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Abstract. The paper deals with a quarter-car model with nonlinear damping and stiffness
under white noise base excitation using the higher-order stochastic averaging method for
analyzing approximate responses. Recently, a novel higher-order averaging procedure has
been developed to find analytically the first-, second-, and third-order stationary joint
probability density functions (PDF) of amplitude and full phase by solving the corre-
sponding Fokker–Planck–Kolmogorov (FPK) equation, and it will be extended to the non-
linear quarter-car model. Accordingly, the mean-square responses such as the displace-
ment, and velocity of the sprung mass can be obtained analytically. The influences of exci-
tation intensity on the dynamic responses, as well as the variations of linear and nonlinear
damping, are analyzed. A very satisfactory agreement is found between the accuracy of
the solutions corresponding to higher-order stochastic averaging and that of Monte Carlo
simulation.

Keywords: higher-order stochastic averaging (HOSA), quarter car model, nonlinear sus-
pension, random excitation.

1. INTRODUCTION

In the literature, a linear vehicle suspension system is just an approximation of a real
vehicle and is not an accurate representation. Major sources of nonlinearity in a such
system are geometric effects resulting in not linear effective springs, asymmetric and/or
complex damping, tire separation, and bump stops [1, 2]. Namely, for real vehicles, the
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suspension springs are usually installed in inclined directions at some offset from the
centers of the tires. Additionally, they are often supported by a set of suspension arms or
linkages that rotate around a pivot and do not move in a precisely linear direction. This
means the motion ratio of the spring and the wheel center does not remain constant along
with wheel travel. In other words, since the effective spring stiffness is not constant, then
a linear spring model is inaccurate. Automotive dampers are inherently nonlinear due
to the damping mechanism derived from fluid orifices in a passive system, as well as
from variable orifice valves for tuning the damping effect in a semi-active and/or active
system [2, 3]. Tire separation and bump stops also make the system nonlinear due to the
impact effects, and they often lead to transient responses when compared to long-term
responses involving nonlinear restoring and damping effects.

Among simplified quarter-car models of the vehicle suspension system, the two-
degree-of-freedom (2-DOF) quarter-car model and the single-degree-of-freedom (SDOF)
quarter-car model are often used [4–9]. The first one is used for studying the effects
of nonlinear damping and/or restoring on the responses of the sprung and unsprung
masses [4–6]. Meanwhile, the second one involves a case where the tire stiffness is very
large compared to that of the suspension spring. In other words, the SDOF quarter-car
model is a reduced model of the 2DOF one when omitting the unsprung mass. Hence,
the SDOF quarter-car model is used to investigate nonlinear damping and/or restoring
effects on the sprung mass [4,7–9]. Focusing the attention on the nonlinear SDOF quarter-
car model, it is seen that there are two typical base excitations, harmonic and stochastic
ones. In [4], the effect of a cubic damping characteristic on the system is investigated
under the steady-state sinusoidal base input. The analytical solutions are obtained using
the harmonic balance method and validated with direct numerical integration. In [7], the
suspension system with cubic nonlinear damping and spring under multi-frequency pe-
riodic excitation from the road surface is investigated for possible chaotic motion. In the
case of stochastic base excitation, [8] investigates an SDOF quarter-car model with the
signum function of damping subjected to white or colored noise excitation. The Fokker–
Planck–Kolmogorov (FPK) equation is expanded in terms of generalized Hermite poly-
nomials and subsequently solved by a Galerkin method. In [9], the considered damp-
ing effect is asymmetrical, and the system is excited by the road roughness of ISO stan-
dard. The mean displacement of the sprung mass is numerically investigated.

Recently, a higher-order stochastic averaging (HOSA) procedure using the FPK equa-
tion was developed by Anh et al. [10, 11] and then applied to the Van der Pol oscilla-
tor [12], mono-stable Duffing piezoelectric energy harvesting system under white noise
excitation [13]. The key factor of HOSA is the transient response, stability, and reliabil-
ity of the systems, and the intrinsic nonlinearity in the original system is retained in the
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averaged system [13]. Until now, no extension of HOSA has been performed to analyze
dynamical systems including both nonlinear damping and stiffness.

