred to those of the mid-plane (u0, v0, w0) as:

u(x, y, z, t) = u0(x, y, t) + zθx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zθy(x, y, t)

w(x, y, z, t) = w0(x, y, t)
(1)
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where t is time, θx and θy are the bending slopes in the xz - and yz - plane (rotations
about the y - and x - axes), respectively.

The z - axis is normal to the xy - plane that coincides with the mid-plane of the
laminate positive downward and clockwise with x and y.

The generalized displacement vector at the mid - plane can thus be defined as

{d} = {u0, v0, w0, θx, θy}T .

The strain-displacement relations can be taken as

εxx = ε0
xx + zκx, εyy = ε0

yy + zκy, εzz = 0,

γxy = γ0
xy + zκxy, γyz = γ0

yz, γxz = γ0
xz,

(2)

where {
ε0

}
=

{
ε0
xx, ε0

yy, γ
0
xy
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∂v0
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γ0
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=
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γ0
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0
xz

}T =
{

∂w0

∂y
+ θy,

∂w0

∂x
+ θx

}T

,

(3)

and T represents transpose of an array.
In laminated plate theories, the membrane {N}, bending moment {M} and shear

stress {Q} resultants can be obtained by integration of stresses over the laminate thickness.
The stress resultants-strain relations can be expressed in the form{N}

{M}
{Q}

 =

[Aij ] [Bij ] [0]
[Bij ] [Dij ] [0]
[0] [0] [Fij ]


{
ε0

}
{κ}{
γ0

}
 , (4)

where

([Aij ] , [Bij ] , [Dij ]) =
n∑

k=1

hk∫
hk−1

([
Q

′
ij

]
k

) (
1, z, z2

)
dz, i, j = 1, 2, 6, (5)

[Fij ] =
n∑

k=1

f

hk∫
hk−1

([
C

′
ij

]
k

)
dz, f =

5
6
, i, j = 4, 5, (6)

n: number of layers, hk−1, hk: the position of the top and bottom faces of the kth layer.
[Q

′
ij ]k and [C

′
ij ]k : reduced stiffness matrices of the kth layer (see [12]).
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2.2. Finite element formulations

The governing differential equations of motion can be derived using Hamilton’s
principle

t2∫
t1

δ

1
2

∫
V

ρ{u̇}T {u̇}dV − 1
2

∫
V

{ε}T {σ}dV−

∫
V

{u}T {fb}dV +
∫
S

{u}T {fs}dS + {u}T {fc}

 dt = 0,

(7)

in which
T =

1
2

∫
V

ρ{u̇}T {u̇}dV, U =
1
2

∫
V

{ε}T {σ}dV,

W =
∫
V

{u}T {fb}dV +
∫
S

{u}T {fs}dS + {u}T {fc},

U, T are the total potential energy, kinetic energy,
W is the work done by externally applied forces.
In the present work, eight nodded isoparametric quadrilateral element with five

degrees of freedom per nodes is used. The displacement field of any point on the mid-
plane given by

u0 =
8∑

i=1

Ni(ξ, η).ui, v0 =
8∑

i=1

Ni(ξ, η).vi, w0 =
8∑

i=1

Ni(ξ, η).wi,

θx =
8∑

i=1

Ni(ξ, η).θxi, θy =
8∑

i=1

Ni(ξ, η).θyi,

(8)

where: Ni(ξ, η) are the shape function associated with node i in terms of natural coordi-
nates (ξ, η). The element stiffness matrix given by

[k]e =
∫
Ae

(
[B]T

)
[H] [B]tdAe, (9)

where [H] is the material stiffness matrix given by

[H] =

[Aij ] [Bij ] 0
[Bij ] [Dij ] 0

0 0 [Fij ]

 .

