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CALCULATION OF NONLINEAR VIBRATIONS OF
PIECEWISE-LINEAR SYSTEMS USING THE

SHOOTING METHOD
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Abstract. In this paper, an explicit formulation of the shooting scheme for computation
of multiple periodic attractors of a harmonically excited oscillator which is asymmetric
with both stiffness and viscous damping piecewise linearities is derived. The numerical
simulation by the shooting method is compared with that by the incremental harmonic
balance method (IHB method), which shows that the shooting method is in many re-
spects distinctively advantageous over the incremental harmonic balance method.
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1. INTRODUCTION

One of the most important objectives of the nonlinear dynamics is to determine the
periods of the periodic orbits of the strongly nonlinear dynamic systems, since it is related
to many important problems such as bifurcation, stability, chaos and so on. There are
many ways to determine periodic orbits and periods of a nonlinear dynamic system. Those
methods generally can be classified into categories, namely, frequency domain methods
and time domain methods. In the frequency-domain formulation, the method of harmonic
balance and generalized versions of this method are commonly used. In the time-domain
formulation, finite-difference schemes, shooting techniques, and Poincare map methods are
also widely used [1-5].

In recent years, much attention has been paid to the system with piecewise-linearity.
The considered oscillator is a typical nonlinear system that is widely used in engineering
systems. The determination of the periodic vibrations of piecewise-linear systems using
the incremental harmonic balance method has been studied by a number of papers [6-10].
In the present paper, the vibrations of a system subjected to harmonic excitation, which
includes both stiffness and viscous damping piecewise linearities, is investigated using the
shooting method.
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2. AN OVERVIEW OF THE SHOOTING METHOD

We consider now nonautonomous systems defined by

ẋ = f(x, t,µ), (1)

where x ∈ Rn, f ∈ Rn, µ ∈ Rm and f(x, t,µ) is a periodic function with period Te

f(x, t + Te,µ) = f(x, t,µ). (2)

A solution x = φ(t) of a continuous-time system is periodic with the period T if φ(t+T ) =
φ(t) and φ(t + τ) 6= φ(t) for 0 < τ < T .

In this section, we describe the shooting method for finding periodic solutions T =
nTe of the nonautonomous systems (1). Suppose that a periodic solution of the system (1)
exists and its period is T . This solution must be satisfied the following condition

x(0) = x(T ). (3)

According to the shooting method, the initial - value problem

ẋ = f(x, t,µ), x(0) = x0 = η, (4)

is converted into a two - point boundary - value problem

ẋ = f(x, t,µ), x(T,η) = x(0) = η. (5)

Thus, one seeks an initial condition x(0) = η and a solution x(t, η) with a minimal
period T such that

x(T,η)− η = 0. (6)

 

t
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0
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Fig. 1. Depiction of the shooting method for a two dimensional system
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In Fig. 1, we graphically illustrate the shooting method when Eq. (1) is two - dimen-
sional. The trajectory running from η at t = 0 to the same location at t = T represents the
desired periodic solution. The other trajectory represents the solution obtained by using
the initial guess η(0) for η. Because this initial guess is off the mark, it needs correction.
The correction is accomplished through a Newton - Raphson scheme as described below.

We seek δη = η − η(0), such that Eq. (6) is satisfied within a specified tolerance.
That is

x(T,η(0) + δη)− (η(0) + δη) ≈ 0. (7)

Expanding x(T,η(0) + δη) in a Taylor series and keeping only linear terms in δη,
we obtain

x(T,η(0) + δη) ≈ x(T,η(0)) +
∂x

∂η
(T,η(0))δη. (8)

Substitution of Eq. (8) into Eq. (7) yields

x(T,η(0)) +
∂x

∂η
(T, dη(0))δη = η(0) + δη. (9)

From Eq. (9) it follows[
∂x

∂η
(T,η(0))− I

]
δη = η(0) − x(T,η(0)), (10)

where I denotes the n×n identity matrix, ∂x/∂η is a n×n matrix, and x(T,η(0)) is a
n×1 vector. Vector x(T,η(0)) is determined by solving Eq. (4) with the initial condition
x(0) = η(0).

