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Abstract. Since functionally graded material (FGM) is increasingly used in high-tech en-
gineering, free and forced vibrations of FGM structures become an important issue. This
report addresses the analysis of frequency response sensitivity to crack for piezoelectric
FGM beams subjected to moving load. First, a frequency domain model of a cracked FGM
beam with a piezoelectric layer is conducted to derive an explicit expression of the electri-
cal charge produced in the piezoelectric layer under the moving load. It was shown in the
previous works of the authors that the electrical charge is a reliable representation of the
beam frequency response to moving load and can be efficiently employed as a measured
diagnostic signal for structural health monitoring. Then, a damage indicator acknowl-
edged as a spectral damage index (SDI) calculated from the electrical frequency response
is introduced and used for sensitivity analysis of the response to crack. Under the sen-
sitivity analysis the effect also of FGM and moving load parameters on the sensitivity is
examined and illustrated by numerical results.

Keywords: FGM beam, piezoelectric layer, frequency response, moving load, sensitivity
analysis.

1. INTRODUCTION

Damage detection in general and crack identification in particular are essential prob-
lem in the structural health monitoring that has been intensively studied through several
latest decades and it was reviewed by numerous authors, for instance, Sohn et al. [1]; Fan
and Qiao [2] and Hou and Xia [3]. Most of researchers in the field of structural health
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monitoring have agreed to that dynamic behavior or vibration circumstance of a struc-
ture provide the most useful tool for diagnosis of potential damages in the structure.
Hence, the important issue in structural damage detection is to gather and examine the
structural dynamic features that have been chosen as indicators for the detection. Con-
ventional approach to assessing structure integrity is the dynamic testing technique that
proposes to measure response of a structure under given external excitations. This tech-
nique is bulky and expensive for huge structures because it requires a large number of
sensors and actuators to obtain truthful signature of potential damages. Moreover, the
conventional dynamic testing method does not allow direct identification of damage and
it is difficult to perform in the real time mode.

Alternately, many authors [4–7] have demonstrated that using smart material such
as piezoelectric one the structural health monitoring becomes much more advantaged in
its implementation and improved in the results obtained. This is because of the smart ma-
terial could be used not only for transmitting load to structure (as actuator) but also for
sensing signal of the structure response (as sensor). The smart sensors are distributed [8]
and may be permanently installed as components of a structure of interest [9]. Recent
progress in structural health monitoring by the use of distributed piezoelectric transduc-
ers was reported in [10–14].

Particularly, Wang and Quek [15] used the sandwich beam model for modal anal-
ysis of a Euler-Bernoulli beam embedded with piezoelectric layers and they found that
natural frequency of the sandwich beam is function of stiffness and thickness of the piezo-
electric layers. Wang and Quek [16] showed that the buckling and flutter capacities of an
elastic column could be enhanced by using piezoelectric patches bonded to both sides of
the column as actuators with an applied voltage. Wang et al. [17] revealed an effect of a
piezoelectric patch bonded to a beam on natural frequency of the beam and demonstrated
an interesting fact that piezoelectric patch used as an actuator could restore the healthy
condition of a cracked beam. Zhao et al. [18] proposed a procedure for crack identifica-
tion in beam based on the crack-induced frequency change that is amplified by applying
a feedback voltage output from piezoelectric sensor through collocated actuator. The so-
called Electro-Mechanical Impedance (EMI) method was developed in [19–21] for crack
identification in beam using piezoelectric transducers. The authors have concluded that
the EMI is sensitive to local damage such as crack only at the high frequency range and
when sensor patch is positioned near the damage location. Therefore, using a piezoelec-
tric layer bonded to a beam structures as full-length distributed sensor is promising idea
that is investigated in the present study for functionally graded beam with crack.

Various problems in dynamics of functionally graded beams were studied in the
widespread literature, some of which are, for instance, Li [22], Sina et al. [23], Larbi et
al. [24], Su and Banerjee [25], Wang et al. [26]. A number of works is devoted also to
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study vibrations of the beams with localized damages such as cracks, for example, Yang
and Chen [27], Akbas [28], Aydin [29], Khiem et al. [30]. Some procedures were proposed
by Yu and Chu [31]; Banerjee et al. [32] and Khiem and Huyen [33] to detect cracks in
functionally graded beams with natural frequencies measured by the conventional tech-
nique of modal testing. Stability of FGM Timoshenko beam embedded by the top and
bottom piezoelectric layers has been investigated by Kharramabadi and Nezamabadi [34]
and it is found a significant effect of both the piezoelectric actuators and FGM parame-
ters on the critical buckling loads. Li et al. [35] even proposed a model of functionally
graded piezoelectric beam for its vibration analysis and revealed the increase of natural
frequency and decrease of electric potential with increasing gradient index of the mate-
rial. Bendine et al. [36] studied the problem for active vibration control of functionally
graded beams with upper and lower surface-bonded piezoelectric layers by the finite el-
ement method. Khiem et al. [37] examined the effect of piezoelectric patches on natural
frequencies of undamaged functionally graded beam.