The element mass matrix given by

[m]e =
∫
Ae

ρ [Ni]
T [Ni] dAe, (10)

with ρ is mass density of material.
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Nodal force vector is expressed as

{f}e =
∫
Ae

[Ni]
T qdAe, (11)

where q is the intensity of the applied load. When folded plates are considered, the mem-
brane and bending terms are coupled, as can be clearly seen in Fig. 1. Even more since a
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Fig. 1. Global (x, y, z) and local (x′, y′, z′) axes system for folded plate element

rotations of the normal appear as unknowns for the Reissner-Mindlin model, it is necessary
to introduce a new unknown for the in-plane rotation called drilling degree of freedom. The
rotation θz at a node is not measured and does not contribute to the strain energy stored
in the element [13]. The technique is used here: Before applying the transformation, the
40×40 stiffness and mass matrices are expanded to 48×48 sizes, to insert sixth θz drilling
degrees of freedom at each node of a finite element. The off-diagonal terms corresponding
to the θz terms are zeroes, while a very small positive number, we taken the θz equal to
10−4 times smaller than the smallest leading diagonal, is introduced at the corresponding
leading diagonal term. The load vector is similarly expanded by using zero elements at
corresponding locations. So that, for a folded element, the displacement vector of each
node 

u
v
w
θx

θy

θz


e

=


lx′x ly′x lz′x 0 0 0
lx′y ly′y lz′y 0 0 0
lx′z ly′z lz′z 0 0 0
0 0 0 ly′y −lx′y lz′y
0 0 0 −ly′x lx′x −lz′x
0 0 0 ly′z −lx′z lz′z


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θ
′
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
Or in the brief form

{u} = [T ]
{

u
′
}

(12)
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where [T ] is the transformation matrix,
lij are the direction cosines between the global and local coordinates.
Using the standard finite element procedure [15], the governing differential equation

of motion can be rewritten as

[M ]{ü}+ [K]{u} = F (t) (13)

in which {u}, {ü} are the global vectors of unknown nodal displacement, acceleration,
respectively. [M ], [K], F (t) are the global mass matrix, stiffness matrix, applied load vec-
tors, respectively. For free vibration analysis, the damping effect is neglected, the governing
equations are

[M ]{ü}+ [K]{u} = {0} or
{
[M ]− ω2[K]

}
= {0} (14)

And for forced vibration analysis

[M ]{ü}+ [K]{u} = F (t) (15)

3. NUMERICAL RESULTS

A Matlab code has been developed based on the foregoing theoretical formulation
for calculating deflections, natural frequencies and investigating transient displacement
response of multi-folding composite plate. In transient analysis, the Newmark method is
used with parameters that control the accuracy and stability of α = 0.25 and δ = 0.5 (see
ref. [15]).

3.1. Validation cases

In order to verify the present finite element model, the convergence of the proposed
method and Matlab programming, three numerical examples are employed and compared
with results given by others publishes.

3.1.1. Validation Example 1

Firstly, the folded plate studied by K.M. Liew et al. [8] is recalculated. The authors
in [8] presented an analysis of isotropic folded plates subjected to bending load by the
meshless method that results were compared with results from Ansys software.

Table 1. Comparison of deflections (*10−3m) along y = 1m, α = 1200

x (m) Present Liew [8] Error δ
0.5 -0.0293 -0.0307 4.65%
1 -0.0860 -0.0859 0.10%

1.5 -0.1461 -0. 1469 3.42%
2 -0.2036 -0.1958 3.99%

The cantilever folded plate is built up by two identical square flat plates and clamped
on one side (shown in Fig. 2). Young’s modulus and Poisson’s ratio of the plates are E
= 2GPa and υ = 0.3, respectively. A uniformly distributed load of intensity q = 10Pa is
applied to face A and face B.

The deflections along x = 1m and y = 1m of face A calculated by the proposed
method and meshless method given by Liew et al. [8] are shown in Table 1, Table 2 and
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Fig. 2. A cantilever folded plate

deformed shape of plate plotted in Fig. 3. The agreement between the two sets of results
is good.

Table 2. Comparison of deflections (*10−3m) along x = 1m, α = 1200

y(m) Present Liew [8] Error δ
0 -0.0251 -0.0244 2.56%

0.5 -0.0460 -0.0462 2.73%
1 -0.0860 -0.0859 0.38%

1.5 -0.1276 -0.1251 2.04%
2 -0.1665 -0.1722 3.31%
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3.1.2. Validation Example 2

In this example, we consider a folded laminated plate that is made up of two identical
square laminates is subjected to a uniformly distributed load q = 10 Pa, which is applied
vertically (Fig. 4, α = 900). The lamination scheme is [-450/450/450/-450]. All of the plies
are assumed to have the same thickness and orthotropic material properties: E1 = 2.5×107

Pa, E2 = 106 Pa, G12 = G13 = 5×105 Pa, the Posson’s factor υ12 = 0.25. The folded plate
is clamped at two opposite sides (Fig. 4a).
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Fig. 4. One folded laminated plate

The central deflection of the individual plate A, calculated by proposed method is
shown in Table 3, and compared with the results given by K.M. Liew [9]: the results from
the meshless method and the results from ANSYS (used SHELL99 element, 5581 nodes).
The deformed shape of plate plotted in Fig. 4b. The result is in good agreement with those
obtained from [9].