Differentiating both sides of Eq. (1) with respect to η, we obtain

d

dt

(
∂x

∂η

)
=

∂

∂η

(
dx

dt

)
=

∂f(x, t,µ)
∂η

=
∂f(x, t,µ)

∂x

∂x

∂η
. (11)

Using the following definition of the Jacobian matrix

∂f

∂x
=

∂f1/∂x1 ... ∂f1/∂xn

... ... ...
∂fn/∂x1 ... ∂fn/∂xn

 = Dxf(x, t,µ). (12)

Eq. (11) can be rewritten in following form

d

dt

(
∂x

∂η

)
= Dxf(x, t,µ)

∂x

∂η
. (13)

Also, the differentiation of the initial condition x(0) = η with respect to η leads to

∂x(0)
∂η

= I. (14)

The components of the n×n matrix ∂x/∂η evaluated at (η(0), T ) need to be deter-
mined. After x is determined, we can solve the linear initial-value problem (13) and (14)
from zero to T and evaluate ∂x/∂η at (η(0), T ). Instead of solving Eq. (4) subjected to
x(0) = η(0), saving the solution x(t) for 0 < τ < T and then solving Eq. (13) and Eq.
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(14), we can solve both problems simultaneously, thereby obtaining x(T,η(0)) and ∂x/∂η

at (η(0), T ) simultaneously.
Once the matrix ∂x/∂η evaluated at (η(0), T ) is known, we have a system of n

algebraic equation, namely, Eq. (10), to determine n unknowns δη. Then, the initial guess
η(0) is updated, and the procedure is repeated until the specified convergence criterion is
satisfied.

3. AN OVERVIEW OF STABILITY OF THE COMPUTED
PERIODIC SOLUTION

We let a periodic solution of Eq. (1) at µ = µ∗ be denoted by x∗(t) having the
minimal period T . Then, a disturbance y(t) is superimposed on x∗(t), resulting in

x(t) = x∗(t) + y(t). (15)

Substituting Eq. (15) into Eq. (1), assuming that f is at least twice continuously
differentiable, and expanding the obtained result in a Taylor series about x∗(t), we obtain

ẋ∗(t) + ẏ(t) = f(x∗ + y, t,µ∗) +
∂f

∂x

∣∣∣∣
x∗

y + . . . (16)

Retaining only linear terms in the disturbance, from Eq. (16) it follows

ẏ = Dxf(x∗, t,µ∗)y = P (t)y, (17)

where

Dxf(x∗, t,µ∗) =
∂f(x, t,µ)

∂x

∣∣∣∣
x∗

= P (t). (18)

Note that matrix P (t) is time - periodic with period T .
Thus, we shall consider a system of homogeneous differential equations

ẋ = P (t)x, (19)

where P (t) is a continuous T - periodic n×n matrix. The n - dimensional linear system (19)
has n linearly independent solutions yi, where i = 1, . . . , n. These solutions are usually
called a fundamental set of solutions of the system (17). According to Floquet theory [11 -
16], the characteristic equation of Eq. (19) is independent of the chosen fundamental set of
solutions. Therefore, the characteristic equation can be formulated by the following way.
Firstly, we specify a set of n initial conditions xi(0) for i = 1, ..., n, their elements

x(i)
s (0) =

{
1 when s = i

0 otherwhile
(20)

and [x1(0),x2(0), ...,xn(0)] = I, where I denotes the n×n identity matrix. By implement-
ing numerical integration of Eq. (19) within interval [0, T ] for n given initial conditions
respectively, we obtain n vectors xi(T ), i = 1, ..., n. The matrix Φ(t) defined by

Φ(T ) = [x1(T ),x2(T ), ...,xn(T )] (21)
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is called the monodromy matrix [5 - 6] of Eq. (19). The characteristic equation of Eq. (19)
can then be written in the form

|Φ(T )− ρI| =

∣∣∣∣∣∣∣∣∣
x

(1)
1 (T )− ρ x

(1)
2 (T ) .... x

(1)
n (T )

x
(2)
1 (T ) x

(2)
2 (T )− ρ .... x

(2)
n (T )

.... .... .... ....

x
(n)
1 (T ) x

(n)
2 (T ) .... x

(n)
n (T )− ρ

∣∣∣∣∣∣∣∣∣ = 0 (22)

Expansion of Eq. (22) yields a n - order algebraic equation

ρn + a1ρ
n−1 + a2ρ

n−2 + .... + an−1ρ + an = 0, (23)

where unknowns ρi(i = 1, ..., n), called Floquet multipliers, can be determined from Eq.
(23). Floquet exponents are given by

λk =
1
T

ln ρk, (k = 1, ..., n). (24)

When the Floquet multipliers or Floquet exponents are known, the stability con-
ditions of periodic solutions of the system of nonlinear differential equations (1) can be
easily determined using the Floquet theorem [11 - 14].

