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Abstract. In this paper, the dynamic analysis of the Functionally Graded (FG) simply sup-
ported beam resting on the Winkler–Pasternak elastic foundation under multiple moving
loads is investigated by using Timoshenko beam theory and the Kelvin–Voigt damping
model. The material properties of the FG beam vary continuously in the thickness direc-
tion. The Mori–Tanaka homogenization model is used to determine the effective material
properties of the FG beam. Equations of motion for the beams are established based on the
Finite Element Method (FEM). The effects of different material distributions, velocities of
multiple moving loads, distances between loads, and damping on the dynamic responses
of the beam are discussed.

Keywords: FGM beam, damping, moving force, Timoshenko beam theory, dynamic behav-
ior.

1. INTRODUCTION

Beams and plates are used in various applications, such as aerospace, marine, auto-
motive, and defense sectors, where continuous elements of these types are required. The
necessity for concurrent thermal and mechanical strengths has led to the invention of
plate and beam structures with Functionally Graded Material (FGM) properties [1]. The
FGM is described by a continuous and smooth variation in both composition profile and
material properties along one or more than one direction in order to achieve the desired
structural performance [2].
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Şimşek [3,4] approximated the displacements using polynomials to evaluate the dy-
namic response of Functionally Graded (FG) beams subjected to a moving load. Rajabi
et al. [5] investigated the influence of a power-law thickness gradation of material prop-
erties on the dynamics of an FG Euler–Bernoulli beam excited by a moving oscillator.
Using a differential quadrature method, Khalili et al. [6] computed the dynamic response
of the FG Euler–Bernoulli beams under a moving load. The material properties of the
beams were considered to vary with the beam thickness according to an exponential
or a power-law function. Using the Ritz method and Newmark’s method, Songsuwan
et al. [7] investigated the free and forced vibrations of FG sandwich beams resting on
an elastic foundation and under a moving harmonic load. The governing equation of
motion for the beam, which includes the effects of shear deformation and rotary inertia
based on the Timoshenko beam theory, is derived from Lagrange’s equations. By com-
bining the Lagrange method with the Newmark method, Wang and Wu [8] and Wang et
al. [9] studied the effects of temperature and porosity on the dynamic behaviors of FG
Timoshenko beams and FG sandwich beams under moving loads, respectively. Şimşek
and Mohammed [10] investigated the static, free, and forced vibrations of FG sandwich
beams under the action of double moving harmonic loads travelling at constant veloci-
ties, by using the Timoshenko beam theory.

For the Finite Element Method (FEM), Le et al. [11] studied the vibrations of multi-
span FG beams subjected to a moving harmonic load. The material properties of the
beam are assumed to vary continuously in the thickness direction by a power-law dis-
tribution. The finite element formulation is derived by using the exact solution of the
governing differential equations of an FGM Timoshenko beam segment to interpolate
the displacements and rotation. The dynamic response of FG beams under a variable
velocity moving mass was studied by Esen [12, 13] using first-order shear deformation
finite element formulations. By using simple finite element procedures, Esen et al. [14]
studied the dynamics of FG Timoshenko beams under a moving mass. The power-law
or sigmoid variation was assumed for the beam material properties, and the influence of
the foundation support and temperature rise on the dynamics was also considered. Gan
et al. [15] derived a two-node Timoshenko beam element for computing the dynamic re-
sponse of nonuniform axially FG beams. The solution of the equilibrium equations of a
beam segment has been employed to interpolate the displacement field, thus improving
the efficiency of the element. Nguyen et al. [16] investigated the dynamic behavior of a
bidirectional FG sandwich beam under nonuniform motion of a moving load. Based on
the first-order shear deformation beam theory, a finite beam element was derived and
employed in computing the dynamic response of the beam. Recently, Nguyen et al. [17]
has investigated the dynamic analysis of an inclined sandwich beam under a moving
mass. A finite element formulation for the inclined beam, in which the stiffness and mass
matrices are evaluated explicitly, has been derived by using the transverse shear rotation
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as an independent variable. Akbaş et al. [18] analyzed dynamic responses of FG porous
thick beams under sin pulse loads by using the Kelvin–Voigt viscoelastic model. Yee
et al. [19] studied coupled dynamics of geometrically and material-wise imperfect axi-
ally functionally graded graphene nanoplatelets-reinforced viscoelastic shear deformable
beams. Cui et al. [20] studied the dynamic response of fractional-order viscoelastic FG
beams according to the Kelvin–Voigt fractional derivative model and the quasi-3D beam
theory.

