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Abstract. This article is devoted to extension of the recently developed enhanced local
damage model for failure prediction in bi-material structures. Compared to non-local
models, the enhanced local model offers lower computational cost while the inherent
mesh-dependency issue is treated. By defining equivalent strain based on the bi-energy
norm concept and Mazars’s criterion, which considers both tensile and compressive strain
components, the model aligns with the behavior of quasi-brittle materials. The state of
material point is indicated by a damage parameter, ranging from 0 to 1, to represent the
evolution from being fully intact to complete failure. An efficient staggered scheme is
introduced, in which the equilibrium equation and the update of damage parameter are
decoupled. The proposed model is validated with a series of three-point bending exper-
imental tests on PMMA/Al6061 specimens reported by Lee and Krishnaswamy (2000).
Good agreement is observed between the proposed model and experimental data, as well
as numerical results from other authors, in crack path prediction.
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1. INTRODUCTION

Due to the wide application of brittle/quasi-brittle materials in various engineering
fields, the study on integrity of structures made from such materials is of importance and
attracts much attention. In the context of continuum damage model, the state of mate-
rial is represented by a continuous field with values from 0 to 1, capturing the evolution
from intactness to complete failure. There are two primary categories of damage model:
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local model and non-local/gradient-enhanced model. Although the local model [1, 2]
is simple, it is suffered from inherent issue of mesh-dependency. In order to overcome
such difficulty, the non-local/gradient-enhanced damage model was introduced at the
expense of additional computational effort [3, 4]. The evolution of damage parameter is
usually driven by an internal variable reflecting the loading history, which is usually cal-
culated from strain components and thus it is called equivalent strain. Because stress and
strain are related, stress-based damage models also exist, see [4] for example. For non-
local/gradient-enhanced damage, the non-local equivalent strain is further calculated
via an integral (non-local model), or via partial differential equation (gradient-enhanced
model). Recently, Kurumatani et al. [5] improved the local model by incorporating the
fracture energy and the element characteristic length into the calculation of damage pa-
rameter, which helped to mitigate the mesh-dependency issue. Pham et al. further ex-
tended the approach in two aspects: i) introduction of a new equivalent strain [6], which
is shown to be more suitable than the one based on modified von Mises criterion used
by [5] in mixed-mode problems; and ii) consideration of damage induced by both me-
chanical and thermal loads [7].

However, while in the available literature, while there is plenty of works on dam-
age modeling which focus on homogeneous materials, the amount of publications on
failure prediction in heterogeneous materials is still limited. An experimental study by
Lee and Krishnaswamy [8] for three-point bending of pre-notched PMMA/Al6061 speci-
mens revealed different crack paths corresponding to different boundary conditions. The
experiment was later used for validation of several numerical models, including a model
based on the FRANC2D/3D software [8], an S-version finite element approach [9], and a
recent localizing gradient damage model [10].

The objective of this paper is extension of the enhanced local damage model by Pham
et al. [6,7] for failure analysis of structures with heterogeneous materials, particularly the
bi-material structures. Furthermore, an efficient staggered scheme on the basis of finite
element method is proposed to solve the non-linear problems. The proposed approach
is validated by comparison with the experimental data reported in [8], as well as results
from other numerical models.

2. FORMULATION OF LOCAL DAMAGE MODEL

2.1. Basic equations

Given a domain Ω with boundary ∂Ω, the strong form equilibrium equation under
quasi-static boundary conditions is written as

∇ · σ + b = 0, (1)
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where b denotes the body force and σ is the stress tensor. In order to account for elastic-
damage behavior, the stress-strain relation is expanded beyond Hooke’s law by

σ = (1− d)C : ε, (2)

in which d ∈ [0, 1] is a scalar parameter characterizing the state of material from being
intact (d = 0) to complete failure (d = 1), and C is the elastic tensor. Under the assump-
tion of small deformations, the components of the strain tensor ε can be determined from
the displacements u = [u1, u2, u3]

T by applying the following equations

ε ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xj

)
with i, j = 1, 2, 3. (3)

For quasi-brittle material, the evolution of damage is usually quantified by

d (κ) =

 0, if κ ≤ κ0,

1− κ

κ0

[
1− α + αe−β(κ−κ0)

]
, otherwise.