In the paper, HOSA is further applied to the SDOF quarter-car model with non-
linear damping and stiffness under white noise excitation. The outline of this paper is
organized as follows. The implementation of the procedure for this model is presented
in Section 2. The analytical expression of the first-, second-, and third-order probability
density functions (PDFs) are also given in this section. In Section 3, numerical examina-
tion is carried out, and the accuracy of the approximate responses is verified by the result
of the Monte Carlo method. The conclusion is presented in Section 4.

2. APPLICATION OF HIGH ORDER AVERAGING METHOD TO VEHICLE
SUSPENSION WITH NONLINEAR STIFFNESS AND DAMPING

Consider an SDOF quarter-car model with a nonlinear spring and a nonlinear damper
[7] as shown in Fig. 1.
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seen that there are two typical base excitations, harmonic and stochastic ones. In [4], the effect of a 
cubic damping characteristic on the system is investigated under the steady-state sinusoidal base input. 
The analytical solutions are obtained using the harmonic balance method and validated with direct 
numerical integration. In [7], the suspension system with cubic nonlinear damping and spring under 
multi-frequency periodic excitation from the road surface is investigated for possible chaotic motion. 
In the case of stochastic base excitation, [8] investigates an SDOF quarter-car model with the signum 
function of damping subjected to white or colored noise excitation. The Fokker-Planck-Kolmogorov 
(FPK) equation is expanded in terms of generalized Hermite polynomials and subsequently solved by 
a Galerkin method. In [9], the considered damping effect is asymmetrical, and the system is excited by 
the road roughness of ISO standard. The mean displacement of the sprung mass is numerically 
investigated. 

Recently, a higher-order stochastic averaging (HOSA) procedure using the FPK equation was 
developed by Anh et al. [10], [11] and then applied to Van der Pol oscillator [12], mono-stable 
Duffing piezoelectric energy harvesting system under white noise excitation [13]. The key factor of 
HOSA is the transient response, stability, and reliability of the systems, and the intrinsic nonlinearity 
in the original system is retained in the averaged system [13]. Until now, no extension of HOSA has 
been performed to analyze dynamical systems including both nonlinear damping and stiffness. 

In the paper, HOSA is further applied to the SDOF quarter-car model with nonlinear damping 
and stiffness under white noise excitation. The outline of this paper is organized as follows. The 
implementation of the procedure for this model is presented in Section 2. The analytical expression of 
the first-, second-, and third-order probability density functions (PDFs) are also given in this section. 
In Section 3, numerical examination is carried out, and the accuracy of the approximate responses is 
verified by the result of the Monte-Carlo method. The conclusion is presented in Section 4. 

2. Application of high order averaging method to vehicle suspension with nonlinear 
stiffness and damping 

Consider an SDOF quarter-car model with a nonlinear spring and a nonlinear damper [7] as 
shown in Figure 1.   

 
Figure 1. Single DOF quarter-car suspension model 

The motion equation of the system in terms of the suspension travel variable is  

  (1) 

!"τ#
$

%"τ#

&"τ#

'! '"

(

#$%&'E'&)*

+
)*
,&*
-E
.

L0
.&*
N

+
)*
,&*
-E
.

2E
3
0&
*N

4&
*-
E.

L0
.&*
N

5&.-

$

4&
*-
E.

2E
3
0&
*N

! "

!"
!

# ! # !"

! " !" !"# $ $ % " % " #&
! ! !τ τ τ

 + + + + = − 
 

!!