In the open literature, the forced vibration of FG viscoelastic beams has not been
widely studied. It is observed that most of the dynamic studies of beams are conducted
without considering the damping effect. This work addresses forced vibration analysis
of a beam by using the Timoshenko beam theory with the Kelvin–Voigt damping model.
To solve the dynamic problem, the FEM and Newmark’s implicit integration methods are
used in the time domain. The effects of material parameters, damping ratios velocities of
multiple moving loads, distances between loads, and Winkler–Pasternak elastic founda-
tions on the forced vibration responses of the FG beam are examined and discussed.

2. BASIC RELATIONS

Consider an FGM beam of length L, with a rectangular cross-section A = b × h,
resting on a Winkler–Pasternak elastic foundation. The beam is subjected to three loads
moving with a constant velocity v from the left end to the right end of the beam (Fig. 1).
It is assumed that the three loads are equal and move with the same velocity, and it is
always in contact with the beam. Assuming the material volume fraction of the beam
varies along the thickness direction as follows

Vc (z) =
(

1
2
+

z
h

)n

, Vm (z) = 1 −
(

1
2
+

z
h

)n

, −1
2
≤ z

h
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2
,

where n is the volume fraction index, and z is the coordinates from the mid-plane of
the beam; subscripts m and c denote metal and ceramic materials, respectively. Then, the
effective bulk modulus K and shear modulus G can be determined from the Mori–Tanaka
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Figure 1: A FGM beam on a Winkler-Pasternak elastic foundation under multiple moving loads 
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Fig. 1. A FGM beam on a Winkler–Pasternak elastic foundation under multiple moving loads
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model as follows

K (z) = Km +
(Kc − Km)Vc(z)

1 + (1 − Vc(z))(Kc − Km)/(Km + 4Gm/3)
,

G (z) = Gm +
(Gc − Gm)Vc(z)

1 +
(1 − Vc(z))(Gc − Gm)

Gm + Gm (9Km + 8Gm) /(6Km + 12Gm)

.

The effective material properties of the FGM beam such as Young’s modulus E, Pois-
son’s ratio, ν and mass density ρ can be determined as follows

E(z) =
9K(z)G(z)

3K(z) + G(z)
, ν(z) =

3K(z)− 2G(z)
2 [3K(z) + G(z)]

, ρ(z) = ρcVc(z) + ρmVm(z).

The displacements at a point on the cross-section of the FGM Timoshenko beam can
be represented as

u(x, z, t) = u0(x, t)− (z − h0) θ(x, t),

w(x, z, t) = w0(x, t),
(1)

where u(x, t), w(x, t) are the axial displacement, and the deflection of a point on the axis,
respectively; θ is the angle of rotation of the cross-section; h is the distance from the
neutral axis to the x-axis, h is determined from the condition that the axial force at the
cross-section vanishes

h0 =
∫
A

zE (z)dA

/∫
A

E (z)dA.

