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SOLVING NONLINEAR STABILITY PROBLEM OF
IMPERFECT FUNCTIONALLY GRADED CIRCULAR
CYLINDRICAL SHELLS UNDER AXIAL
COMPRESSION BY GALERKIN’S METHOD
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Abstract. This paper presents an analytical approach to analyze the nonlinear stability
of thin closed circular cylindrical shells under axial compression with material proper-
ties varying smoothly along the thickness in the power and exponential distribution laws.
Equilibrium and compatibility equations are obtained by using Donnel shell theory taking
into account the geometrical nonlinearity in von Karman and initial geometrical imper-
fection. Equations to find the critical load and the load-deflection curve are established
by Galerkin’s method. Effects of buckling modes, of imperfection, of dimensional param-
eters and of volume fraction indexes to buckling loads and postbuckling load-deflection
curves of cylindrical shells are investigated. In case of perfect cylindrical shell, the present
results coincide with the ones of the paper [13] which were solved by Ritz energy method.
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1. INTRODUCTION

The structures made of functionally graded materials (FGMs) including cylindrical
shell structure play an important role in modern industries [1]. Therefore, the research on
strength and stability of FGM cylindrical shells are interested very much by scientists. In
2002, Shen [2] solved the postbuckling problem of axially - loaded FGM cylindrical shells in
the thermal environments by perturbation technique. By the same method, Shen and Noda
[3] analyzed the postbuckling of FGM cylindrical shells under combined axial and radial
mechanical loads in the thermal environments. Shahsiah and Eslami [4] based on improved
Donnell equations considered FG cylindrical shell themal instability. Wu et al. [5] studied
the thermoelastic stability of FG cylindrical shell with the geometrical linearity. Geomet-
rical nonlinear analysis of FG shells was considered by Zhao and Liew [6]. Investigation on
buckling of imperfect FG cylindrical shells subjected to axial compression also was pre-
sented by Huang and Han [7], but with the linear buckling shape (sin(mnz/L). sin(ny/R)).
Using the 2D higher - order deformation theory, Matsugana [8] solved the problem on free
vibration and stability of FG circular cylindrical shells. Shen et al. [9] given the results of
postbuckling problem of internal pressure loaded FGM cylindrical shell surrounded by an
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elastic medium according to the third order shear deformation theory. Research on non-
linear postbuckling of eccentrically stiffened FGM plates and shallow shells was reported
by Dao Huy Bich et al. [10]. Stability analysis of imperfect FGM cylindrical panels under
the mechanical and thermal load, taking into account the geometrical nonlinearity, there
were the results of Duc N. D., Tung H. V. [11] and Dao Van Dung, Le Kha Hoa [12].

In recent years (2009 - 2010) Huang and Han [13, 14, 15], by Ritz’s method, studied
nonlinear elastic buckling and postbuckling of perfect FGM cylindrical shells subjected to
axial compressive load, torsion load or radial load. They proposed analytical expression of
deflection including the linear buckling shape (sin(mmax/L).sin(ny/R)) and the nonlinear
buckling shape (sin?(mmx/L)). This is an interesting different point from the previous
papers in literature.

Following this idea, the present paper has developed the results of the paper [13]
considering the buckling and postbuckling of axially compressed initial imperfect FGM
cylindrical shells with geometrical nonlinearity. In addition, we assume that material prop-
erties such as F and v change in two distribution laws: Exponential function and Power
function of z. Applying Galerkin’s method have been received the equations for finding
the critical buckling load and describing postbuckling load - deflection curve. The effects
of geometric parameters, buckling modes, the ratio of volume on buckling load and post-
buckling are considered. In case of the perfect cylindrical shell, the gained results return
to the ones of [13].