4. PERIODIC NONLINEAR VIBRATIONS OF
PIECEWISE-LINEAR SYSTEM

The nonlinear oscillator considered here is a single - degree - of - freedom vibration
system with both stiffness and viscous damping piecewise linearities as shown in Fig. 2,
which serves as a model for a wide range of piecewise-linear vibration systems in engi-
neering practice. Complex dynamic properties such as the static bifurcation and periodic -
doubling bifurcation to chaos of the system have been studied in Ref. [9] using the theory
of singularity, Runge-Kutta numerical integration method and Poincare map. Using the
IHB method, one has been calculated the period-2 solution, the period - 3 solution, the
period - 4 solution and the period - 8 solution of this system [6, 7].

m
f0sinW t

x

c0 c1

k0
k1

d0 d

Fig. 2. Vibration model of a piecewise - linear system

Suppose that without the mass m, the two free springs would just touch each other.
For the damper and the linear spring which are at the left side of the mass and connected
to it, and those at the right side and not connected to it, their respective damping or
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stiffness are denoted by c0, k0, c1 and k1. Assume that when the oscillator is at the state
of static equilibrium, d0 and d, respectively, denote the compression of the spring at both
sides and thus k0 d0 = k1d. Let the displacement x denote the co-ordinate of the right
edge of the mass relative to the fixed point O, which itself is the position of the right edge
at static equilibrium.

The kinetic energy, potential energy and dissipative function of the considered sys-
tem can be expressed in the following form

T =
1
2
mẋ2, (25)

Π =

{
(k0 + k1)x2/2, x > −d

k0(x− d0)2/2, x ≤ −d
(26)

Φ =

{
(c0 + c1)ẋ2/2, x > −d

c0ẋ
2/2, x ≤ −d

(27)

Substitution of Eqs. (25) - (27) into the Lagrange equation of the second type

d

dt

(
∂T

∂ẋ

)
− ∂T

∂x
= −∂Π

∂x
− ∂Φ

∂ẋ
+ Q∗, (28)

yields the differential equation of motion of the system

mẍ + h(ẋ) + g(x) = f0 sinΩt (29)

where

h(ẋ) =

{
(c0 + c1)ẋ, x > −d

c0ẋ, x ≤ −d
; g(x) =

{
(k0 + k1)x, x > −d

k0(x− d0), x ≤ −d

Functions h(ẋ) and g(x) can be rewritten in the following form

h(ẋ) = c0 [ẋ + H(ẋ)] , g(x) = k0x + G(x), (30)

where

H(ẋ) =

{
c1ẋ/c0, x > −d

0, x ≤ −d
; G(x) =

{
k1x, x > −d

−k0d0, x ≤ −d

From this it follows the differential equation of the piecewise - linear system

mẍ + c0ẋ + k0x + c0H(ẋ) + G(x) = f0 sinΩt. (31)

Eq. (31) can then be expressed in the state space as{
ẋ1 = x2

ẋ2 = (−c0x2 − k0x1 − c0H(x2)−G(x1) + f0 sinΩt)/m
(32)

where we use state variable x1 = x, x2 = ẋ.
As already tested and evaluated in many relevant papers, the shooting method for

computing periodic solutions of nonlinear dynamical systems is distinctively advantageous
over classical approaches. As to system (32), the control parameter is taken as k = k0.10−3,
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where k0 is the stiffness of the linear spring at the left side of the mass, and other parameter
values are fixed as

f0 = 7, 8.103(N),m = 0, 4.103(kg), k0 = k.103(N/m), k1 = 0, 9.106(N/m),

c0 = 0, 05.103(Ns/m), c1 = 0, 5.103(Ns/m), d = 5.10−3(m),Ω = 34, 56(rad/s).

It is easily found that when k is very large, which means that the spring at the left side
of the mass is quite rigid, the peat amplitude of the steady periodic state of the oscillator
will not exceed d, thus the system equals to a linear system with period - 1, corresponding
to the period Te of the external harmonic excitation. In the following study, this trivial
case will be ignored and k is designated to be relatively small, varying in the range from
3 to 20. Some calculating results are shown in Figs. 3 - 8.

