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Abstract. Vibration of micro-scale composite beams reinforced by carbon nanotubes (CN-
TRC beams) carrying a moving concentrated load is studied considering CNT agglomer-
ation. The Eshelby–Mori–Tanaka method is adopted to predict the elastic moduli of the
CNTRC. The modified couple stress theory and a refined high-order theory are employed
to establish the mathematical model. The governing equation in terms of finite element
analysis is established and solved by a direct integration method. The effects of the CNT
reinforcement, the agglomeration of CNTs, the size scale parameter, and the load speed
on the vibration of the beams are investigated in detail.
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1. INTRODUCTION

Carbon nanotubes (CNTs) with the combination of high surface ratio, ultra-
lightweight, and high mechanical strength make them materials with diverse applica-
tion potential. One of them is excellent reinforcement for composite materials. However,
CNTs have a very high aspect ratio and low stiffness in bending, CNT agglomeration
can occur within a polymeric matrix. To consider the agglomeration effect on the proper-
ties of CNT composites, a two-parameter micromechanical model was proposed by Shi
et al. [1], and this model was employed to CNT-reinforced composite (CNTRC) struc-
tures. Heshmati and Yas [2] used the two-parameter model in combination with the
Mori–Tanaka (M-T) scheme to determine the effective properties of randomly oriented
CNTRC beams. The authors concluded that the CNT agglomeration exerts a significant
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weakening effect in the composites. Most recently, Tran and Nguyen [3] studied the dy-
namics of sandwich CNTRC inclined beams traversed by a moving mass, considering
the CNT agglomeration. From the numerical investigations, the authors concluded that
the CNT agglomeration has a significant impact on the beam dynamics, and the agglom-
eration should not be ignored in the dynamic analysis of the CNTRC beam structure.

It has been shown that the small size effect is important in predicting the response
of micro-scale structural elements. In order to capture the size effect, various continuum
theories, such as the couple stress elasticity, nonlocal elasticity, strain gradient elastic-
ity, and surface elasticity have been proposed for studying the mechanical behavior of
micro-scale structures [4]. The couple stress theory with two classical and two additional
material constants was proposed in [5, 6] for isotropic elastic solids. However, the de-
termination of the two constants in the theory is very difficult, and this limits its appli-
cations. To amend this limitation, Yang et al. [7] proposed the so-called modified couple
stress theory (MCST), which requires one additional material scale parameter only. Using
MCST, Mohammadimehr et al. [8] presented the vibration analysis of a micro-scale com-
posite beam reinforced by single-walled carbon nanotubes (SWCNTs), considering four
types of CNT distribution. It has been shown that the microcomposite beam moves to-
ward greater stability when increasing the size scale parameter. Free vibration of CNTRC
microbeams was explored by Civalek et al. [9], also considering four types of CNT dis-
tribution in the polymeric matrix. The microstructure-dependent differential equations
are derived in the basis of MCST, and then solved via the Navier solution. The MCST
was employed in combination with Euler–Bernoulli and Timoshenko beam theories by
Al-Shewailiah and Al-Shujairi [10] to study the bending of FG-SWCNTRC microbeams,
considering the porosities. It is worth noting that CNT agglomeration was not considered
in Refs. [8–10]. Recently, the Timoshenko beam theory and the MCST were adopted by
Esen [11] to explore the moving load problem of micro-scale homogeneous microbeams
under a moving load. The finite element method (FEM) is used by the author to predict
the dynamic response of the microbeam.