Fig. 1. Single DOF quarter-car suspension model

The motion equation of the system in terms of the suspension travel variable is

M
d2x
dτ2 + c1

dx
dτ

+ c3

(
dx
dτ

)3

+ k1x + k3x3 = −Mz̈, (1)

where the over dots denote the derivatives with respect to time τ, M is the sprung mass,
k1 and k3 are the linear elastic coefficient and nonlinear cubic stiffness coefficient of the
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spring, c1 and c3 are linear damping coefficient and nonlinear damping coefficient, re-
spectively, z̈ is the base excitation, y is the vertical displacement of the sprung mass and
x = y − z is the relative displacement (suspension travel) between the sprung mass and
wheel. Let’s set

t = ωnτ, ω2
n =

k1

M
, ελ1 =

c1

2Mωn
, ελ3 =

c3

2M
ωn, εβ3 =

k3

Mω2
n

, ω2
0 = 1. (2)

Eq. (1) is transformed to the following form

ẍ + ω2
0x = ε f (x, ẋ) +

√
εσξ (t) , (3)

where the over dots now denote derivatives with respect to dimensionless time t,

f (x, ẋ) = −
(
2λ1 ẋ + 2λ3 ẋ3 + β3x3) , (4)

and −z̈/ω2
n =

√
εσξ (t), σ is the white noise intensity, the small parameter ε, 0 < ε < 1,

represents the weak excitation, the ξ (t) represents the excitation acceleration being a zero
mean Gaussian white noise process with unit intensity

E (ξ (t̄) ξ (t̄ + τ̄)) = δ (τ̄) . (5)

The operator E denotes the mathematical expectation, δ (τ̄) is the Dirac–Delta func-
tion. Without loss of generality, the small parameter ε is also added to the restoring and
damping elements, and the solution of the corresponding linear system (3) (equivalent to
ε = 0) has the form

x (t) = a cos ϕ, ẋ (t) = −aω0 sin ϕ, ϕ = ω0t + φ, (6)

where a is the amplitude and φ is the phase angle. In the linear case, they are constants.
Otherwise, they are functions of time a(t), ϕ(t) in the nonlinear case. Following HOSA
[11, 13], the system of Ito stochastic differential equations for amplitude and full phase
can be obtained from Eq. (3)

da (t) = εK1(a, ϕ)dt −
√

ε
σ

ω
sin ϕdB (t) ,

dϕ (t) = (ω + εK2(a, ϕ))dt −
√

ε
σ

aω
cos ϕdB (t) ,

(7)

where B(t) is a Wiener process, ξ(t) = dB(t)/dt, and

K1(a, ϕ) =


σ2

4aω2
0
− λ1a − 3

4
a3λ3ω2

0 +

(
λ1a +

σ2

4aω2
0
+ a3λ3ω2

0

)
cos 2ϕ

+
β3

4ω0
a3 sin 2ϕ +

β3

8ω0
a3 sin 4ϕ − 1

4
a3λ3ω2

0 cos 4ϕ

 ,

K2(a, ϕ) =


3β3

8ω0
a2 −

(
λ1 +

σ2

2a2ω2
0
+

1
2

a2λ3ω2
0

)
sin 2ϕ +

β3

2ω0
a2 cos 2ϕ

+
β3

8ω0
a2 cos 4ϕ +

1
4

a2λ3ω2
0 sin(4ϕ)

 .

(8)
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Accordingly, the FPK equation, written for the PDF of amplitude and phase W(a, ϕ),
has the form

ω0
∂W
∂ϕ

= −ε
∂

∂a
(K1(a, ϕ)W)− ε

∂

∂ϕ
(K2(a, ϕ)W)

+
ε

2

[
∂2

∂a2 (K11(a, ϕ)W) + 2
∂2

∂a∂ϕ
(K12(a, ϕ)W)+

∂2

∂ϕ2 (K22(a, ϕ)W)

]
,

(9)

where K1(a, ϕ), K2(a, ϕ) are given by Eq. (8) and

K11(a, ϕ) = σ2 sin2 ϕ/ω2
0, K12(a, ϕ) = σ2 sin ϕ cos ϕ/(a2ω2

0),

K22(a, ϕ) = σ2 sin2 ϕ/ω2
0,

(10)