Table 3. Comparison of central deflections of face A (*10−3m), α = 900

Present Meshless Method [9] Ansys [9]
3.99(611 Nodes) 4.02 (13 × 13 = 169 Nodes) 4.09 (5581 Nodes)

3.1.3. Validation Example 3

In the example, the first five natural frequencies of a cantilever two folded composite
plate studied by Guha Niyogi [10] are recalculated. The authors of [10] used 72 nine nodes
elements for modeling.

The layout of the plate is shown in Fig. 5 with the dimension L = 1.5m, total thick-
ness t = 0.03m. Physical and mechanical properties of material are shown in Table 4.
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Table 4. E-glass Epoxy material properties

E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) G13 (GPa) υ12 υ21 ρ (kg/m3)
60.7 24.8 12.0 12.0 12.0 0.23 0.23 1300

Three case are considered for different folding angle α = 900, 1200, 1500 with three
plies [900/900/900]. These results have been compared with published results given by
Guha Niyogi [10] and presented in Table 5. It is shown that the five natural frequencies

Table 5. Comparison first five natural frequencies (Hz) of two folded com-
posite plates for different folding angle, [900/900/900], thickness t = 3cm,

error (%) =
∣∣∣∣Present− [10]

[10]

∣∣∣∣ 100

Folding angle α Source f1 f2 f3 f4 f5

900 Present 63.3 (0.47%) 69.7 (0.14%) 150.5 (1.44%) 156.7 (0.47%) 204.0 (1.04%)
[10] 63.6 69.8 152.7 158.3 201.9

1200 Present 59.5 (0.34%) 63.1 (0.47%) 150.3 (1.44%) 153.9 (0.71%) 193.5 (1.36%)
[10] 59.3 63.4 152.5 155.0 190.9

1500 Present 42.3 (0%) 60.7 (0.16%) 133.8 (1.75%) 144.9 (0.48%) 149.9 (1.25%)
[10] 42.3 60.8 131.5 145.6 151.8

are in excellent agreement with the percentage difference of peak values less than 1.75%
of each other.

Examples (1, 2, 3) are asserted that the proposed technique and Matlab program-
ming can be used for subsequent analysis.

3.2. Study cases: Multi-folding composite laminate plate

Consider a multi-folding laminate composite plate with the same E-glass Epoxy
material (Table 4), geometry parameters of plate: L1 = 0.2m, W =1m, total thickness
t =1cm, folding angle α. The layout of the plate is shown in Fig.6.
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Fig. 6. Multi-folding laminate composite plate, folding angle α

3.2.1. Study of mesh convergence

Firstly, the free vibration analyses of the catilever multi-folding composite plate
with foling angle α = 1200, mesh size of 5 × 7 (35 elements), 5 × 14 (70 elements), 10 ×
14 (140 elements), 12 × 14 (168 elements) are taken to investigate the mesh convergence.
The lamination scheme is [600/− 600/− 600/600].

Comparing the results for those mesh sizes presented in Table 6, it is observed that
the analysis with 10 × 14 mesh is quite accurate. So that, in the subsequent finite element
models, the plate is divided by 140 eight nodded isoparametric rectangular plate elements
(mesh size of 10 × 14).

Table 6. Convergence study of the cantilever multi-folding composite plate with
folding angle α = 900, 1200, 1500, first three natural frequencies in Hz

α Natural frequencies Mesh size of 5 × 7 Mesh size of 5 × 14 Mesh size of 10 × 14 Mesh size of 12 × 14

900

1 103.8 102.1 101.6 101.2
2 109.2 108.6 107.9 107.6
3 201.1 199.3 196.5 196.2

1200

1 86.9 86.1 84.8 84.4
2 93.2 92.1 91.9 91.6
3 194.2 192.3 190.2 189.8

1500

1 72.3 70.9 69.8 69.6
2 80.2 79.2 76.9 76.6
3 126.2 124.1 122.4 122.1
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3.2.2. Effect of folding angle on deflections

In order to investigate the effect of folding angle α on deflections of the plate: The
boundary condition is taken: two ends fixed at y = 0(m) and y = W(m). The plate is
subjected to uniformly distributed load of intensity q = 103N/m2, towards the negative
direction of the z-axis. The layout of the plate is shown in Fig. 6. The lamination scheme
is [600/− 600/− 600/600].