In this paper, the vibration of micro-scale CNTRC beams carrying a moving concen-
trated load is studied, considering the effect of CNT agglomeration. The effective elastic
properties of the beam are estimated by the M-T approach (also known as the Eshelby–
Mori–Tanaka model). The basis equations for the microbeams are derived on the basis
of the MCST and a refined higher-order beam theory. A novel beam element is derived
and employed to construct the discretized governing equation. Vibration characteristics
are predicted using a direct integration method. The influence of the CNT reinforcement,
the agglomeration of CNTs, the scale parameter and the load parameter on the vibration
is investigated.
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2. MATHEMATICAL MODEL FORMULATION

2.1. Micro-scale CNTRC beam under a moving concentrated load

A simply supported (S-S) microbeam reinforced by SWCNTs with length L, section
(b× h), carrying a concentrated load P is considered. The microbeam is placed in a Carte-
sian system (x, z) with the x-axis being on the mid-plane, and the z-axis directs upward.
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2. Theoretical formulation 
2.1. Microbeams reinforced with agglomerated CNTs 

A simply supported microbeam with length L, width b and height h is considered in this paper.  
The Cartesian coordinate system  is introduced such that the x-axis is on the mid-plane, and the 
z-axis is perpendicular to the mid-plane, and it directs upward. A microbeam reinforced by single walled 
carbon nanotubes (SWCNTs).  

 

 

 

 

 

 

 

 

Fig.1. RVE with Eshelby cluster model of agglomeration of CNTs 

To consider the influence of CNTs agglomeration, the two-parameter micromechanical model of 
Shi et al. [1] is adopted herein. In the representative volume element (RVE), V, with Eshelby cluster 
model of CNT agglomeration, some concepts are included as follows:  denotes the volume of 
clusters in the RVE,  is the total volume of CNTs in the RVE, and  are the volumes of 
CNTs inside and outside of the clusters, respectively. So, the total volume of CNTs in the RVE is the 
sum of two parts as: 

  (1) 

The CNT agglomeration is described by two following parameters: 

 

 
(2) 

The effective bulk and shear moduli of the clusters , and those of the region outside the clusters 
may be calculated by [1]: 

 

 (3) 

with  is CNT volume fraction in the composite, and 
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Fig. 1. Distribution of CNTs in RVE

Following the two-parameter model by Shi [1], we consider a representative volume
element (RVE), V, with the non-uniform distribution of CNTs as shown in Fig. 1. There
are more concentrated CNT domains, and Shi [1] assumed those domains to be spherical
in shape, or considered as clusters, and of course the material properties in them are also
different from the surrounding regions. Some concepts are included as follows: Vcluster

denotes the volume of clusters in the RVE, Vr is the total volume of CNTs in the RVE,
Vcluster

r and Vr are the volumes of CNTs inside the clusters and in the polymer matrix,
respectively. So, we will have

Vr = Vcluster
r + Vr.

Two agglomeration parameters are introduced to evaluate the degree of convergence
of CNTs

ξ =
Vcluster

V
, ζ =

Vcluster
r
Vr

, 0 ≤ ξ, ζ ≤ 1.

Let the volume fraction of CNT in the composite be VCNT = Vr/V and assume that
CNTs are transversely isotropic. The effective bulk modulus Kin and the shear modulus
Gin of the clusters, and those of the matrix Kout, Gout are calculated as follows [1]
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Kin = Km +
VCNTζ (δr − 3Kmαr)

3 (ξ −VCNTζ + VCNTζαr)
,

Gin = Gm +
VCNTζ (ηr − 2Gmβr)

2 (ξ −VCNTζ + VCNTζβr)
,

Kout = Km +
VCNT (1− ζ) (δr − 3Kmαr)

3 [1− ξ −VCNT (1− ζ) + VCNT (1− ζ) αr]
,

Gout = Gm +
VCNT (1− ζ) (ηr − 2Gmβr)

2 [1− ξ −VCNT (1− ζ) + VCNT (1− ζ) ζβr]
,

(1)

with

αr =
3 (Km + Gm) + kr − lr

3 (Gm + kr)
,

δr =
1
3

[
nr + 2lr +

(2kr + lr) (3Km + 2Gm − lr)
Gm + kr

]
,

βr =
1
5

(
4Gm + 2kr + lr

3 (Gm + kr)
+

4Gm

Gm + pr
+

2 [Gm (3Km + Gm) + Gm (3Km + 7Gm)]

Gm (3Km + Gm) + mr (3Km + 7Gm)

)
,

ηr =
1
5

[
2
3
(nr − lr)+

8Gm pr

Gm + pr
+

8mrGm (3Km + 4Gm)

3Km (mr + Gm) + Gm (7mr + Gm)
+
(2kr − lr) (2Gm + lr)

3 (Gm + kr)

]
.