(4)

Here E is the Young’s elastic modulus. κ0 is the strain value corresponding to the
load capacity ft in uniaxial tensile experiment, an can be calculated as

κ0 =
ft

E
. (5)

Since healing is not considered, the irreversibility of damage has to be enforced. The
internal variable κ must be non-decreasing and is determined by the maximum value of
equivalent strain, ε̃, in the deformation history{

κ ≥ 0,
κ = max (ε̃) .

(6)

Various forms of equivalent strain have been proposed in the literature for different pur-
poses, based on different criterion, for e.g., the modified von-Mises criterion [11], the
Mazars’s criterion [12] and the bi-energy norm concept [13]. In Eq. (5), the shape param-
eters α and β characterize the softening curve of the stress-strain relation (see Fig. 1) and
can be determined by fitting experimental data. For simplicity, α = 1 is chosen in this
study.

The local continuum damage model, as presented above, has been found to be sus-
ceptible to mesh dependency. As an attempt to overcome such drawback, Kurumatani
et al. [5] proposed that the β parameter, which represents the material toughness, can
be considered as a coefficient based on the 1D relationship between the cohesive force
and the crack opening displacement. It is observed that the fracture energy G f , which
is typically obtained from a uniaxial tensile experiment, includes both the elastic strain
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𝐼1

2(1−2ν)
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√3𝐽2
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in which 𝜈 is the Poisson’s ratio; 𝐼1 is the first invariant of the strain tensor; and 𝐽2 is the second invariant 104 

of the deviatoric strain tensor. 105 

Parameter 𝑟 in Eq. (8) is the triaxial factor [6] that indicates the stress state, in which the values 106 
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Fig. 1. Fracture energy unit length: (a) the usual value given by uniaxial tensile experiment and
(b) the proposal for subtraction of elastic energy from fracture energy [6]

energy and the dissipative energy due to crack opening [14], as shown in Fig. 1. How-
ever, from a numerical computation perspective, it is critical to subtract the elastic strain
energy (gs = 0.5κ0 ft) from G f . Therefore, parameter β can be formulated as follows [6]

β =
Eκ0he

G f − 0.5κ0 fthe
, (7)

where he is the element characteristic length. Particularly for quadrilateral element, this
quantity can be calculated as he =

√
Ae (see [5]), with Ae being the area of the element.

In Eq. (8), the value of β varies from element to element.

On the basis of the bi-energy concept [13], the equivalent strain is decomposed to ten-
sion and compression parts. Here, determination of the tensile and compressive strain
components is inspired by the Mazars model [12], which was developed based on exper-
iments. Then, the so-called “enhanced bi-energy norm equivalent strain” is defined as
follows:

ε̃ =
krε̃t + (1− r) ε̃c

λ (k + 1)
, (8)

where k is a ratio between compressive strength, fc, and tensile strength, ft, i.e., k = fc/ ft,
which usually falls within the range k = 5–10 depending on the particular material. λ

is an empirical coefficient and, as reported in [13], can be taken from 0.7 to 1.0 to fit
experimental data. Here ε̃c and ε̃t are calculated by [12]

ε̃c =
I1

5 (1− 2ν)
+

6
√

3J2

5 (1 + ν)
, ε̃t =

I1

2 (1− 2ν)
+

√
3J2

2 (1 + ν)
, (9)

in which ν is the Poisson’s ratio; I1 is the first invariant of the strain tensor; and J2 is the
second invariant of the deviatoric strain tensor.
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Parameter r in Eq. (9) is the triaxial factor [6] that indicates the stress state, in which
the values vary from 0 (compressive domain) to 1 (tensile domain):

r = ∑ 〈σi〉
∑ |σi|

, (10)

with σi being the principal value of the “effective stress tensor” σ = C : ε, i.e., the stress
values without consideration of damage. The Macaulay bracket 〈σi〉 returns σi if it is
positive, and returns 0 otherwise.