2. FGM CYLINDRICAL SHELLS AND FUNDAMENTAL EQUATIONS

2.1. FGM Cylindrical shells

Consider a FGM cylindrical thin circular shell with middle surface radius R, thick-
ness h and length L (Fig. 1) under axial compression. Assume that two butt - ends of

X

Fig. 1. FGM cylindrical shells

cylindrical shell are only deformed in their planes and they still are circular [16]. The
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FGM cylindrical shell is made from a mixture of ceramic and metal. We choose the cylin-
drical coordinate (x, 6, z); y = RO so that the origin O is located at the left end and on the
middle surface of shell. The coordinate axes x, y and z are respectively in the longitudinal,
circumferential and inward radial directions (—h/2 < z < h/2). The Young’s modulus and
Poisson’s ratio of material are assumed to be varied smoothly along the thickness of shell
with the power distribution law as [13]

22+ h\"
EzE(z)zEm+<Ec—Em>( > ) = Byt Bonr®,
22+ h\™
V—V(Z’)_Vm-i-(Vc—l/m)( Z;}; ) = Uy + Vet (1)
2 h
Ecm:Ec_Enw T:%7 Vem = Ve — Vm, kZO, k120,

or with the exponential distribution law as [17, 18]

E=FE(z)= Ece_; <1n 572) <1_2Z>, v=uv(z)= Vce_; <ln ll/Z) <1_2;> (2)

The quantities E,,, E. and v,,v. are Young’s moduli and Poisson’s ratios corre-
sponding to metal (m) and ceramic (c).

2.2. Fundamental relations and governing equations

According to [7, 19], the nonlinear relationship between the strain components on
the middle surface of imperfect cylindrical shell with the a deflection in von Karman’s
sense is as follows

1
2
) =ug+ SW, +wgw,

2
0 _ w 1o * (3)
€y =Vy R + 5%y +wyw,
0o _ * *
Yoy = Uy T Vo + WaWy + WaW, + Wyw

where u = u(z,y),v = v(z,y),w = (z,y) are the displacements along z, y and z axes
respectively. The quantity w* = w*(z,y) is an initial imperfection of shell and assumed to
be much smaller than thickness h of shell.

The strain components across the shell thickness at a distance z from the mid -
plane are of the form

Ep = z-:g + zky, gy = 52 + zky
Yoy = PYUEC)y + Qkay (4>
ky = —W xx, ky = —W yy, kxy = ~Way

The stress - strain relationship of cylindrical shell is defined by Hookian law, as

E E

1-.2 [(5x>5y) + V(*«‘yﬁr)] y Ogy = m%y-

— (5)

(UafaUy) =
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The force and moment resultants are calculated by
h/2
{(Nz, Ny, Nuy) , (Mg, My, M)} = / {02,0y,02y} (1, 2) dz. (6)
—h/2

Substituting Eq. (4) into Eq. (5) and then into Eq. (6), we obtain

[N, | [Alg Ao 0 Ay Ay 0] [ 2]

Ny Ay Ag 0 Ay A O 659

Ney| |0 0 A 0 0 Ayl ]|A, -
M, Ain Ay 0 A A 0 ky

M, A A 0 Az A 0 ky
_Mxy_ i 0 0 As1 O 0 A32_ _kay_

where the stiffness coefficients A;; (i =1,2,3, j =0,1,2) are calculated by the formu-
lae

e (2) " (2)v(2)
E(z , E(2)v(z)
L J L J
A1y h//2 1—12(2)" der Az J, 1—12(2)" *
- z Jdy = Z(Aq: — Ao
A3J / 2[1 +V<Z)]z dz 2( 1j 2])'
—h/2

If the material properties vary in the power law then the coefficients A;; are
determined by the analytical expressions in the Appendix. If the material properties vary
in the exponential law then the coefficients A;; are determined directly from the formulae

(8).

The equilibrium equations of imperfect cylindrical shell are derived from [7]

Naz + Nayy =0, Npyo+ Nyy =0 (9)

N, .
wa‘r —+ 2M$y7$y —+ My7yy + fy + Nx ('LU,;U.t + w@x) +

+2Ngy (way + wj;y) + Ny (w,yy + wj"yy) = 0.