(2)

In Eqs. (1) and (2), Km =
Em

3 (1− 2υm)
, Gm =

Em

2 (1 + υm)
are, respectively, the bulk

and shear moduli of the polymer matrix. The subscripts m and r stand for the polymer
and CNT reinforcement; kr, lr, mr, nr, pr denote the Hill elastic constants of CNTs. The
effective elastic moduli K and G of the composite estimated by the M-T homogenization
method are as follows [1]

K = Kout

1 +
ξ

(
Kin

Kout
− 1
)

1 + α (1− ξ)

(
Kin

Kout
− 1
)
, G = Gout

1 +
ξ

(
Gin

Gout
− 1
)

1 + β (1− ξ)

(
Gin

Gout
− 1
)
,

where α =
1 + υout

3 (1− υout)
, β =

8− 10υout

15 (1− υout)
, υout =

(3Kout − 2Gout)

2 (3Kout + Gout)
. For the case of fully

random distribution of CNTs, i.e., no agglomeration occurs in the matrix phase, the ef-
fective elastic moduli K and G predicted by the M-T method are [1]

K = Km +
VCNT (δr − 3Kmαr)

3 (cm + VCNTαr)
, G = Gm +

VCNT (ηr − 2Gmβr)

2 (cm + VCNT βr)
,

where cm = 1− VCNT. The effective elastic modulus (E) and Poisson’s ratio (ν) of the
microbeam are calculated as

E =
9KG

3K + G
, υ =

3K− 2G
6K + 2G

.
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Meanwhile, the mixing rule is applied for the mass density as [12]

ρ = (ρCNT − ρm)VCNT + ρm,

with ρCNT, ρm are, respectively, the density of the CNT reinforcement and the polymer
matrix.

2.2. Strain energy

The elastic strain (U) of an elastic solid with a region V evaluated by the MCST is as
follows [7]

U =
1
2

∫
V

(σ : ε + m : χ)dV =
1
2

∫
V

(
σijε ij + mijχij

)
dV, i, j = 1, 2, 3 (3)

where σ is the stress tensor; ε is the strain tensor, χ is the symmetric curvature tensor,
and m is the deviatoric part of the couple stress. These tensors are defined as follows

ε =
1
2

[
∇u + (∇u)T

]
or ε ij =

1
2
(
ui,j + uj,i

)
,

σ = λtr (ε) I + 2Gε or σij = λεkkδij + 2Gε ij,

χ =
1
2

[
∇θ+ (∇θ)T

]
or χij =

1
2
(
θi,j + θj,i

)
,

m = 2l2Gχ or mij = 2l2Gχij.

(4)

In the above equation, u denotes the vector of displacements; l is the material-length-

scale parameter; θ =
1
2

curl (u) or θi =
1
2

eijkuk,j is the rotation vector, and λ, G are the
Lame’s constants.

2.3. Mathematical formulation

According to the refined third-order shear deformation theory [13], displacements of
a point inside the microbeam in the x- and z-directions, u(x, z, t), w(x, z, t), respectively,
are given by

u = u0(x, t) +
z
4
(5φ + w0,x)−

5z3

3h2 (φ + w0,x), w = w0(x, t), (5)

where u0 (x, t) , w0 (x, t) denote the longitudinal and transversal displacements of a point
on the x-axis; φ is the sectional rotation. In Eq. (5), the subscript comma denotes the
derivative with respect to the variable that follows.