2.2. Formulation equations for the damage problems

From (3), the weak form balance equation for the problem is written as follows∫
Ω

BT (1− d)CεdΩ−
∫

Γt

NTtdΓ−
∫

Ω
NTbdΩ = 0, (11)

where N and B are the matrices that store the shape functions and their spatial deriva-
tives; t is the prescribed traction on surface and b is the body force.
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Fig. 2. A flow chart for the staggered scheme employed of one load step to
solve damage problems

Here, we propose a staggered scheme such that the mechanical equilibrium (Eq. (11))
and the damage evolution (Eq. (5)) are decoupled. A flow chart is given in Fig. 2. At load
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step n + 1, all values at load step n are known and can be set as initial values for itera-
tive procedure: û(i=0) = ûn, d(i=0) = dn. It is worth noting that the damage values are
stored at integration points, whereas the displacement values are stored at nodes. At
iteration i + 1, Eq. (11) is solved to find the new displacement field ûi+1, with the as-
sumption d = di. The damage field di+1 is updated using displacement field ûi+1. The
iterative process continues until the change of displacement is below a specified toler-
ance. The change in displacement between two consecutive iterations is calculated as
du = norm (ûi+1 − ûi). In which, the pre-selected allowable tolerance is TOL = 10−3.
Once this condition is fulfilled, the variables are saved, and the algorithm progresses to
the subsequent load step. This staggered scheme offers the advantage of simpler imple-
mentation, although it requires smaller increments to ensure accurate outcomes. Compa-
rable approaches can be found in the literature [7, 15].

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we examine a three-point bending beam with bi-material specimens
composed of PMMA and aluminum alloy Al6061. In this problem, the interface between
two materials is assumed to be perfectly bonded. These specimens have an initial crack,
and is loaded on top edge, as described in [8]. The beam sample has a thickness of 9
mm, and the material properties are given in Table 1. Three different cases with varying
boundary conditions are considered, and the initial quadrilateral element mesh is illus-
trated in Fig. 3. In Case (1), the crack length is 30 mm, being located at the middle of the
bottom edge. A support that restrains displacement vertically and horizontally is placed
at the lower left corner, while a roller which hinders only vertical displacement is placed
at the lower right corner. Case (2) is similar to Case (1) in terms of the initial crack and
position of prescribed displacement, but with different location of the support. In Case
(3), the initial crack is longer, with a length of 70 mm, and is not aligned with the loaded
position. The support is placed at a distance of 50 mm from the lower left corner. For
both Case (1) and Case (2), the same mesh of 4643 quadrilateral elements are employed,
while another mesh is used for Case (3) with 5505 quadrilateral elements in total. In this
problem, the staggered scheme is applied to all cases with 1000 uniform loading steps
corresponding to a total displacement of u = 0.06 mm. So, the increment size for pre-
scribed displacement for each loading step is du = u/1000 = 6× 10−5 mm. The accuracy

Table 1. Material properties used for the pre-notched PMMA/Al6061 specimens (see [8, 10])

Material E (MPa) ν f t (MPa) G f (N/mm) k κ0

PMMA 3240 0.35 0.972 0.0039 5 3×10−4

Al6061 69000 0.3 124.2 0.4968 10 18×10−4
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of this scheme always requires a large number of loading steps. With 1000 step loads and
the increment size of displacement du = 6× 10−5 mm , we observed that the conver-
gence of the problem occurs faster in each iteration. This is demonstrated by the results
below. It is noted that all three cases are mixed-mode problems due to the existence of
heterogeneous materials.
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For case (1), the progression of the damage zone through the loading steps are shown in Figure 154 
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6 and Figure 8, respectively. Furthermore, Figure 7 and Figure 9 present a comparison between the 159 
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obtained crack paths and reference results, which exhibit good agreement. In Case (2), the crack tends 160 

to move along the material interface, while in Case (3), the crack nearly moves straight upward.   161 

The load-displacement responses for all three cases, which were not found in the references [8, 9, 162 