Then the approximate PDF of Eq. (9) is determined in the form of a series with respect
to the small parameter as follows

W(a, ϕ) = W0(a)
{

1 + ε [W10(a) + W11(a, ϕ)] + ε2 [W20(a) + W22(a, ϕ)] + . . .
}

, (11)

where W0(a), W10(a), W20(a) are functions of only a; W11(a, ϕ), W22(a, ϕ) are arbitrary
functions of (a, ϕ). Substituting (11) into (9) and comparing the coefficients of ε0, ε1, ε2, . . .
in both sides of the obtained result, yields

ε0 : ω0
∂W0(a, ϕ)

∂ϕ
= 0, (12)

ε1 : ω0
∂W1

∂ϕ
=− ∂

∂a
(K1W0)−

∂

∂ϕ
(K2W0)+

1
2

[
∂2

∂2a
(K11W0) + 2

∂2

∂a∂ϕ
(K12W0)+

∂2

∂2ϕ
(K22W0)

]
,

(13)

ε2 : ω0
∂W2

∂ϕ
=− ∂

∂a
(K1W1)−

∂

∂ϕ
(K2W1)+

1
2

[
∂2

∂2a
(K11W1)+2

∂2

∂a∂ϕ
(K12W1)+

∂2

∂2ϕ
(K22W1)

]
.

(14)

It is noted that W0(a) is determined from the first-order averaging procedure corre-
sponding to Eq. (12) for the order of ε0. One has

∂

∂a

[(
σ2

4aω2
0
− λ1a − 3

4
a3λ2ω2

0

)
W0(a)

]
− 1

2
∂2

∂a2

[
σ2

2ω2 W0(a)
]
= 0, (15)

which gives the first-order PDF for amplitude

W0(a) = Ca exp
{
−
(

λ1 +
3
4

a2λ3ω2
0

)
2ω2

0
σ2 a2

}
. (16)

This shows that W0(a) contains all coefficients of linear terms, say λ1 and ω0, as
well as that of the cubic damping terms λ3, but excludes the coefficient β3 of the cubic
stiffness. Thus, the effect of the cubic stiffness is lost during the implementation of the
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first-order stochastic averaging procedure. That is the major disadvantage of this proce-
dure.

Next, substituting (8), (10) and (16) into (13) and integrating this equation with re-
spect to the variable ϕ leads to

W1(a, ϕ) = W0(a) [W10(a) + W11(a, ϕ)] , (17)

where

W10(a) = (27a10β3λ2
3ω6

0)/(160σ4)− (a6β3λ3ω2
0)/(2σ2)

− (3a4β3λ1)/(8σ2) + (9a8β3λ1λ3ω4
0)/(64σ4),

(18)

W11(a, ϕ) = −
a4β3

(
3a2λ3ω2

0 + 2λ1
)
(4 cos(2ϕ) + cos(4ϕ))

16σ2

+
a4λ3ω3

0
(
3a2λ3ω2

0 + 2λ1
)
(4 sin(2ϕ) + sin(4ϕ))

8σ2 .

(19)

Next, substituting (8), (10) and (16) into (14) and integrating this equation with re-
spect to the variable leads to the second-order PDF

W2(a, ϕ) = W0(a) [W20(a) + W22(a, ϕ)] , (20)

where

W20(a) =



(a16(−2871β2
3λ3

3ω8
0 + 9180λ5

3ω14
0 ))/(40960σ6)

−(a10(−10980λ1β2
3λ3ω2

0σ2 + 97680λ1λ3
3ω8

0σ2))/(25600σ6)

−(a4(−11520λ2
1λ3ω2

0σ4 + 31680λ2
3ω2

0σ6))/(10240σ6)

+(a12(−1240β2
3λ2

1λ3ω4
0 + 10575β2

3λ2
3ω4

0σ2 + 4080λ2
1λ3

3ω10
0 − 94140λ4

3ω10
0 σ2))/(30720σ6)