Traditionally, the beam deformation is expressed in terms of three variables such as
u, w, φ. However, to improve the effectiveness of the finite element formulation which
will be derived later, this study employs the transverse shear rotation γ0, defined as γ0 =
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φ + w0,x to replace the rotation φ. Using the transverse shear rotation, one can rewrite the
displacement field in (5) as follows

u = u0(x, t) + z
(

5
4

γ0 − w0,x

)
− 5z3

3h2 γ0, w = w0(x, t). (6)

From Eqs. (4) and (6), one can obtain the normal and shear strains in the form

εxx = u,x = u0,x + z
(

5
4

γ0,x − w0,xx

)
− 5z3

3h2 γ0,x,

γxz = u,z + w,x = 5
(

1
4
− 1

h2 z2
)

γ0.
(7)

The rotation vectors are obtained as follows

θy =
1
2
(u,z − w,x) =

1
2

(
5
4

γ0 −
5
h2 γ0z2 − 2w0,x

)
,

θx =
1
2
(
w,y − v,z

)
= 0,

θz =
1
2
(
v,x − u,y

)
= 0.

Then, the symmetric curvature tensors are calculated through the rotation vectors

χxy =
1
2
(
θx,y + θy,x

)
=

1
4

(
5
4

γ0,x −
5
h2 γ0,xz2 − 2w0,xx

)
,

χyz =
1
2
(
θz,y + θy,z

)
= − 5

2h2 γ0z,

χxx = χyy = χzz = χzx = 0.

(8)

The classical and couple stresses for the CNTRC microbeams are expressed as

σxx = Eεxx, τxz = G γxz, mxy = myx = 2Gl2χxy, myz = mzy = 2Gl2χyz. (9)

By inserting Eqs. (7), (8), and (9) into Eq. (3), the strain energy of the microbeams
can be given as

U =
1
2

∫
V

(
σxxεxx + τxzγxz + 2mxyχxy + 2myzχyz

)
dV

=
1
2

L∫
0

[
A11u2

0,x+2A12u0,x

(
5
4

γ0,x−w0,xx

)
+A22

(
5
4

γ0,x−w0,xx

)2

− 10
3h2 A34u0,xγ0,x

− 10
3h2 A44γ0,x

(
5
4

γ0,x−w0,xx

)
+

25
9h4 A66γ2

0,x + 25
(

1
16

B11−
1

2h2 B22+
1
h4 B44

)
γ2

0

+ C11

(
5
8

γ0,x−w0,xx

)2

−C22
5
h2 γ0,x

(
5
8

γ0,x−w0,xx

)
+C22

25
h4 γ2

0+C44
25
4h4 γ2

0,x

]
dx

(10)
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where A11, A12, . . . , A66, B11, B22, B44 and C11, C22, C44 are the rigidity coefficients,
defined as

(A11, A12, A22, A34, A44, A66) = bE
h/2∫
−h/2

(
1, z, z2, z3, z4, z6

)
dz,

(B11, B22, B44) = bG
h/2∫
−h/2

(
1, z2, z4

)
dz,

(C11, C22, C44) = bGl2
h/2∫
−h/2

(
1, z2, z4

)
dz.

The kinetic energy T is calculated as

T =
1
2

L∫
0

∫
A

ρ
(
u̇2 + ẇ2)dAdx

=
1
2

L∫
0

[
I11
(
u̇2

0 + ẇ2
0
)
+ 2I12u̇0

(
5
4

γ̇0 − ẇ0,x

)
+ I22

(
5
4

γ̇0 − ẇ0,x

)2

− 10
3h2 I34u̇0γ̇0 −

10
3h2 I44γ̇0

(
5
4

γ̇0 − ẇ0,x

)
+

25
9h4 I66γ̇2

0

]
dx

(11)

with I11, I12, . . . , I66 are the moments of mass and they are defined as

(I11, I12, I22, I34, I44, I66) = b
h/2∫
−h/2

ρ
(

1, z, z2, z3, z4, z6
)

dz.

Note that the over dot in Eq. (11) and in the below denotes the derivative with respect
to time.