The deflections along MN-line (centerline of individual bottom plate) for various
folding angle α are compared in Fig.7. The deflections along MN-line (centerline of indi-
vidual bottom plate) for various folding angle α are compared in Fig. 7.
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Fig. 7. The deflections along MN-line for α = 900, 1200, 1500

From the Fig. 7, we can see that for a plate with the boundary condition the de-
flections for the 900 to 1200 folding angles are close to each other. On the other hand, the
induced deflections for the folding angle of 1200 and 1500 (which is at just the same incre-
mental angle of 300 from 1200) are extremely higher than the others. This phenomenon
makes sense to us because the flexural rigidity of the plate should decrease as the folding
angle increases and it behaves nonlinearly.

3.2.3. Effect of folding angle, boundary condittions on natural frequencies and mode shapes

The first five frequencies of the plate with different folding angle α, boundary con-
ditions were computed and listed in Table 7. The corresponding four first mode shapes
are available in Fig. 8. The considered boundary conditions are:

Case 1: One end fixed (y = 0), Case 2: Two ends fixed (y = 0 and y = L).
Case 3: Two opposite edges fixed, Case 4: All edges fixed.



196 Tran Ich Thinh, Bui Van Binh, Tran Minh Tu

 

Mode 1, f1=84.8  Mode 2, f2=91.9 Mode 3, f3=190.2 Mode 4, f4=196.3 

Case 1: One end fixed (y = 0) 
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Case 2: Two ends fixed (y = 0 and y = L) 
 

Mode 1, f1=32.9 Mode 2, f2=41.6 Mode 3, f3=61.3 Mode 4, f4=144.9 

Case 3: Two opposite edges fixed 
 

Mode 1, f1=529.1 Mode 2, f2=595.1 Mode 3, f3=668.3 Mode 4, f4=702.2 
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Fig. 8. First four mode shapes of multi-folding composite plates for differ-
ent boundary conditions, folding angle α = 1200, [600/ − 600/ − 600/600],
thickness t = 1cm

From Table 7, it is observed that frequencies of natural vibration depend on the
folding angle α heavily: it decrease with increased folding angle α. It is found that the
folding angle α is very important to design folded composite plates.

The Fig. 8 was shown the discoverable first four mode shapes of folding angle α
= 1200 for different boundary conditions. The effect of folding angle on mode shapes
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make this study interesting, but any generalized recommendation is very difficult without
undergoing numerical experiments.

Table 7. First five natural frequencies (Hz) of multi-folding composite plates,
[600/− 600]s for various folding angle α, thickness t = 1cm

Boundary conditions Folding angle α f1 f2 f3 f4 f5

One end fixed

α = 900 101.6 107.9 196.5 203.9 213.7
α = 1200 84.8 91.9 190.2 196.3 199.4
α = 1500 69.8 76.9 122.4 148.6 179.2
α = 1800 9.6 18.2 39.3 60.3 72.3

Two ends fixed

α = 900 174.2 174.8 292.0 293.9 459.4
α = 1200 169.5 170.9 289.4 291.2 459.2
α = 1500 152.8 153.7 293.2 284.3 342.5
α = 1800 61.6 67.2 87.8 126.2 169.9

Two opposite edges fixed

α = 900 44.8 53.8 60.9 141.2 142.5
α = 1200 32.9 41.6 61.3 144.9 162.2
α = 1500 27.0 38.2 66.2 173.9 175.4
α = 1800 24.8 37.2 68.3 83.9 91.2

All edges fixed

α = 900 590.2 652.9 704.2 721.3 772.4
α = 1200 529.1 595.1 668.3 702.2 711.3
α = 1500 340.2 424.7 586.3 640.2 668.2
α = 1800 74.2 111.2 172.5 183.3 219.9