−(a8(−2800β2
3λ2

1σ2 + 2250β2
3λ3σ4 + 24640λ2

1λ2
3ω6

0σ2 − 152280λ3
3ω6

0σ4))/(20480σ6)

+(a14(−3828λ1β2
3λ2

3ω6
0 + 12240λ1λ4

3ω12
0 ))/(35840σ6)− (3a2λ1λ3)/4 + (6a6λ1λ2

3ω4
0)/σ2


, (21)

W22(a, ϕ) =

 P1(a) sin(2ϕ) + P2(a) sin(4ϕ) + P3(a) sin(6ϕ)

+P4(a) cos(2ϕ) + P5(a) cos(4ϕ) + P6(a) cos(6ϕ) + P7(a) cos(8ϕ)

 , (22)

P1(a) =


−(324β3a16λ4

3ω12
0 + 486β3a14λ1λ3

3ω10
0 + 180β3a12λ2

1λ2
3ω8

0 − 2040β3a12λ3
3ω8

0σ2

−2440β3a10λ1λ2
3ω6

0σ2 − 720β3a8λ2
1λ3ω4

0σ2 + 1500β3a8λ2
3ω4

0σ4 + 720β3a6λ1λ3ω2
0σ4

+720β3a4λ3σ6)/(1280ω1
0σ6)

 , (23)

P2(a) =

 −(162β3a16λ4
3ω12

0 + 243β3a14λ1λ3
3ω10

0 + 90β3a12λ2
1λ2

3ω8
0 − 210β3a12λ3

3ω8
0σ2

−140β3a10λ1λ2
3ω6

0σ2 + 300β3a8λ2
3ω4

0σ4 + 240β3a6λ1λ3ω2
0σ4 + 120β3a4λ3σ6)/(2560ω1

0σ6)

 , (24)

P3(a) = −(180β3a8λ2
3ω4

0σ4 + 120β3λ1a6λ3ω2
0σ4)/(3840ω1

0σ6), (25)
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P4(a) =



−(162a16β2
3λ3

3ω9
0 + 243a14β2

3λ1λ2
3ω7

0 + 90a12β2
3λ2

1λ3ω5
0 − 840a12β2

3λ2
3ω5

0σ2

+4680a12λ4
3ω11

0 σ2 − 980a10β2
3λ1λ3ω3

0σ2 + 6240a10λ1λ3
3ω9

0σ2 − 280a8β2
3λ2

1ω0σ2

+150a8β2
3λ3ω0σ4 + 2080a8λ2

1λ2
3ω7

0σ2 − 14160a8λ3
3ω7

0σ4 − 11280a6λ1λ2
3ω5

0σ4−

−1920a4λ2
1λ3ω3

0σ4 + 5280a4λ2
3ω3

0σ6 + 960a2λ1λ3ω0σ6)/(1280ω1
0σ6)


, (26)

P5(a) =



(735a12β2
3λ2

3ω5
0σ2 − (243a14β2

3λ1λ2
3ω7

0)/2 − 45a12β2
3λ2

1λ3ω5
0 − 81a16β2

3λ3
3ω9

0

+360a12λ4
3ω11

0 σ2 + 910a10β2
3λ1λ3ω3

0σ2 + 480a10λ1λ3
3ω9

0σ2 + 280a8β2
3λ2

1ω0σ2

−180a8β2
3λ3ω0σ4 + 160a8λ2

1λ2
3ω7

0σ2+

+600a8λ3
3ω7

0σ4 + 480a6λ1λ2
3ω5

0σ4 − 240a4λ2
3ω3

0σ6)/(2560ω1
0σ6)


, (27)