The potential of the moving load (V) is of the form

V = −
L∫

0

Pw0(x, t)δ (x− vt)dx,

where δ(.) is the delta Dirac function; x is the abscissa of the moving load, measured from
the left support.
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3. BEAM ELEMENT FORMULATION

A two-node beam element with length a is considered. The vector of nodal degrees
of freedom (d) for the element is of the form

d = {du dw dγ}T , (12)

where

du = {u01 u02}T , dw = {w01 w0x1 w02 w0x2}T , dγ = {γ01 γ02}T , (13)

are, respectively, the vectors of values of u0, w0 and γ0 at the two nodes. The superscript
‘T’ in Eqs. (12), (13), and in the below implies the transpose of a vector or a matrix. The
Lagrange and cubic Hermite functions are used to interpolate the displacements and
shear rotation, specifically as follows

u0 = Ndu, w0 = Hdw, γ0 = Ndγ,

where N = {N1 N2} , H = {H1 H2 H3 H4} in which

N1 = 1− x
a

, N2 =
x
a

,

H1 = 1− 3
( x

a

)2
+ 2

( x
a

)3
, H2 = x− 2

x2

a
+

x3

a2 ,

H3 = 3
( x

a

)2
− 2

( x
a

)3
, H4 = − x2

a
+

x3

a2 .

With the interpolations, the strain energy in Eq. (10) is rewritten as follows

U =
1
2

ne

∑ dTkd with k =

 kuu kuw kuγ

kT
uw kww kwγ

kT
uγ kT

wγ kγγ

 , (14)

with ne is the total number of elements; k is the element stiffness matrix. In Eq. (14),
kuu, kuw, . . . , kγγ are the stiffness sub-matrices due to the axial stretching, bending, shear
deformation and their couplings. These sub-matrices are as follows

kuu =

a∫
0

NT
,x A11N,xdx, kww =

a∫
0

HT
,xx (A22 + C11)H,xxdx,

kuw = −2
a∫

0

NT
,x A12H,xxdx, kuγ = 5

a∫
0

(
1
2

NT
,x A12N,x −

2
3h2 NT

,x A34N,x

)
dx,

kwγ = 5
a∫

0

(
−1

2
HT

,xx A22N,x +
2

3h2 HT
,xx A44N,x −

1
4

HT
,xxC11N,x +

1
h2 HT

,xxC22N,x

)
dx,
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kγγ = 25
a∫

0

[
1
16

NT
,x A22N,x −

1
6h2 NT

,x A44N,x +
1

9h4 NT
,x A66N,x

+ NT
(

1
16

B11 −
1

2h2 B22 +
1
h4 B44

)
N +

1
64

NT
,xC11N,x

− 1
8h2 NT

,xC22N,x +
1

4h4 NT
,xC44N,x +

1
h4 NTC22N

]
dx.

The kinetic energy in Eq. (11) can also be written as

T =
1
2

ne

∑ ḋTmḋ with m =

 muu muw muγ

mT
uw mww mwγ

mT
uγ mT

wγ mγγ

 , (15)

with m denotes the mass matrix of the element. The sub-matrices in Eq. (15) have the
following forms

muu =

a∫
0

NT I11Ndx, mww =

a∫
0

(
HT I11H + HT

,x I22H,x

)
dx,

muw = −
a∫

0

NT I12H,xdx, muγ = 5
a∫

0

(
1
4

NT I12N− 1
3h2 NT I34N

)
dx,

mwγ = 5
a∫

0

(
−1

4
HT

,x I22N +
1

3h2 HT
,x I44N

)
dx,

mγγ = 25
a∫

0

NT
(

1
16

I22 −
1

2h2 I44 +
1
h4 I66

)
Ndx.

The governing equation for vibration analysis of the micro-scale beam can be estab-
lished by using the derived element stiffness and mass matrices

MD̈ + KD = Fex, (16)

where D, M, and K are the global vector of nodal displacements, the mass and stiffness
matrices, respectively; Fex is the global vector of nodal external load with the form

Fex =

0 0 . . . 0 0 PH1|xe . . . PH4|xe︸ ︷︷ ︸
elementunder loading

0 0 . . . 0 0


T

xe

. (17)
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Note that only the coefficients corresponding to the element under loading of the
vector Fex are nonzero, and the notation H1|xe . . . H4|xe in Eq. (17) means that the func-
tions Hi (i = 1, . . . , 4) are evaluated at the xe, the current abscissa of the load P with
respect to the left node of the element. Eq. (16) is solved herein by the implicit Newmark
method, namely the average acceleration method.