Assuming the quadratic terms of w* to be omitted, the geometrical compatibility
equation deduced from (3) and (4), is

(10)

0 0 _ 1 2
8yc,yy + Ey,xx — ny,:cy _Ewﬂm + w,xy - w,fl"w,yy—i_
* *
+ Qw,myw,xy — Wap Wy,

(11)

- w,yyw:kmc‘
Introducing Airy’s stress function ¢(z,y) so that
Ne=@yy, Ny =@z, Noy=—pay. (12)

It is easy seen that the equations (9) are automatically satisfied.
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The strain components reversely in terms of stress function and deflection are found
from Egs. (7) and (12)

52 == JO (A10S0,yy - A2O§07J1x + le,xx + J2w,yy) y

ey = Jo (A100 2z — A200 gy + J1w yy + JoW 2z) , (13)
1

’Y[x)y = A30 (2A31w,l‘y - (P,:cy) )

where
Jo=1/ (A3 — A3)) ., J1=A10An — AxAs, Jo = A1gAs — ApArr.  (14)
Introducing Eq. (13) into Eq. (11) we get

V4g0 + Clv4w - C2 w,2zy — WaaWyy — Ew’$$ + 2w’$yw:‘;y - w’zzw:kyy B w7yyw7*5035 =0
(15)
where
Ci1 = Ja/Aw, Cy=1/(A10). (16)

To transform Eq. (10), firstly, substituting Eq. (13) into Eq. (7) for finding M;; and
then substituting again M;; into Eq. (10), we receive the second governing equation

1 * * *
C3v4(10+E@,$$+C4v4w+90,yy(w,$1ﬁ+w,xx)_2()07$y(w,$y+w,ajy)+()0,w$(wyyy—i_w,yy) =0 (17)

where
Cs = JoJa, Ci=Jo(A1Ji + AJa) — Ara. (18)

Two equations (15) and (17) are the governing equations used to investigate the
nonlinear stability of imperfect FGM cylindrical shells.

Remarks

If R — oo, the equation (15) and (17) become the basic equations to analyze the
stability of imperfect FGM plates.

In case w* = 0, from (15) and (17) we obtain the governing equations for perfect
cylindrical shells in [13].

3. SOLUTION OF THE PROBLEM

Based on [13, 16], the deflection w and initial imperfection w* are chosen in the
forms

w = f(sinazxsin By + Fysin® az + Fy), (19)

w* = f,(sin azxsin By + Fysin® ax + Fp),

in which & = mn/L, f = n/R and m,n are the number of half waves along the z and the

number of waves along the y directions respectively. The first term of w (or w* ) in (19)

represents a linear buckling shape, and the second term - a nonlinear buckling shape, and

the third term - a radial displacement of points belonging to two butt - ends x = 0 and
z = L.
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As can be seen that the simply supported boundary condition w = 0, §%w/0x? = 0
at x = 0, x = L is fulfilled on the average sense as

2rR L P 2rR L 5 82
w w
0 O 0 O

Substituting of Eq. (19) into Eq. (15) yields
V4o = By cos 20z + Bog cos 20y + Bos sin oz sin By + Boy sin 3o sin By (20)
in which
By = (8C1at — %CQQQ)fFQ + éC’gOzQﬁQ [f2+2ff].

Bun = 3Co®B [ + 2/ £,

Boz = %02042 —C1(a® + B?)?| f— Coa® By [f2 + 21 f.]

Boy = Cod®B°F [f* +2f f.] .
The general solution of this equation is given by
@ = By cos2ax + Bs cos 20y + Bssin ax sin Sy+
1 1 21
+ By sin 3ax sin By — §O'oxhy2 - iaoyth, 1)
where o, and og, are the negative average longitudinal stress and circumferential stress
respectively, and

Bo1 By Bos Boy
YT 16 TP 1B TP (a2 A2 T (902 4 B2
or
By = a1 By f + as(f* + 2f fo), By = a3(f* +2f f.),
Bs = asFy(f* +2f f.) + as f, By = agFa(f* +2f f.),
in which
1 02 0252 CQOZZ
ap = §(401 - RO[Q)’ az = 32@27 as = 3262 ’
22
= — 0204252 ar — 02042 _ C e — CQQ2/82 ( )
4= (a2 + 32)2’ 5= R(a2 + B2)2 L 6 — (902 + g2)2°

In order to establish a load - deflection curve, first of all introducing w, w, and ¢
into the left side of Eq. (17) denoted by ¢; then applying Galerkin’s method