The present paper addresses the analysis of frequency response sensitivity to crack
for piezoelectric FGM beams subjected to moving load. First, a frequency domain model
of a cracked FGM beam with a piezoelectric layer is conducted to derive an explicit ex-
pression of the electrical charge produced in the piezoelectric layer under the moving
load. It was shown in the previous works of the authors that the electrical charge is a
reliable representation of the beam frequency response to moving load and can be effi-
ciently employed as a measured diagnostic signal for structural health monitoring. Then,
a damage indicator acknowledged as a spectral damage index (SDI) calculated from the
electrical frequency response is introduced and used for sensitivity analysis of the re-
sponse to crack. Under the sensitivity analysis the effect also of FGM and moving load
parameters on the sensitivity is examined and illustrated by numerical results.

2. GOVERNING EQUATIONS

Consider an FGM beam of length L, cross sectional area Ab = b× hb bonded with a
piezoelectric layer and subjected to a moving force as shown in Fig. 1 [38]. It is assumed
also that the beam is made of functionally graded material with properties varying along
the thickness direction by the power law

R (z) = Rb + (Rt −Rb) (z/h + 0.5)n , −hb/2 ≤ z ≤ hb/2, (1)

where R stands for Young’s, shear modulus and material density E, G, ρ; subscripts t
and b denote the top and bottom material respectively; n is power law exponent or mate-
rial distribution index; z is ordinate of point along the beam height from the mid plane.
According to thee Timoshenko beam theory with the constituting equations
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u (x, z, t) = u0 (x, t)− (z− h0) θ (x, t) , w (x, z, t) = w0 (x, t) ,

εx = ∂u0/∂x− (z− h0) ∂θ/∂x, γxz = ∂w0/∂x− θ,
(2)

where u(x, z, t), w(x, z, t) are axial and transverse displacements in cross-section at x;
u0 (x, t) , w0 (x, t) are the displacements on the neutral plane and θ is rotation of the cross-
section; εx, γxz, σx, τ are deformation and strain components; κ is geometry correction
factor; h0 is acknowledged as exact position of neutral plane measured from the beam
midplane.
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Let the piezoelectric layer be considered as a homogeneous Timoshenko beam ele-
ment, so that constitutive equations can be expressed as

up (x, z, t) = up0 (x, t)− zθp (x, t) , wp (x, z, t) = wp0 (x, t) ,

εpx = u′p0 − zθ′p, γp = w′p0 − θp,

σpx = Cp
11εpx − h13D, τp = Cp

55γp, ∈= −h13εpx + β
p
33D,

(3)

where Cp
11, h13, β

p
33 are elastic modulus, piezoelectric and dielectric constants respectively,

∈ and D are electric field and displacement of the piezoelectric layer. Hence, conditions
of perfect bonding between the base beam and piezoelectric layer can be represented as

u
(

x,
hb

2
, t
)
= up

(
x,−

hp

2
, t
)

, w (x, hb/2, t) = wp
(
x,−hp/2, t

)
,

that yield

up0 = u0 − θh/2, h = hb + hp, wp0 = w0, θ = θp,

εpx = u′0 −
(

z +
h
2

)
θ′, γp = w′0 − θ.

(4)
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Using the constituting equations (2)–(3)–(4) and Hamilton’s principle, one gets the
following equations of motion [38](

I∗11ü0 − B∗11u′′0
)
+
(

I∗12θ̈ − B∗12θ′′
)
= 0,(

I∗12ü0 − B∗12u′′0
)
+
(

I∗22θ̈ − B∗22θ′′
)
− A∗33

(
w′0 − θ

)
= 0,

I∗11ẅ0 − A∗33
(
w′′0 − θ′

)
= P (t) δ (x− vt) ,

(5)

and
D (x, t) = h13

(
u′0 + hθ′

)
/β

p
33 , (6)

where
B∗11 = A11 + Ep Ap, B∗12 = Ep Aph, B∗22 = A22 + Cp

11 Ip + Ep Aph2, Ep = Cp
11 − h2

13/β
p
33,

I∗11 = I11 + ρp Ap, I∗12 = I12 + ρp Aph, I∗22 = I22 + ρp Ip + ρp Aph2, A∗33 = κA33 + Cp
55Ap,