For the free vibration analysis, the right side of Eq. (16) is set to 0, which leads to

MD̈ + KD = 0. (18)

Assuming a harmonic response, and Eq. (18) leads to the following eigenvalue problem(
K−ω2M

)
D̄ = 0, (19)

with ω is the circular frequency, D̄ is the vibration amplitude. The solution of Eq. (19)
gives the natural frequencies of the microbeam.

4. NUMERICAL APPLICATION

The derived formulations are applied to vibration analysis of a CNTRC microbeam
with simply supported ends. To this end, the following data are used for the matrix
and reinforcement: Em = 2.5 GPa, ρm = 1190 kg/m3, νm = 0.3, ρCNT = 1400 kg/m3 and
elastic constants listed in Table 1. The height of the microbeam is taken as h = 1e−9 m;
a moving load P = ρm ALg with g = 9.81 m/s2 is employed. The fundamental frequency
parameter is normalized by λ = ωL

√
I110/A110 where A110 and I110 are the values of A11

and I11 of microbeam made of pure matrix material, respectively. The dynamic factor

Dd is defined as Dd = max
(

w (L/2, t)
wst

)
, where wst = PL3/48Em I is the maximum

deflection of a pure polymer microbeam under static load P = ρm ALg (with I = bh3/12).
The Newmark method is performed herein for a time step ∆t = ∆T/200, where ∆T is the
time needed for the load to cross the microbeam.

Table 1. The Hill elastic coefficients of CNTs [12]

Radius (A◦) kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)

10 30 10 1 450 1

4.1. Accuracy and convergence

Before conducting numerical calculations, the accuracy and convergence of the de-
rived formula are studied. Table 2 compares the frequency parameters of homogeneous
microbeams made from SiC and Al with l = 17.6 µm; h/l = 2.0 and L/h = 10. Material
properties for Al and SiC are given in [4].
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Table 2. Convergence of element in predicting frequency parameters of homogeneous microbeam

Material
Present

Ref. [4] Error (%)
ne = 2 ne = 4 ne = 6 ne = 8 ne = 10 ne = 20

SiC 0.8492 0.8461 0.8459 0.8459 0.8459 0.8459 0.8336 1.48
Al 0.3576 0.3562 0.3562 0.3561 0.3561 0.3561 0.3393 4.95

It is found that the results predicted by the present formulation are quite close to that
of Ref. [4]. The small difference can be explained by the different beam theories used in
the two works (the Timoshenko beam theory is used in Ref. [4]). A rapid convergence
of the derived beam element in determining the frequency parameters of the micro-scale
beam is also seen in Table 2.

Table 3. Convergence of element in predicting frequency parameters
of randomly oriented CNTRC microbeam

Present
Ref. [14] Error (%)

ne = 2 ne = 4 ne = 6 ne = 8 ne = 10 ne = 20

3.4491 3.4428 3.4424 3.4423 3.4423 3.4423 3.574603 3.84
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Fig. 2. Comparison of the dynamic factor of homogeneous microbeam under a moving load

Table 3 shows the convergence of the derived beam element in predicting the fre-
quency parameter of a randomly oriented CNTRC microbeam with VCNT = 0.075. Sim-
ilar to Table 2, a mesh of only 8 elements is required for predicting the frequencies. It is
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worth noting that Yas and Heshmati [14] need 100 Timoshenko beam elements. The error
in the frequency parameters of the two works can also arise from the different theories
adopted in the two works and the effect of CNT agglomeration is ignored in Ref. in [14].
With this convergence result, a mesh of 8 elements is employed in the below.