2TR L 2rR L 2rR L
/ /gf)ld:ndy =0, / /gblsincw: sin Sxdzdy = 0, / /gbl sin? azdzdy =0  (23)
0 0 0 0 0 0

lead to

ooy = 0. (24)
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{04 0200 = 2| Rt (420 + sS4 Cufla? + 22} = (7 4 L)%,
(25)

. {2 [a1Fof+(as+asz) f(f+2f.)] + Fo(ag — as) Fof (f +2fs) —asf] — h(%-i— UO?Qy)} =0

%onh = {(16a403 - %a2)a2f(f +2f.) + Baf {a1(16a4C’3 — %oﬁ) - 805404} } + (26)

+ (f + f)e?B% {[(ag — as) Fo f(f + 2f.) — a5 f] — 200.hF2/3%} .

In addition to three equations (24, 25, 26) the cylindrical shell must also satisfy the
circumferential closed condition [13, 16] as

/ v ydrdy = 0
0 0
Using Egs. (3) and (13), this integral becomes
2tR L
A A w 1 4
Jo(A109 22 — A200,yy + JoW 20 + J1W 4y) + B Ew’y 7yw dxdy = 0.
After some calculations we get
1 [2fFo+fF (5%
= - — 2ff )+ A zh| - 27
ooy A10h|: 5JoR 8J0(f +2f ") 4+ Asoo (27)

Because of condition (24), Egs. (25), (26) and (27) lead to

{@pen g mmreany + an+ e+ 92 - 7+ £002

(28)
{ larFof+ (a2 + a3) f(f + 2f)|+F2 [(ag — as) Fo f(f +2f) — asf]— fg);} =0.
{160y~ Zotaaf(7 + 20 + Bof |arl160'Cy - o) - sl 4 (29)
+(f + 0028 {[(a5 — an) Faf(f +2f.) — as f] — 200:hFs/ 5%} = 0.
2fFo+ fFy ﬁ2 _

Two equations (28) and (29) are the governing equations used to find the critical
buckling load and analyse the postbuckling load - deflection curves for imperfect FGM
cylindrical shells under axial compression. The equation (30) is used to determine the
coefficient Fy. The equations (28) and (29) will have a more convenient form if the following
nondimensional parameters are introduced

f [

glzﬁv 52277

/F

50: 5*:*:>F2:* (31)
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Then Eq. (28) and Eq. (29) are rewritten in the form
* * * * * 52 * h’2
70s =3 {2 076 + (a] + a5)&1(& +26)] + [(aﬁ —a)&(&+26) —aile| ¢ 43

&1
2\ 2 2
(24 855) €z -t [ttt +26) +at6) + (s

b
043(51 + &)

*R2 312 'R
2\ 2 12
+ i (o285 22}
oo = 8 [ o +26) —ate] o h S
00 ™ Tggy B TISESE T AT TS B2 T 06 (6 + &)

33
. {(16@1*0;?:—4@3;) aléi(61+2&,) + Eaal (1604;"0;22—4@3;) —804110;“2252} , .
in which

Ao = Aw/h, Ay = Asxg/h, Ay = Aso/h,
Ab = Ay /b2, A = Ag/R%, AL = Az /B,
Ay = Apa /b3, Aby = Ago/h3, Ay = Asp /B3,
Ef = FE\/h, Ej=Ey/h* E;=E3/h®, D*=D/h
Jo = Joh® =1/ (Af5 — A53),  Ji = Ji/h° = (AjpAT; — A% A5,),
J§ - JQ/h3 - (AfoAél - AéoA’h)-
Ci = C1/h? = J3 /A%, C5 = Cafh =1/ (A7 J;),
Ci = Cs/h=J5J5, Ci=Ca/h’=J5 (A} Ji + A51J5) — Al
o =aL=mr, (*=pBR=n.