P6(a) =


(270a12β2

3λ2
3ω5

0σ2 + 1080a12λ4
3ω11

0 σ2 + 360a10β2
3λ1λ3ω3

0σ2 + 1440a10λ1λ3
3ω9

0σ2

+120a8β2
3λ2

1ω0σ2 − 90a8β2
3λ3ω0σ4 + 480a8λ2

1λ2
3ω7

0σ2 − 720a8λ3
3ω7

0σ4

−240a6λ1λ2
3ω5

0σ4)/(3840ω1
0σ6)

 , (28)

P7(a) =

 (45a12β2
3λ2

3ω5
0σ2 + 180a12λ4

3ω11
0 σ2 + 60a10β2

3λ1λ3ω3
0σ2 + 240a10λ1λ3

3ω9
0σ2

+20a8β2
3λ2

1ω0σ2 − 15a8β2
3λ3ω0σ4 + 80a8λ2

1λ2
3ω7

0σ2 − 60a8λ3
3ω7

0σ4)/(5120ω1
0σ6)

 . (29)

Finally, substituting (16), (17), and (20) into (11) one obtains the third-order PDF

W(a, ϕ) = Ca exp

(
−

2ω2
0

σ2 a2λ1 −
3ω4

0
2σ2 a4λ3

) [
1 + εW10(a) + εW11(a, ϕ) + ε2W20(a) + ε2W22(a, ϕ)

]
,

(30)

where W10(a), W11(a, ϕ), W20(a), W22(a, ϕ), C are given in (18), (19), (21), (22) and C is the
normalization coefficient determined from the condition

∞∫
0

da
2π∫
0

W(a, ϕ)dϕ = 1. (31)

Using the obtained third-order PDF (30), the second moment of the displacement
and velocity of the sprung mass in Eq. (3) can be calculated by, respectively

〈
x2〉 = 1

C

∞∫
0

da
2π∫
0

a2 cos2 ϕW(a, ϕ)dϕ, (32)

〈
ẋ2〉 = 1

C

∞∫
0

da
2π∫
0

a2ω2
0 sin2 ϕW(a, ϕ)dϕ. (33)

In the next section, the first-, second-, and third-order stationary joint PDFs will be
investigated and the accuracy of the corresponding responses will be verified by Monte
Carlo simulations.
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3. NUMERICAL RESULTS AND DISCUSSION

In this section, the numerical examination of the suspension system (3) is carried out
where the first-, second-, and third-order PDFs given by (17), (20), (30) will be analyzed,
as well as the corresponding mean-square displacements of the sprung mass. Besides,
the accuracy of those approximate displacements will be compared to the ones obtained
by the Monte Carlo method. The input parameters are taken as presented in Table 1, the
small parameter is ε = 0.1, the vehicle velocity is v = 14 (m/s), and the road rough-
ness is adapted from ISO 8608:2016 [14] which leads to various values of the excitation
intensity σ.

Table 1. Input parameter values

Nomenclature Parameter Value

Sprung mass (kg) M 240
Linear stiffness coefficient (N/m) k1 1.5 × 104

Nonlinear stiffness coefficient (N/m3) k3 1.6 × 104

Linear damping coefficient (Ns/m) c1 7000
Nonlinear damping coefficient (Ns3/m3) c3 50

Time histories of the displacements of the sprung mass corresponding to the road
classes A and H (see Table 2) are exhibited in Figs. 2 and 3 using the Monte Carlo method.
The maximum displacement amplitude is about 0.015 as σ = 53.8× 10−4 (Fig. 2), and 0.82
as σ = 3445.2× 10−4 (Fig. 3). The mean-square values of the displacement related to those
road classes, say

〈
x2〉

MC, are presented in Table 2.Higher-order stochastic averaging for investigating a vehicle suspension system 
 with nonlinear damping and stiffness 

11 

 
  

Fig. 2. Time histories of the displacement
response with σ = 53.8 × 10−4

Higher-order stochastic averaging for investigating a vehicle suspension system 
 with nonlinear damping and stiffness 

11 

 
  

Fig. 3. Time histories of the displacement
response with σ = 3445.2 × 10−4



Higher-order stochastic averaging for investigating a vehicle suspension system with nonlinear damping and stiffness 351