The nonzero deformations are obtained as follows

εxx =
∂u0

∂x
− (z − h0)

∂θ

∂x
, γxz =

∂w0

∂x
− θ. (2)

Applying the Kelvin–Voigt damping model, the constitutive equations of the FGM
beam can be presented as follows [18–20]

σxx = E(z)εxx + ς1E(z)ε̇xx = σxx(ela) + σxx(vis),

σxz = ksG(z)γxz + ksς2G(z)γ̇xz = σxy(ela) + σxy(vis),
(3)

where ks is the shear correction coefficient, ks = 5/6 for a rectangular cross-section; ς1,
ς2 are the damping ratios in bending and shearing, respectively; the “elas” and “vis”
subscripts denote the elastic and viscoelastic stress parts, respectively.
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Using expressions (1), (2) and (3), the strain energy U the kinetic energy T and the
dissipation function R of the FG beam can be obtained as follows [18–20]

U =

L∫
0

∫
A
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)
dAdx

=
1
2
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]
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(4)
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(5)

where A11, A12, A22 A33 are the rigidities and I11, I12, I22 are the mass moments, respec-
tively

(A11, A12, A22) =
∫
A

E (z)
[
1, z − h0, (z − h0)

2
]

dA, A33 =
∫
A

G(z)dA,

(I11, I12, I22) =
∫
A

ρ(z)
[
1, z − h0, (z − h0)

2
]

dA,

and

R =

L∫
0

∫
A

(
σxx(vis) ε̇xx + σxz(vis)γ̇xz

)
dAdx

=
1
2

L∫
0
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(
∂u̇0
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∂x
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(
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(6)

where C11, C12, C22 and C33 are the damping coefficients, respectively

(C11, C12, C22) =
∫
A

E (z) ς1 (z)
[
1, z − h0, (z − h0)

2
]

dA,

C33 =
∫
A

G(z)ς2 (z)dA.

The strain energy of the Winkler–Pasternak foundation

UF =
1
2

L∫
0

[
Kww2 + Kp

(
∂w
∂x

)2
]

dx, (7)
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where Kw, Kp are the Winkler–Pasternak elastic foundation coefficients.

The potential energy of the external load P is given as follows

V = −
nload

∑
i=1

L∫
0

Pwp
(
xp
)

δ
(
xp − vti

)
dx, (8)

where δ(.) is the Dirac delta function, xp is the current abscissa of the load P with respect
to the left end of the beam, wp is the deflection at the position of force P, t denotes the
time variable

3. FINITE ELEMENT FORMULATION

By using the FEM, the beam is assumed to be divided into numbers of two-node
beam elements of length L. The vector of nodal displacements d for the element, consid-
ering the transverse shear rotation θ as an independent variable, contains six components
as follows

d =
{

ui, wi, θi, uj, wj, θj
}T , (9)

where i andj denote the left and right nodes, respectively. In Eq. (9) and hereafter, a
superscript ‘T’ is used to denote the transpose of a vector or a matrix. The displacement
and rotation angles of the FGM Timoshenko beam element can be interpolated as follows u0

w0
θ

 =

N1
u 0 0 N2

u 0 0
0 N1

w N2
w 0 N3

w N4
w

0 N1
θ N2

θ 0 N3
θ N4

θ

 {ui wi θi uj wj θj
}T

=

Nu
Nw
Nθ

d,

where N1
u , N2

u are Lagrange’s shape functions of the axial displacement

N1
u = 1 − x

L
, N2

u =
x
L

,

N1
w, N2

w, N3
w, N4

w and N1
θ , N2

θ , N3
θ , N4

θ are Kosmatka’s shape functions [21].

Using the above interpolations, the strain energy of the beam in Eq. (4) can be writ-
ten as

U =
1
2

ne

∑ dTke
bd,

where ne is the total number of elements used to discretize the beam; and ke
b is the beam

element stiffness matrix,
ke

b = k11 + k12 + k22 + k33,

k11 =

L∫
0

(
∂Nu

∂x

)T

A11
∂Nu

∂x
dx, k12 = −2

L∫
0

(
∂Nu

∂x

)T

A12
∂Nθ

∂x
dx,
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k22 =

L∫
0

(
∂Nθ

∂x

)T

A22
∂Nθ

∂x
dx, k33 = ks

L∫
0

(
∂Nw

∂x
− Nθ

)T

A33

(
∂Nw

∂x
− Nθ

)
dx.