Fig. 3. Phase plane diagrams of multiple periodic response at k = 20 by the
shooting method: (1) stable period-2 motion, (2) stable period - 2 motion, (3)
unstable period-2 motion

If we choose k = 20, we find out three double - period - 2 solutions, period T =
2Te = 4π/Ω, corresponding to three different initial conditions

x1(0) = −0, 227476;x2(0) = 0, 637536,
x1(0) = −0, 054747;x2(0) = −1, 225992,
x1(0) = −0, 054747;x2(0) = −1, 225992.
If we choose k = 6.0, we find out four period solutions, in there it is a period - 1

solution with T = Te = 2π/Ω, two period - 2 solutions with T = 2Te = 4π/Ω, and a period
- 3 solution with T = 3Te = 6π/Ω. Using the shooting method we find the following initial
conditions of periodic solutions

x1(0) = −0, 023033;x2(0) = −1, 082459,
x1(0) = −0, 144631;x2(0) = 0, 106961,
x1(0) = 0, 012373;x2(0) = −0, 433013,
x1(0) = −0, 513077;x2(0) = −1, 247334.
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Fig. 4. Phase plane diagrams of multiple periodic response at k = 6 by the shoot-
ing method: (1) unstable period-1 motion, (2) stable period - 2 motion, (3) unstable
period - 2 motion, (4) stable period - 3 motion
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Fig. 5. Phase plane diagrams of multiple periodic response at k = 3.2 by the
shooting method: (1) stable period - 4 motion, (2) unstable period - 4 motion, (3)
unstable period - 4 motion, (4) stable period - 3 motion
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Fig. 6. The time history and frequency spectrum of the periodic - 2 solution at
k = 20, corresponding to initial condition x1(0) = −0, 054747; x2(0) = −1, 225992
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Fig. 7. The time history and frequency spectrum of the periodic - 4 solution at
k = 12, corresponding to initial condition x1(0) = −0, 057875; x2(0) = −1, 228845
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Fig. 8. The time history and frequency spectrum of the periodic - 8 solution at
k = 11.63, corresponding to initial condition x1(0) = 0, 055798; x2(0) =
−1, 236303

If we choose k = 3.2, we find out four period solutions, in there it is three period - 4
solution with T = 4Te = 8π/Ω, a period - 3 solution with T = 3Te = 6π/Ω, corresponding
to four following different initial conditions
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x1(0) = −0, 205468;x2(0) = 0, 094564,
x1(0) = −0, 103730;x2(0) = 4, 435224,
x1(0) = −0, 057038;x2(0) = −0, 947339,
x1(0) = −0, 407238;x2(0) = −1, 107569.
Figs. 3 - 5 show the periodic orbits calculated by the shooting method, corresponding

to the above initial conditions.
It is observed from Figs. 3 - 5 that the considered system exhibits the multiple

periodic attractors. In the meanwhile, the distinctive phenomenon of coexistence of multi-
ple periodic attractors is observed and analyzed by the interpolated cell mapping method
[17, 18].

On the other hand, Figs. 6 - 8 show the time histories and frequency spectrums of
the displacement x, corresponding to the different initial conditions of periodic solutions.

From the above figures, it can be also seen that the considered system performs
stable multiple periodic vibrations.

5. CONCLUSIONS

In this paper, the shooting method is successfully extended to a class of nonlinear
dynamical systems with coexistence of stiffness and viscous damping piecewise linearity
for determining periodic solutions. The stability of the periodic solutions is analyzed by
using Floquet stability theory. The following concluding remarks have been reached:

- In the theory of linear oscillations we have considered harmonic oscillations only,

that is, the oscillation period T =
2π

Ω
is the same as that of the external force f0 sinΩt.

However, the oscillations with period of nT , where n is an integer, can occur in nonlinear
systems subject to a harmonic excitation. These oscillations are called sub-periodic oscil-

lations of
1
n

order and the corresponding resonance is called the resonance of n kind. This
phenomenon appears only in nonlinear systems. Using the shooting method we can find
a number of periodic oscillations with different periods for the same state of system. This
phenomenon do not appear in weakly nonlinear systems.

- The calculation of the periodic solutions of Eq. (32) was implemented by a self
- written computer program in MATLAB environment. To verify the correctness of the
procedure using the shooting method, the procedure using the incremental harmonic bal-
ance method is also applied to solve the same problem. The computation time with the
shooting procedure is shorter than that with the incremental harmonic balance procedure.
By using the shooting method we can find more multiple periodic attractors than by the
using the incremental harmonic balance method.
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