* al 1 * C; h L2 * a C;ﬁf L2
a; = :<401 s a2:ﬁ:32a3.?,

L7 h2 7 8 o2 R h?
o @ _ Gl BT e Cioipy L7

SToh 3202702 Y h a2+ B2(L/R)?P R

* as C;az L2 * * ag 0504353 L2
Ar = == 1> a6 = — =

P a2+ B(L/R?PRh b [9a2 + B2(L/R)?P R

4. PERFECT CYLINDRICAL SHELLS
In this case f, =0, Eq. (28) is written as

{ [<a2 +3%)°Cs — ;oﬂ] [asFo f* + as f] + Caf(a® + W} -

— fa?p? {2 (a1 Fof + (az + a3) f2] + F» [(ag — as) Faf* — as f] — h;ga:} —0.
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Putting fo = F»f and solving f2, we obtain

2
(0%
Ho1 + Hosf3 4+ Hos fo — ?hUOx
f2=- (34)
Hos
in which
1 ([ 1 5]
Hy = —3 { (a? + 5%)2C5 — EOP as + Cy(a® + 52)2} ,
) i a2ﬁ_2
Hyz = a”f%(ag +a3), Ho = 5 (ag — ay), (35)
1(f 1 5]
Hoys = —3 { (a® + 3%)%C5 — EOéQ ay + o*B*(as — 2‘11)} :

For Eq. (29), also taking f. = 0, leads to

2 2
(8a'Cs — Za®)asf? + Fof [a1(8a4C’3 — Za?) - 4@4(]4] +

R R
o’ B 3 2 2
+ 9 [(CLG — a4)F2f — CL5f ] — onhFQf =0.
One gets
oozh = [Hos + f*(Hos + Hoz/ f2)] /o (36)
where
2 2 2132
HOG = ax (80&403 — *052) — 404404, H07 = (804403 — *042)(12 — ﬂ%,
«
Hys = 5 (ag — ayq).
Substituting f? from Eq. (34) into Eq. (36) gives us

2
Ho1Ho7 + (Ho1Hos + Hos Hor — Hos H, +
Hor + (Hos — 2Hos) fo] ha? [HorHo7 + (Ho1Hog 05Ho7 03Hoe) f2 (38)

+ (HoaHor + HosHos) f3 + HO4H08f§] .

This is the relation found in the paper [13]. The equation (38) is used to investigate
load - deflection curves. It is also used to find buckling critical loads from the condition
doog/df2 = 0.

Now, consider the casecfa = 0, i.e. the nonlinear buckling shape is ignored, Eq. (38)
becomes

2Hp
00z = 5o (39)
Minimizing this expression, leads to
Cy [R?(C1C3—Cy) 1 Cy— C1C5 Co
2l = — — (CC3 + Cy) — .
Tmel hR?\/ C Ry (C2C+C1) 2 R2(C1Cs — Ca)
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Substituting from (14) and (16)

oy = A190A21 — Az A1 Cy = A3, — A3, Oy = A19A2 — A0An
Ao ’ A Afg— A3
1
Ci= —5—5 [A11 (A10A11 — A20421) + A21 (A10A21 — A20A11)] — A2
Afg — A3

into the above expression, after some calculations, the critical load of perfect FG cylindrical
shells with the linear buckling shape is obtained as follows
2
Oxcl = m
This result coincides with the one of [13].

Thus, from general results (28) and (29) for imperfect FG cylindrical shells we can
return to the results published in the paper [13] for perfect FG cylindrical shells.

[\/ (42, — A23,) (A1aAig — A2)) — (ArpAgs — AgAry)| . (40)

5. ISOTROPIC PERFECT CYLINDRICAL SHELL

In this case, we have C; = C3 =0, Cy = Eh, Cy,=—FEh3/ [12(1 — 1/2)].
One gets
A10Ag] — AggAq1 = 0, A%O — AgO = Al()Eh, A?l — A1pA19 = —Althg/ [12(1 — VQ)] .
Introdution of these coefficients into Eq. (40) gives us
Eh
Oclmin = = ——rv- (41>
R\/3(1 —v?)

This is the minimum value of axial compressive load found in [16] based on the
classical shell theory.
6. NUMERICAL CALCULATIONS AND DISCUSSIONS

Problem 1: Comparision with the results of Huang and Han [13].
Consider a FGM cylindrical shell is made from two materials Zirconia and Ti-6Al-4V
which take the values as follows [13].