The kinetic energy of the beam in Eq. (5) can be written in the following form

T =
1
2

ne

∑ ḋTmeḋ,

where the element mass matrix of the beam me

me = m11 + m12 + m22 + m33,

m11 =

L∫
0

(
∂Nu

∂x

)T

A11
∂Nu

∂x
dx, m12 =

L∫
0

(
∂Nu

∂x

)T

A12
∂Nθ

∂x
dx,

m22 =
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(
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)T

A11
∂Nw
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dx, m33 =
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0

(
∂Nθ
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)T

A22
∂Nθ

∂x
dx.

Similarly, the dissipation function of the beam in Eq. (6) can be written as

R =
1
2

ne

∑ ḋTceḋ,

where ce is the damping matrix of the Timoshenko beam element

ce = c11 + c12 + c22 + c33,

c11 =

L∫
0

(
∂Nu

∂x

)T

C11
∂Nu

∂x
dx, c12 = −2

L∫
0

(
∂Nu

∂x

)T

C12
∂Nθ

∂x
dx,

c22 =

L∫
0

(
∂Nθ

∂x

)T

C22
∂Nθ

∂x
dx, c33 = ks

L∫
0

(
∂Nw

∂x
− Nθ

)T

C33

(
∂Nw

∂x
− Nθ

)
dx.

The strain energy of the Winkler–Pasternak elastic foundation in Eq. (7) can be writ-
ten in a matrix form as

UF =
1
2

ne

∑ dTke
Fd,

ke
F is the element foundation stiffness matrix with the following form

ke
F = ke,w + ke,p, ke,w =

1
2

L∫
0

NT
wKwNwdx, ke,p =

1
2

L∫
0

(
∂Nw

∂x

)T

Kp
∂Nw

∂x
dx.

The total stiffness matrix (k) for the element with the foundation support is as fol-
lows

ke = ke
b + ke

F.
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For the element without the foundation support, the matrix k is simply given by
ke = ke

b.

The matrix form for the potential energy in Eq. (8) is as follows

V = −
ne

∑ dTfe,

where fe is the element time-dependent nodal load vector. fe has zero coefficients, except
for the element

fe =
nload

∑
i=1

Pi (Nw)
T
∣∣∣

xP
,

xp is the current abscissa of the moving load Pi with respect to the left end of the beam.

The discretized equations of motion for vibration analysis of the beam can be written
in the following form [22]

− d
dt

(
∂T
∂ḋj

)
+

∂ (T − U − UF − V)

∂dj
− ∂R

∂ḋj
= 0.

They can be put in the matrix form as follows

MD̈ + CḊ + KD = F, (10)

in which D̈, Ḋ, D are the global vectors of nodal displacements, velocity, and accelera-
tions, respectively; K, C, M, and F are the global stiffness, damping mass matrices, and
the moving load vector, respectively. These matrices are obtained by assembling the ma-
trices ke, ce, me, and vector fe over the elements

M = ∑
ne

me, C = ∑
ne

ce, K = ∑
ne

ke, F = ∑
ne

fe.

Eq. (10) can be solved by Newmark’s implicit integration method. The average accel-
eration method, which ensures the unconditional convergence of the numerical solution
is adopted herein.

4. NUMERICAL RESULTS AND DISCUSSION

For convenience, the maximum normalized dynamic deflection at the mid-span of
the simply supported beam w(L/2, t)/w0, the dynamic magnification factor fD and the
nondimensional Winkler–Pasternak elastic foundation coefficients kw, kp are introduced
as follows

fD = max
[

w(L/2, t)
w0

]
, w0 =

PL3

48Em I
, kw =

KwL4

Em I
, kp =

KpL2

Em I
, I =

bh3

12
,

where w0 is the static midspan deflection when the load P is at the midspan of the beam.
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4.1. Validations

The accuracy of the proposed FEM solution is validated through comparison studies.
Firstly, the dynamic deflection at the mid-span of the simply supported beam without
damping, subjected to three moving loads is compared with the result of Henchi [23] in
Fig. 2, for the cases where the distance between the loads a = L/8 m (Fig. 2(a)), v =

22.5 m/s and a = L/4 m (Fig. 2(b)). The good agreement between the present results
with those of the cited reference is shown in the figure.