Table 2. The errors of the mean-square displacement with various values of σ

Road class
σ

×10−4

〈
x2〉

MC
×10−4

〈
x2〉

1
×10−4

Error
(%)

〈
x2〉

2
×10−4

Error
(%)

〈
x2〉

3
×10−4

Error
(%)

A (Very good) 53.80 0.121 0.1210 0.4176 0.1210 0.4176 0.1210 0.4179
B (Good) 107.59 0.482 0.4820 0.1507 0.4820 0.1493 0.4820 0.1493
C (Average) 215.19 1.930 1.930 0.1425 1.930 0.1367 1.930 0.1367
D (Poor) 430.60 7.710 7.720 0.1412 7.720 0.1180 7.720 0.1181
F 861.30 30.830 30.89 0.1823 30.86 0.0895 30.86 0.0900
G 1722.6 122.86 123.26 0.3269 122.81 0.0427 122.81 0.0376
H 3445.2 483.82 488.62 0.9926 481.56 0.4673 481.88 0.4015

Figs. 4 and 5 present the contours of the third-order PDF curve W(a, ϕ) given by
Eq. (30) in the aW-plane with ten values of the linear damping coefficient λ1 and ten
values of the nonlinear damping coefficient λ3, respectively. The considered road rough-
ness is of class F, and ω0 = 1, β3 = 0.1. In general, as λ1 decreases and λ3 is unchanged
(see Fig. 4), the W(a, ϕ) curve gets wider and the peaks move forward strongly along the
a-axis. On the other hand, as λ3 varies and λ1 is unchanged (see Fig. 5), the influence
of the cubic damping on the shape of the W(a, ϕ) curve is not much. It is seen that the
third-order PDF curve has the same shape as the Rayleigh distribution.
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σ = 86.13 × 10−3 and λ1 varies
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Fig. 5. W (a, ϕ) contours on the aW-plane with
σ = 86.13 × 10−3 and λ3 varies

As seen in Table 2, when the white noise intensity σ increases in the range of (53.80–
3445.2)×10−4, referring to the road roughness from a very good state to a very poor
state, the approximate mean-square displacements corresponding to the first-, second-,
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and third-order HOSA, say
〈

x2〉
1,
〈

x2〉
2,
〈

x2〉
3, also increase in the range (0.121–488.62)

×10−4, respectively, which are closed to the Monte Carlo results. In detail, the maximum
errors of

〈
x2〉

1,
〈

x2〉
2,
〈

x2〉
3 are 0.9926%, 0.4673%, and 0.4015%, respectively. For road

classes from A to D, the accuracies of
〈

x2〉
2,
〈

x2〉
3 are the same, and the accuracy of

〈
x2〉

3
is better than that of

〈
x2〉

2 as the road roughness becomes large. Meanwhile, the accuracy
of
〈

x2〉
1 is always less than that of

〈
x2〉

2,
〈

x2〉
3 as the road roughness varies from class B.

4. CONCLUSIONS

In the paper, the HOSA is applied to the analysis of an SDOF quarter-car model with
cubic damping and stiffness subjected to a white noise base excitation. The works and
conclusions can be summarized as follows:

The HOSA procedure for determining the second- and third-order PDFs is estab-
lished. It is shown that the cubic stiffness term is lost in the first-order averaging proce-
dure but preserved in the second- and third-order HOSA.

Numerical examination with the variations of linear and nonlinear damping coeffi-
cients regarding ISO road roughness classes is carried out. The Monte Carlo simulation
is also performed to determine the mean-square values of the sprung mass displacement
which is used as the exact solution for comparing with the approximate ones obtained
from the first-, second-, and third-order stochastic averaging procedures. The results
show that the accuracy of the third-order HOSA is the best, followed by the second-order
one, and the first-order averaging procedure is the last.

The high accuracy of the HOSA shows its ability to investigate wider applications in
other engineering problems.
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