Fig. 2 compares the dynamic magnification factor (DMF) of homogeneous microbeam
under a moving load obtained in the present work with that of Esen [11] for various val-
ues of the size scale parameter l. The speed parameter α is defined in accordance with
Ref. [11]. A good agreement between the DMF of the present work and that of Ref. [11] is
noted in Fig. 2. A finite element formulation derived from Timoshenko beam theory was
used to predict the DMF in Ref. [11].

4.2. Free vibration

Table 4 lists the frequency parameters of the CNTRC microbeam with an aspect ra-
tio L/h = 20 for ζ = 1 and different values of the ξ, VCNT and l. According to the
results obtained previously, the stiffness of the microbeam increases as the volume frac-
tion of CNT increases. However, the frequency parameter in Table 4 is not expected to
increase by increasing the VCNT. The frequency parameters of the microbeam increase
sharply only when CNTs agglomeration does not occur (ζ = ξ = 1). On the contrary,
when CNTs agglomeration is severe, e.g. ζ = 1, ξ = 0.1, a small amount of CNTs rein-
forcement will help increase the frequency parameters of the microbeam. On the other
hand, when the amount of CNTs reinforcement is greater, the frequency parameter does
not increase, even it decreases. This phenomenon does not depend on the value of the
size scale parameter l. Table 4 also shows the significant influence of the size scale pa-
rameter on the frequencies of the micro-scale beam. The frequencies are enhanced by

Table 4. The frequency parameters of microbeam for ζ = 1 and different values of ξ, VCNT and l

ζ = 1 VCNT = 0 VCNT = 0.02 VCNT = 0.05 VCNT = 0.1 VCNT = 0.2 VCNT = 0.3

l = 0
ξ = 0.1 0.1419 0.1529 0.1546 0.1548 0.1540 0.1529
ξ = 0.5 0.1419 0.1714 0.1931 0.2097 0.2221 0.2263
ξ = 1 0.1419 0.1792 0.2237 0.2826 0.3735 0.4462

l = 0.25e−9 ξ = 0.1 0.1611 0.1737 0.1757 0.1759 0.1750 0.1737
ξ = 0.5 0.1611 0.1949 0.2196 0.2385 0.2526 0.2575
ξ = 1 0.1611 0.2038 0.2545 0.3216 0.4247 0.5069

l = 0.5e−9
ξ = 0.1 0.2084 0.2249 0.2274 0.2278 0.2265 0.2249
ξ = 0.5 0.2084 0.2525 0.2847 0.3093 0.3277 0.3340
ξ = 1 0.2084 0.2641 0.3302 0.4172 0.5504 0.6560

l = 1e−9
ξ = 0.1 0.3368 0.3635 0.3677 0.3682 0.3663 0.3636
ξ = 0.5 0.3368 0.4084 0.4608 0.5008 0.5306 0.5409
ξ = 1 0.3368 0.4273 0.5347 0.6757 0.8907 1.0602
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increasing the parameter l, regardless of the CNT volume fraction and the agglomeration
parameters as well.
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Fig. 3. Effects of agglomeration parameters on the frequency parameter of the microbeam

The effects of the agglomeration parameters on the frequency parameter of the mi-
crobeam are shown in Fig. 3. From the figure one sees that in the case ξ < ζ, the increase
of the parameter ξ enhances the frequency parameter, and the frequency parameter at-
tains the highest value when ξ = ζ, which is the uniform distribution of CNTs. On the
other hand, when ξ > ζ, the frequency parameter is decreased by increasing the param-
eter ξ. The figure also shows the frequency parameter is enhanced by the increase of the
size scale parameter l.