7 
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Fig. 2. Comparison of the dynamic deflection at the mid-span of the beam, for different values
of the distance a between the three moving loads at v = 22.5 m/s

The second comparison of the dynamic magnification factor fD of the FGM beams
and the corresponding critical moving load velocities, for the different volume fraction
indexes n with those of Şimşek and Kocatürk [4], is presented in Table 1. The excellent
agreement between the present and published solutions is shown. These above compar-
isons validate that the proposed FEM solutions are both acceptable and reliable.
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Table 1. Comparison of the dynamic magnification factor fD of FGM beams, and the correspond-
ing critical moving load velocities with the different volume fraction indexes n

n
fD Critical velocity fD Critical velocity

Present Present (m/s) Şimşek [4] Şimşek [4] (m/s)

0.2 1.0647 221 1.0647 220
0.5 1.1815 196 1.1816 194
1.0 1.2828 177 1.2828 175
2.0 1.3648 163 1.3648 161

4.2. Parametric study

The influence of damping on dynamic responses of a simply supported FG beam un-
der multiple moving loads is numerically studied in this section. The FGM beam consists
of steel and Alumina (Al2O3) with material properties [4] Em = 210 GPa, ρm = 7800 kg/m3

for steel; Ec = 390 GPa, ρc = 3960 kg/m3 for Alumina (Al2O3), is considered. The geomet-
rical parameters of the beam are as follows [4]: the height h = 0.9 m, the width b = 0.4 m
and various values of the aspect ratio L/h. Moreover, since studies on viscoelastic beams
are rare to choose the damping ratio, so in this study the damping ratios ς1, ς2, and ς3 are
assumed to have the same value (ς1 = ς2 = ς3 = ς), within the interval from 0 to 10−1.

8 

Fig. 4 depicts the influence of damping ratios on the normalized dynamic deflection at the mid-
span of the FG beam, subjected to a moving convoy of three loads with n=2, L/h=20, kw=0, kp=0, the 
distance between the loads a=L/4 where the velocity loads a) v= 50 m/s (Fig. 4a), v=100 m/s (Fig. 

Fig. 3. The dynamic magnification factor of the FG beam, subjected to three loads
where n = 2, L/h = 20, kw = 0, kp = 0, and a = L/4 with different damping ratios

Fig. 3 illustrates the influence of the damping ratio on the dynamic magnification
factor at the mid-span of the FG beam, without the elastic foundation subjected to a mov-
ing convoy of three moving loads with the volume fraction index n = 2, the ratio of the
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length to the height L/h = 20, and the distance between the loads a = L/4. The result
shows that an increase in the damping ratio decreases the dynamic magnification fac-
tor values and the number of associated oscillations of the dynamic magnification factor
for all values of the moving load velocity. When the damping ratio is less than or equal
to 1 × 10−2 (ς ≤ 1 × 10−2), a critical moving load velocity causes the dynamic magni-
fication factor to reach the maximum. Moreover, the maximum dynamic magnification
factor and the moving load velocity, which are required to reach the maximum value, are
decreased while the damping ratios increase. When the damping ratio is greater than
5 × 10−2 (ς > 5 × 10−2), the dynamic magnification factor decreases monotonously at all
moving load velocity values.
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Fig. 4. The normalized dynamic deflection at the midspan of the FG beam
in case of n = 2, L/h = 20, kw = 0, kp = 0, a = L/4

Fig. 4 depicts the influence of damping ratios on the normalized dynamic deflection
at the mid-span of the FG beam, subjected to a moving convoy of three loads with n =