Table 1. Temperature coefficients for the material properties of Zirconia and

Ti - 6Al - 4V
Material properties \ Co \ Cc_1 \ c1 \ Co \ c3
Zirconia
Ec(Pa) 244.26596%10° | 0 | -1.3707*1073 | 1.21393*10~° | -3.681378*10~ 10
Ve 0.2882 0 | 1.13345%10~% 0 0
Ti-6Al-4V
E,.(Pa) 122.55676%10° | 0 [ -4.58535%10% 0 0
Vi 0.28838235 0 | 1.12136%10~4 0 0
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According to [13] the material properties depend on temperature T as the following
Pp(T) = colco1 T+ 14+ 1T + eaT? + c3T7). (42)

In this paper, we consider T = 300K. For other temperature field, one can do that
by the same method based on the formula (42).

2500

2000

1500

Gox (MPa)

-
o
[=]
o

500

0 0.02 0.04 0.06 0.08 0.1 0.12
f2

Fig. 2. Effects of buckling mode (m = 1,n changing) on g, — f curves

With & =k =1, T = 300K, R/h = 200, L/R =1, f, = 0 according to the formula
(38) and programming Matlab software we receive results given in Fig. 2 and Fig. 3. These

700

===i:m=1; n=4..9
600|| == ii: m=2; n=4..11
m— jii: m=3; n=5..12

500 -

200 -

o
Q-\.’
(m, n) = (1, 6)

100 DL

I I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06

2

Fig. 3. Effects of buckling mode on oy, — fo curves

results describe the relationship og, — fa when the buckling mode is changed. As can be
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observed, the smallest value ogzer = 79.0409MPa corresponds to (m,n) = (1,6). This
result is in very good agreement with the one of Huang (0., = 79.10MPa with buckling
mode (m,n) = (1,6)) obtained by other method. This result also has affirmed the accuracy
of proposed method.

Problem 2: Effects of geometric parameters.

Based on the formula (38), with T = 300K, k& = k; = 1, f. = 0, consider two cases:

- The ratio R/h is varied from 200 to 1000, while R/L = 1.

- The ratio R/L takes values from 0.5 to 4, while R/h = 200.

Critical loads (MPa) are given in the Table 2 and Table 3, respectively.

Table 2. Effects of geometric parameter R/h to critical load

L/R=1
R/h Power law Exponential law
200 | 79.0409 (1,6)* | 78.4455 (1,6)
300 | 53.0174 (1,6) 52.5480 (1,6)
400 | 40.3310 (1,7) 39.9932 (1,7)
500 | 33.5713 (1,7) 33.2663 (1,7)
600 | 27.3734 (2,11) | 27.1678 (2,11)
700 | 23.0498 (2,11) | 22.8651 (2,11)
800 | 19.7602 (2,12) | 19.6114 (2,12)
900 | 17.3047 (2,12) | 17.1678 (2,12)
1000 | 15.5465 (2,12) | 15.4181 (2,12)

(* The numbers in the parenthesis denote the buckling modes (m,n)).

As shown in the Table 2, the more the value of ratio R/h is big, the more the value
of critical load is small. This result agrees with the real property of struture i.e. the shell
is thinner the value of critical load is smaller.

Table 3. Effects of geometrical parameter L/R to critical load

R/h =200
L/R Power law Exponential law
0.5 | 116.8459 (1,9) | 116.0977 (1,9)
1 79.0409 (1,6) 78.4455 (1,6)
1.5 | 84.4439 (1,5) 83.7531 (1,5)
2 79.0409 (2,6) 78.4455 (2,6)
4 78.8411 (3,5) 78.1775 (3,5)

As can be seen from Table 3 when the ratio L/R increases from 0.5 to 1, the critical
load is decreases very much, whereas when L/R varies from 1 to 4, the critical load is
changed less. That means the nonlinear response of short cylindrical shell is very sensitive
to a variation of ratio L/R.

Table 2 and Table 3 also show that, in this example, when material properties of
shell obey the power and exponential laws, both their critical loads are nearly equal.
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Problem 3: Relation between critical load and buckling modes.

Consider the case k = k; = 1, T = 300K, R/h = 200, L/R = 1, f* = 0. Couple
(m, n) receives the values of from 1 to 10 and based on the expression (38) we establish
the relationship table between the critical load o¢,(MPa) and buckling modes (m,n).