4.3. Dynamic response

This subsection studies the influence of various parameters on the dynamic behavior
of the CNTRC microbeams. In Fig. 4, the relations between the DMF and the speed v of
the CNTRC microbeam are illustrated for VCNT = 0.02 and VCNT = 0.2. Two pairs of the
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agglomeration parameters, (ζ, ξ) = (1, 0.1) and (1, 1) and different values of the size scale
parameter l are considered in the figure. One can see from the figure that the increase of
the parameter l results in a significant decrease in the DMF, regardless of the VCNT as
well as agglomeration parameters. This phenomenon can be explained by the fact that
the strain energy evaluated by the MCST is larger, and this leads to higher stiffness. As
a result, the DMF is decreased by the increase of the microbeam stiffness. In addition,
the DMF has a lower value corresponding to microbeams without CNT agglomeration
(ζ = ξ = 1), this is seen more clearly when the VCNT value is larger (comparing Fig. 4(d)
with Fig. 4(c)). An increase in the CNT reinforcement helps to reduce the DMF, by this
is clearly seen only when CNTs are not agglomerated (ζ = ξ = 1). In the case of severe
agglomeration of CNTs, the increase of the CNT reinforcement does not seem to have
much effect (comparing Fig. 4(c) with Fig. 4(a)). In addition, the effect of the moving
load speed on the factor Dd of the CNTRC microbeams is similar to that of conventional
beams, that is the factor Dd experiences a repeatedly increasing and decreasing period
when the load speed is low, it then increases to a peak value before decreases gradually.
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Fig. 4. Relations between the DMF and the moving load speed of CNTRC microbeam
with different size scale parameters



Vibration of agglomerated CNTRC micro-scale beams carrying a moving concentrated load 279

0.1 0.3 0.5 0.7 0.9
0.3

0.5

0.7

0.9

1.1

D
d

=0.5 =0.6 =0.7 =0.8 =0.9 =

0.1 0.3 0.5 0.7 0.9
0.05

0.075

0.1

0.125

0.15

D
d

(a) l=0 (b) l=1e-9

Fig. 5. Variation of the dynamic factor with parameter ξ for VCNT = 0.1, v = 50 m/s
and various values of parameter ζ

The dependence of the factor Dd upon the two agglomeration parameters is further
shown in Fig. 5 for VCNT = 0.1, v = 50 m/s. From the figure, one can see that in the case
ξ < ζ, the factor Dd declines by increasing the parameter ξ, and it reaches the lowest
value when ξ = ζ, that is when the CNTs are uniformly distributed. For the ξ > ζ,
the factor Dd increases again by the increase of the parameter ξ. The influence of the
size scale parameter l on the factor Dd is also clearly observed in the figure, where the
factor Dd is considerably lower for the microbeam associated with a higher value of the
parameter l.

5. CONCLUSIONS

The vibration analysis of micro-scale CNTRC beams carrying a moving concentrated
load was studied in the framework of the MCST and a refined high-order beam theory.
The effect of CNTs agglomeration is considered by using the Mori–Tanaka method to es-
timate the effective elastic moduli of CNTRC. The mathematical model of the microbeam
is established in terms of the transverse shear rotation. The discretized governing equa-
tion for the microbeams is constructed with the help of a finite beam element, and solved
by an implicit direct integration method. The effects of the CNT reinforcement, the ag-
glomeration, the size scale parameter, and the loading speed on the vibration have been
numerically examined in detail. Some main conclusions drawn from this work are as
follows:



280 Thi Thom Tran, Dinh Kien Nguyen

- The frequencies of the microbeam are enhanced by the CNT reinforcement, but the
enhancement is dependent on the degree of agglomeration of the CNTs. If the CNTs
agglomeration does not occur, the frequency parameter increases sharply when the mi-
crobeam is reinforced by higher CNT volume fraction. However, if CNTs agglomeration
becomes serious, more CNTs reinforcement does not enhance the frequency parameter
of the microbeam.

- The microstructural size effect has an important role of the frequencies of the mi-
crobeam, and an increase in the size scale parameter leads to an increase in the frequency
parameter. On the other hand, the DMF tends to decrease when increasing the value of
the scale parameter.

- DMF decreases by the CNT reinforcement, but this decrease depends on the de-
gree of the CNT agglomeration. When the CNTs agglomeration becomes severe, the
increase of the CNT volume fraction hardly decreases the dynamic factor of the CNTRC
microbeam.
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