2, L/h = 20, kw = 0, kp = 0, the distance between the loads a = L/4 where the velocity
loads a) v = 50 m/s (Fig. 4(a)), v = 100 m/s (Fig. 4(b)), in which ∆T is the total time
necessary for the moving loads to cross the beam. Fig. 5 shows the influence of damping
ratios on the normalized dynamic defection at the midspan of the FG beam under one
moving load (Fig. 5(a)), and three moving loads (Fig. 5(b)), and the velocity loads v =

25 (m/s), n = 2, L/h = 20, kw = 0, kp = 0, the distance between the loads a = L/4. By
observing the graphs presented in Figs. 4–5, it allows one to make the following remarks:
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in Figures 4-5, it allows one to make the following remarks: 

- Increasing the damping ratio decreases the maximum value of the normalized dynamic deflection
at the mid-span of the simply supported beam.

- The beam exhibits the associated oscillations with higher frequencies when the damping ratios
are less than 1.10-2. Lower moving load velocity and the damping ratios result in higher frequency
oscillations.

- Increasing the number of moving loads increases the maximum value of the normalized dynamic
deflection at the mid-span of the simply supported beam. However, higher numbers of moving
loads result in the lower amplitudes of associated oscillations.
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Fig. 5. The normalized dynamic defection at the midspan of the FG beam, subjected to
(a) 1 load, (b) 3 loads with v = 25 (m/s), a = L/4, n = 2, L/h = 20, kw = 0, kp = 0

- Increasing the damping ratio decreases the maximum value of the normalized dy-
namic deflection at the mid-span of the simply supported beam.

- The beam exhibits the associated oscillations with higher frequencies when the
damping ratios are less than 1 × 10−2. Lower moving load velocity and the damping
ratios result in higher frequency oscillations.

- Increasing the number of moving loads increases the maximum value of the nor-
malized dynamic deflection at the mid-span of the simply supported beam. However,
higher numbers of moving loads result in the lower amplitudes of associated oscillations.

Fig. 6 shows the influence of the moving load velocity on the normalized dynamic
deflection at the midspan of the FG beam, subjected to a moving convoy of three loads
with two damping ratios, ς = 0 (Fig. 6(a)) and ς = 0.5× 10−2 (Fig. 6(b)) and n = 2, L/h =

20, kw = 0, kp = 0, the distance between the loads a = L/4. Increasing the moving load
velocity or decreasing the damping ratio increases the maximum values of the dynamic
deflection at the midspan. However, the increase of the damping ratio reduces the asso-
ciated oscillations of the dynamic deflection at the midspan while the time required to
reach the maximum value of these oscillations are increased.

The dynamic deflection at the midspan of the beam, subjected to a moving convoy
of three loads for various values of the distance a between the loads, is presented in Fig. 7
with n = 2, L/h = 20, the moving load velocity v = 25 m/s, and damping ratios: ς= 0



102 Tran Van Lien, Le Thi Ha

9 

4b), in which ΔT is the total time necessary for the moving loads to cross the beam. Fig. 5 shows the 
influence of damping ratios on the normalized dynamic defection at the midspan of the FG beam 
under one moving load (Fig. 5a), and three moving loads (Fig. 5b), and the velocity loads v=25 (m/s), 
n=2, L/h=20, kw=0, kp=0, the distance between the loads a=L/4. By observing the graphs presented 
in Figures 4-5, it allows one to make the following remarks: 

- Increasing the damping ratio decreases the maximum value of the normalized dynamic deflection
at the mid-span of the simply supported beam.