10], are depicted in Figure 10. In cases (1) and (3), where the damage zone is completely within the part 163 

of PMMA, the shape of the load-displacement curves resembles the typical pattern observed in quasi-164 

brittle materials. On the other hand, in case (2), where the damage occur mostly along the interface, the 165 

curve exhibits the pattern usually observed in brittle materials. 166 

 167 

Figure 4. Numerical prediction of propagation of damage zone for Case (1) by the developed damage 168 

model through load steps. 169 

 170 

Figure 5. Comparison on damage zone/crack path predicted by various numerical models and 171 

experiment with Case (1). 172 

Fig. 4. Numerical prediction of propagation of damage zone for Case (1)
by the developed damage model through load steps

For Case (1), the progression of the damage zone through the loading steps are
shown in Fig. 4. The obtained crack path is in good agreement with both experimental
and numerical results by Lee and Krishnaswamy [8], the S-version finite element method
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(S-FEM) by Kikuchi et al. [9], and the localizing gradient damage model by Rajput et
al. [10], as shown in Fig. 5. The crack tends to move away from the material interface.
For Case (2) and Case (3), the damage progression is depicted in Fig. 6 and Fig. 8, respec-
tively. Furthermore, Fig. 7 and Fig. 9 present a comparison between the obtained crack
paths and reference results, which exhibit good agreement. In Case (2), the crack tends
to move along the material interface, while in Case (3), the crack nearly moves straight
upward.
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Figure 6. Numerical prediction of propagation of damage zone for Case (2) by the developed damage 174 

model through load steps. 175 
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Figure 7. Comparison on damage zone/crack path predicted by various numerical models and 177 

experiment with Case (2). 178 
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Figure 8. Numerical prediction of propagation of damage zone for Case (3) by the developed damage 180 

model through load steps. 181 

Fig. 6. Numerical prediction of propagation of damage zone for Case (2)
by the developed damage model through load steps
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The load-displacement responses for all three cases, which were not found in the
references [8–10], are depicted in Fig. 10. In Cases (1) and (3), where the damage zone is
completely within the part of PMMA, the shape of the load-displacement curves resem-
bles the typical pattern observed in quasi-brittle materials. On the other hand, in Case
(2), where the damage occur mostly along the interface, the curve exhibits the pattern
usually observed in brittle materials.
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Figure 6. Numerical prediction of propagation of damage zone for Case (2) by the developed damage 174 

model through load steps. 175 
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Figure 7. Comparison on damage zone/crack path predicted by various numerical models and 177 

experiment with Case (2). 178 
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Figure 8. Numerical prediction of propagation of damage zone for Case (3) by the developed damage 180 

model through load steps. 181 

Fig. 7. Comparison on damage zone/crack path predicted by various numerical models
and experiment with Case (2)
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Figure 7. Comparison on damage zone/crack path predicted by various numerical models and 177 

experiment with Case (2). 178 
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Figure 8. Numerical prediction of propagation of damage zone for Case (3) by the developed damage 180 

model through load steps. 181 Fig. 8. Numerical prediction of propagation of damage zone for Case (3)
by the developed damage model through load steps
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Figure 9. Comparison on damage zone/crack path predicted by various numerical models and 183 

experiment with Case (3). 184 
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Figure 10. Results of load - displacement response in three cases. 186 

4. Conclusions  187 

The enhanced local damage model in previous works [6, 7] for structures with homogeneous 188 

quasi-brittle materials has been successfully extended to bi-material structures. An efficient staggered 189 

scheme is introduced, which help to simplify the computational procedure. Comparison with 190 

experimental data and numerical results from other authors for the PMMA/Al6061 specimens exhibits 191 

that the proposed model is able to predict crack growth and propagation.   192 

Fig. 9. Comparison on damage zone/crack path predicted by various numerical models
and experiment with Case (3)
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4. CONCLUSIONS

The enhanced local damage model in previous works [6,7] for structures with homo-
geneous quasi-brittle materials has been successfully extended to bi-material structures.
An efficient staggered scheme is introduced, which help to simplify the computational
procedure. Comparison with experimental data and numerical results from other au-
thors for the PMMA/Al6061 specimens exhibits that the proposed model is able to pre-
dict crack growth and propagation.

The obtained results are preliminary for further investigation of the performance of
the proposed approach for structures with heterogeneous structures. In fact, quasi-static
loading is currently assumed. The ability of the model also needs further quantitative
verification.
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