First of all, we find the relationship between critical load and buckling mode (m,n)
when material properties accord with the power laws. Using matlab software we received
00zer = 79.0409 MPa corresponding to m = 1, n = 6. This result coincides with the results
received in the Problem 1.

By the same method, the numerical results concerning the relationship between
critical load and buckling mode when material properties are according to the exponential
law, are given by Table 4.

Table 4. Relationship between critical load and buckling mode (m,n) when the
material properties according to the exponential law

(m,n) | n=1 2 3 1 5 6 7 8 9 10

3232.500 | 1812.600 | 632.8914 | 207.7360 | 94.6486 78.4455 | 95.7017 | 131.3731 | 182.8654 | 248.7592

3
[

901.5650 | 851.6488 | 698.8532 | 489.7799 | 313.9233 | 201.3150 | 141.6480 | 117.5431 | 116.0952 | 129.7078

489.2352 | 483.6904 | 462.1146 | 416.5820 | 353.1614 | 287.8135 | 233.3697 | 194.9493 | 172.4518 | 163.6833

407.4831 | 406.0168 | 399.9857 | 385.5725 | 361.1792 | 329.5046 | 296.1243 | 266.3040 | 243.2913 | 228.4006

439.1634 | 438.3880 | 435.1254 | 426.9829 | 412.2492 | 391.4036 | 367.1844 | 343.1002 | 322.0465 | 305.8588

527.9270 | 520.9976 | 496.5251 | 481.6082 | 459.2220 | 446.9971 | 435.0867 | 420.0367 | 402.6932 | 387.7014

549.5604 | 476.5911 | 449.4931 | 436.0079 | 427.2743 | 420.7412 | 415.6931 | 412.0529 | 409.9949 | 409.7943

679.8904 | 540.8819 | 480.0267 | 452.0387 | 437.6079 | 429.6960 | 425.5425 | 424.0116 | 424.6567 | 427.3523

868.0580 | 673.8740 | 567.7404 | 514.2321 | 486.0402 | 470.7716 | 462.8584 | 459.6660 | 459.8931 | 462.8902

S| ©f 00| | | | | eo| 2o |

1097.100 | 867.0790 | 712.3330 | 624.0947 | 573.9992 | 545.0943 | 528.6159 | 520.0056 | 516.8099 | 517.6652

From Table 4, we see that in both cases the buckling load is the smallest one when
(m,n) = (1,6). This result also is very near to the result of Problem 1.

Problem 4: Comparison between critical loads of nonlinear buckling shape and
linear shape.

In this part, numerical critical load results of two buckling shapes are presented by
using Eq. (38) and Eq. (40) with the parameters T = 300K, k = k1 =1, f* = 0 (see Table
5).

Table 5. Critical load (MPa) of two buckling shapes

L/R=1

R/h Power law
Nonlinear buckling shape calculated by Eq. (38) | Linear buckling shape calculated by Eq. (40)

200 79.0409 (1,6) 410.3914 (1,6)
300 53.0174 (1,6) 273.5943 (1,6)
400 40.3310 (1,7) 205.1957 (1,7)
500 33.5713 (1,7) 164.1566 (1,7)
600 27.3734 (2,11) 136.7971 (2,11)
700 23.0498 (2,11) 117.2547 (2,11)
800 19.7602 (2,12) 102.5979 (2,12)
900 17.3047 (2,12) 91.1081 (2,12)
1000 15.5465 (2,12) 82.0783 (2,12)
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As shown in Table 5, the critical load with nonlinear buckling shape is smaller than
the one with linear buckling shape.

Problem 5: Effects of imperfection.

Now we use Eqgs. (32) and (33) to plot curves describing o, — & relationship for
imperfect cylindrical shells.