- The beam exhibits the associated oscillations with higher frequencies when the damping ratios
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Fig. 6. The normalized dynamic deflection at the midspan of the FG beam is subjected to 3 loads
in case of n = 2, L/h = 20, kw = 0, kp = 0, a = L/4 with damping ratios
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Fig. 6 shows the influence of the moving load velocity on the normalized dynamic deflection at 
the midspan of the FG beam, subjected to a moving convoy of three loads with two damping ratios, 
V= 0 (Fig. 6a) and V=0,5.10-2 (Fig. 6b) and n=2, L/h=20, kw=0, kp=0, the distance between the loads 
a=L/4. Increasing the moving load velocity or decreasing the damping ratio increases the maximum 
values of the dynamic deflection at the midspan. However, the increase of damping ratio reduces the 
associated oscillations of the dynamic deflection at the midspan while the time required to reach the 
maximum value of these oscillations are increased. 
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a=L/4. Increasing the moving load velocity or decreasing the damping ratio increases the maximum 
values of the dynamic deflection at the midspan. However, the increase of damping ratio reduces the 
associated oscillations of the dynamic deflection at the midspan while the time required to reach the 
maximum value of these oscillations are increased. 
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Fig. 7. The dynamic deflection at the midspan of the beam for values of a between the three
moving loads at n = 2, L/h = 20, kw = 0, kp = 0, v = 25 m/s with damping ratios

(Fig. 7(a)) and ς = 0.5 × 10−2 (Fig. 7(b)). Increasing the distance a between the loads and
the damping ratio decreases the maximum value and the number of associated oscilla-
tions of the normalized dynamic deflection at the midspan. Furthermore, the period of
the major oscillations depends on the distance between the loads.

Fig. 8 illustrates the influence of the number of moving loads on the normalized
dynamic deflection at the midspan of the FG beam with two damping ratios: ς = 0
(Fig. 8(a)) and ς = 0.5 × 10−2 (Fig. 8(b)) and n = 2, L/h = 20, kw = 0, kp = 0, and the
distance between the loads a = L/4. Increasing the number of moving loads on the
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beam increases the maximum values in the dynamic deflection at the midspan of the
beam but these values do not increase uniformly with the number of loads. For example,
the maximum value in the dynamic deflection has values of 0.867, 1.512, 1.911, and 2.084
corresponding to the number of loads of 1, 2, 3, and 4 when the damping ratio is equal
to 0. Moreover, increasing the number of moving loads on the beam or the damping
ratio decreases the number of the associated oscillations of the dynamic deflection at the
midspan of the beam. The period of major oscillations increases when the number of
moving loads increases.
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Fig. 8. The dynamic deflection at the midspan of the beam for values of number of moving loads
at n = 2, L/h = 20, kw = 0, kp = 0, a = L/4, v = 25 m/s with damping ratios

Fig. 9 shows the influence of the volume fraction index n on the dynamic magnifi-
cation factor fD of the FG beam subjected to three loads with the damping ratio: ς = 0
(Fig. 9(a)), ς = 0.5 × 10−2 (Fig. 9(b)) and L/h = 20, kw = 0, kp = 0, a = L/4. When
the velocity increases from 0 to 100 (m/s), the amplitude of normalized dynamic deflec-
tion at the midspan of the FG beam varies continuously, especially when the damping
ratio is small. It is shown that the dynamic magnification factor of the FG beam increases
remarkably when the damping ratios decrease or the n increases.

Fig. 10 depicts the influence of Winkler elastic foundation coefficients kw on the dy-
namic magnification factor of the FG beam subjected to three loads with the Pasternak
coefficient kp = 0 at the damping ratio ς = 0 (Fig. 10(a)) and ς = 0.5 × 10−2 (Fig. 10(b)),
and L/h = 20, kp = 0, and the distance between the loads a = L/4. It is shown that the
dynamic magnification factor of the FG beam decreases when the Winkler elastic founda-
tion coefficients and the damping ratios increase. When the velocity increases from 0 to
100 (m/s), the dynamic magnification factor of the FG beam varies continuously in case
the damping ratio is equal to 0.
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8b) and n=2, L/h=20, kw=0, kp=0, and the distance between the loads a=L/4. Increasing the number 
of moving loads on the beam increases the maximum values in the dynamic deflection at the midspan 
of the beam but these values do not increase uniformly with the number of loads. For example, the 
maximum value in the dynamic deflection has values of 0.867, 1.512, 1.911, and 2.084 corresponding 
to the number of loads of 1, 2, 3, and 4 when the damping ratio is equal to 0. Moreover, increasing 
the number of moving loads on the beam or the damping ratio decreases the number of the associated 
oscillations of the dynamic deflection at the midspan of the beam. The period of major oscillations 
increases when the number of moving loads increases. 
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Fig. 9. The dynamic magnification factor of the FG beam subjected to three loads,
in case of L/h = 20, kw = 0, kp = 0, a = L/4 with damping ratios
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Fig. 10. The dynamic magnification factor of the FG beam subjected to three loads,
where L/h = 20, kp = 0, a = L/4 with damping ratios