3.2.4. Effect of folding angle, boundary condittions and loading condition schemes on
transient displacement responses

- Effect of folding angle
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Fig. 9. Effect of folding angle α on dynamic displacement response of point A for
various folding angle α = 900, 1200, 1500, time step of ∆t = 0.5ms , duration time
of T = 25ms
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In the transient analysis, firstly, the same multi-folding composite plates subjected
to a uniformly distributed load of intensity q = 103 N/m2 (applied on face (I) and face
(II), see Fig. 6) is considered to study the effect of folding angle α. The loading condition
scheme is shown in Fig. 10b with t1 = 1ms, t2 = 2ms, t3 = 25ms (loading condition 1).
The displacement responses measured at point A (the center of an individual bottom face)
are shown in Fig. 9a and Fig. 9b for one fixed plate and two ends fixed plate, respectively.
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Fig. 10. Effect of boundary conditions on dynamic displacement response of point
A for folding angle α = 1200 (time step of ∆t = 0.5ms, duration time of T = 25ms)
and loading condition scheme 1

From the Fig. 9, we can see that the displacements for the 900 and 1200 folding
angle are close to each other, but for folding angle of 1500, the induced displacement is
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much higher than the others. The amplitude and wavelength of the deflections should
much decrease as the folding angle increases for one end fixed case, but only amplitude
decrease as the folding angle increases for two ends fixed case.

- Effect of boundary condittions
The secondly, the transient displacement responses of point A for different boundary

condittion are determined for folding angle of α = 1200. It is shown in Fig. 10a.
For the same loading condition, Fig. 10a can be observed that the case of two

opposite edges fixed the deflection is extremely higher than the others. So the plate with
opposite edges fixed is much weak than the other cases.

- Effect of loading condition schemes
To investigate the effect of loading condition schemes on transient displacement

response of point A, the plate is subjected to loading condition scheme of triangular pulse
scheme (loading condition scheme 1) and rectangular pulse scheme (loading condition
scheme 2). It is show in Fig. 10.

In the loading condition scheme 2: t1 = 1ms, t2 = 25ms, the same intensity q0 =
103N/m2.
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Fig. 11. Effect of loading conditions on dynamic displacement response of point
A for folding angle α = 1200, time step of ∆t = 0.5 ms, duration time of
T = 25ms

From Fig.11, it is observed that the vibration amplitude of displacement wave with
rectangular pulse loading scheme is same than triangular pulse loading scheme but negative
in sign.
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- Effect of fiber orientation
To investigate the effect of fiber orientation scheme on transient displacement re-

sponse, the plate subjected to loading condition scheme of triangular pulse scheme are
considered. Two lamination schemes of [600/ − 600/ − 600/600] and [00/900/900/00] are
studied.
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(a) Folding angle α = 900
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Fig. 12. Effect of fiber orientation on dynamic displacement response measure-
ment at point A for folding angle α = 900 and α = 1500, time step of ∆t = 0.5ms,
duration time of T = 25ms

The displacement responses measurement at point A plotted in Fig. 12. It indicates
that the behavior of cross-ply laminate is similar to the angle-ply laminate in this case.

4. CONCLUSION

Based on the first order shear deformation theory, the paper has investigated the
behavior of bending, free vibration and transient displacement response of the multi-folding
angle-ply laminate composite plate by using an eight nodded isoparametric plate elements.

Good agreement is found between the results of this technique and other published
results available in the literature.

Some sets of new results are presented to see the effects of folding angle, loading
conditions, boundary conditions, and fiber orientation on: bending deflections, natural
frequencies, dynamic responses and mode shapes of multi-folding angle-ply laminate com-
posite plate.

The results of this study will serve as a benchmark for future research for designing
folded composite structures and sandwich structures made of composite materials, as it is
extremely quick and reliable in producing design results.
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APPENDIX

The strain field so that can be expressed as:

{ε} =


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
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


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θy

 = [∂]
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

= [∂] [Ni] {qe} = [B]8×40 {qe}
The element stiffness matrix given by equation:

[k]e(40×40) =
∫
Ae

(
[B]T

)
40×8

[H]8×8 [B]8×40 tdAe

and
[B] = [[B1] [B2] [B3] [B4] [B5] [B6] [B7] [B8]]

where

[Bi] =
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