In each figure below (Figs. 4, 5, 6, 7, 8), two graphs are given: Graph in Fig.(a) with

the small subdivided scale on the axis of abscissae & to indicate clearly the starting point
of the g, — &2 curve at the origin O, while in Fig.(b) with the larger scale of abscissae to

indicate extremum type buckling of imperfect FGM shells.

m=1; n=6; k=k1=1; T=300K; R/h=200; L/R=1; f/h=0.1

0 0.05 0.1 0.15

(a)

Fig. 4. Curve describeing the relationship og,

&

0.2 0.25
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700

600 \\

500 N\

400\ .
300 M

200
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Oy

100

m=1; n=6; k=k1=1; T=300K; R/h=200; L/R=1; f*/h=0.1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

=

0

(b)

— & of imperfect FG cylindrical shells

800

: perfect + perfect
700 e S : imperfect (f*/h=0.1) o0k T : imperfect (/h=0.1)
——
PO I R S o 600 =
= B
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500/ 500 \ M
{

— T N
s o 400
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S 400 s N M“ o
= Lad b, e
S a0 S 300
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100 e
100 —T
0
0 0 05 1 15 2 25,3 35 4 45 5
0 0.05 0.1 0.15 £ 0.2 0.25 0.3 &
) 2
(a) (b)

Fig. 5. Curves describeing the relationship og, — & of perfect and imperfect FG
cylindrical shells (m =1, n=6,k=%k =1, T = 300K, R/h =200, L/R =1)

The Fig. 4 and Fig. 5 show, for imperfect cylindrical shells, when an axial compres-
sive load starts different to zero then immediately is appeared a buckling (i.e. a deflection
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Mik=ki=0 perfect

—— perfect

imperfect 2)k=ki=1 | ===== imperfect

(I):k=k=0
200 @ k=k=1
(3)k=k=5
100
0 L L L L
0 0.05 01 0.18 g, 02 025 03 % o5 1 15 2 2623 35 4 45 5
(a) (b)
Fig. 6. Effects of volume fraction indexes (m = 1, n = 6, £& = 0.1, T = 300K,
R/h =200, L/R = 1)
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Fig. 7. Effect of imperfection (m =1, n =6, k =k; =1, T = 300K, R/h = 200,
L/R=1)

is different to zero), while with perfect cylindrical shells only is appeared a buckling when
compressive load reaches a certain critical value. Furthermore, during the first stage, the
00z — & curve is close to the axis of ordinates og;, the buckling occurs slowly until the
load reaches an upper critical value. In the second stage, although a load decreases but a
buckling still occurs. At these both stages the critical load of imperfect FG cylindrical shell
is smaller than the critical load of the perfect FG shell. To the third stage, when &> exceeds
a special value, an inverse trend occurs. This similar phenomenon is also reflected in the
paper [11] when the authors studied the nonlinear stability of imperfect FGM cylindrical
panels.
The effects of volume fraction indexes k and k1 on og, — & curves are illustrated in
Fig. 6. Graph is plotted with k = k1 = 0,1, 5 for perfect and imperfect cylindrical shells.
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Fig. 8. Effects of the ratio R/h (m=1,n=6,k =k =1, T = 300K, & = 0.1,
L/R=1)

As can be observed in both cases, the more the indixes k& = ki increase the more the
ooz — & curve is lowered.

The effects of imperfection on oo, — & curves are given in Fig. 7. The graph is
plotted with § = 0, §& = 0.001, § = 0.01, §& = 0.1, & = 0.25, & = 0.5, & = 1. It is easy
to see the more the imperfection &, is large the more the oy, — & curve is sloped i.e. the

shells become more unstable.
The effect of geometric ratio R/h on o, — & curve of perfect and imperfect shells
are reflected in Fig. 8. As can be seen, the critical load bearing capacity of shells decreases

when the R/h ratio increases.

7. CONCLUSIONS

In this paper the results obtained by Huang and Han in [13] have been developed for
imperfect functionally graded cylindrical shells using Galerkin’s method. The expanded
results return to the ones of [13] in the case of perfect cylindrical shells. The power and
exponential laws for material property variation are utilized to find expression of critical
loads for imperfect and perfect cylindrical shells and postbuckling load - deflection curves.
Effects of buckling modes of fraction volume indexes, initial imperfection and geometric
parameters on the critical loads and postbuckling load - deflection curves are presented.
Comparisons between the linear and nonlinear buckling shape are given.
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APPENDIX
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