Fig. 11 illustrates the influence of Pasternak elastic foundation coefficients kp on the
dynamic magnification factor of the FG beam with the Winkler coefficient kw = 0 at the
damping ratio ς = 0 (Fig. 11(a)) and ς = 0.5 × 10−2 (Fig. 10(b)), L/h = 20, and the dis-
tance between the loads a = L/4. It is noted that the dynamic magnification factor of the
FG beam decreases when the Pasternak elastic foundation coefficients and the damping
ratios increase. Furthermore, the dynamic magnification factor of the FG beam varies
continuously when the velocity increases from 0 to 100 (m/s) and the damping ratio is
equal to 0.
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Fig. 11. The dynamic magnification factor of the FG beam subjected to three loads,
where L/h = 20, kw = 0, a = L/4 with damping ratios
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Fig. 12. The dynamic magnification factor of the FG beam, where L/h = 20,
kw = 0, kp = 0, a = L/4 with damping ratios

Fig. 12 shows the influence of the number of moving loads on the dynamic magnifi-
cation factor at the midspan of the FG beam with two damping ratios, ς = 0 (Fig. 12(a))
and ς = 0.5 × 10−2 (Fig. 12(b)) and n = 2, L/h = 20, kw = 0, kp = 0, and the distance be-
tween the loads a = L/4. The dynamic magnification factor increases when the number
of moving loads on the beam increases but the value of the dynamic magnification factor
does not increase uniformly with the number of loads. Moreover, the dynamic magnifi-
cation factor of the FG beam varies continuously when the velocity increases from 0 to
100 (m/s) and the damping ratio is equal to 0.
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5. CONCLUSIONS

In this study, the dynamic analysis of the FG viscoelastic beam resting on the Winkler–
Pasternak elastic foundation under multiple moving loads has been presented. The finite
element method and the Newmark implicit integration methods are used in the time do-
main. The influences of the geometry, damping, the distance between the loads, velocity
parameters, and material parameters on forced vibration responses of the functionally
graded beams are investigated. The results obtained in this study are well agreed with
those published in earlier references. The most important points from this work can be
summarized as follows:

- The damping parameter, the distance between loads, the number of moving loads,
and the velocity parameter play key roles in the vibration characteristics of the beam

- Increasing the damping ratio reduces both the dynamic magnification factor values
and the number of associated oscillations of the dynamic magnification factor for all val-
ues of the moving load velocity, although the moving load velocity is a significant factor
to the dynamic response of FG the beam.

- When the damping ratio is less than 1 × 10−2, a critical velocity exists to make the
dynamic magnification factor reach its maximum. The maximum dynamic magnification
factor and the moving load velocity required to reach the maximum value are decreased
while the damping ratios increase. The dynamic magnification factor of the FG beam
varies continuously when the velocity is from 0 to 100 (m/s) and the damping ratio is
equal to 0.

- Increasing the distance a between the loads decreases the maximum value and the
number of associated oscillations of the normalized dynamic deflection at the midspan
of the beam.

- Increasing the number of moving loads increases the maximum values in the dy-
namic deflection at the midspan of the beam but the dynamic magnification factor does
not increase uniformly with the number of loads. Furthermore, the period of major oscil-
lations increases when the number of moving loads increases.

- The effect of the velocity of the moving load can be effectively reduced when the
Winkler–Pasternak elastic foundation coefficients increase.

Numerical results show that the above-mentioned effects play an important role in
the dynamic deflections of the beam.
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