A11 = bhbEb ϕ1 (re, n) , A22 = bh3
bEb ϕ3 (re, n) , A33 = bhbGb ϕ1

(
rg, n

)
,

I11 = bhbρb ϕ1
(
rρ, n

)
, I12 = bh3

bρb ϕ2
(
rρ, n

)
, I22 = bh3

bρb ϕ3
(
rρ, n

)
,

ϕ1 (r, n) = (r + n) / (1 + n) , ϕ2 (r, n) = (2r + n) /2 (2 + n)− α (r + n) / (1 + n) ,

ϕ3 (r, n) = (3r + n) /3 (3 + n)− α (2r + n) / (2 + n)− α2 (r + n) / (1 + n) ,

α = 1/2 + h0/hb, re = Et/Eb, rρ = ρt/ρb, rg = Gt/Gb.
(7)

Transferring equations (5) and (6) into the frequency domain, one gets

[A]
{

Z′′ (x, ω)
}
+ [B]

{
Z′ (x, ω)

}
+ [Ω] {Z (x, ω)} = −{P (x, ω)} , (8)

{Z (x, ω)} =
∫ ∞

−∞
{u0 (x, t) , θ (x, t) , w0 (x, t)} e−iωtdt, Z′ = dZ/dx, Z′′ = d2Z/dx2,

P (x, ω) = {0, 0, Q (x, ω)}T , Q (x, ω) = P (x/v) exp {−iωx/v} , (9)

with the matrices

[A] =

 B∗11 B∗12 0
B∗12 B∗22 0
0 0 A∗33

 , [B] =

 0 0 0
0 0 A∗33
0 −A∗33 0

 ,

[Ω] =

 ω2 I∗11 ω2 I∗12 0
ω2 I∗12 ω2 I∗22 − A∗33 0

0 0 ω2 I∗11

 ,

(10)

and

D̂ (x, ω) = h13
[
Z′1 (x, ω) + hZ′2 (x, ω)

]
/β

p
33 = h13

[
U′ (x, ω) + hΘ′ (x, ω)

]
/β

p
33. (11)

If the piezoelectric layer is employed as a distributed sensor, the frequency domain
output charge of which can be calculated as

Q̂ (ω) = b
∫ L

0
Ddx =

(
bh13/β

p
33

) ∫ L

0

[
U′ (x, ω)− hΘ′ (x, ω) /2

]
dx. (12)
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Furthermore, assume that the host FGM beam has been cracked at the position e
measured from its left end and crack is modeled by a pair of equivalent springs of stiff-
ness T for transnational spring and R for rotational one [39]. In this case, conditions that
must be satisfied at the crack are

U(e + 0) = U(e− 0) + N(e)/T, Θ(e + 0) = Θ(e− 0) + M(e)/R,

W(e + 0) = W(e− 0), U′x (e + 0) = U′x (e− 0) ,

Θ′x (e + 0) = Θ′x (e− 0) , W ′x (e + 0) = W ′x (e− 0) + M (e) /R,

(13)

where N (x) = A11U′x (x) , M (x) = A22Θ′x (x) are respectively internal axial force and
bending moment at section x. Substituting the expressions for axial force and bending
moment into (13) that can be rewritten as

U (e + 0) = U (e− 0) + γ1U′x (e) , Θ (e + 0) = Θ (e− 0) + γ2Θ′x (e) ,

W (e + 0) = W (e− 0) , U′x (e + 0) = U′x (e− 0) ,

Θ′x (e + 0) = Θ′x (e− 0) , W ′x (e + 0) = W ′x (e− 0) + γ2Θ′x (e) ,

γ1 = A11/T, γ2 = A22/R.

(14)

The so-called crack magnitudes γ1, γ2 are functions of the material parameters such
as elastic modulus and they should be those of homogeneous beam when Et = Eb = E0.
Using expressions (7) and the latter conditions the crack magnitudes can be rewritten as

γ1 = γa ϕ1 (re, n) , γ2 = 12γb ϕ3 (re, n) , (15)

where [39]

γa = E0 A/T = 2π
(
1− ν2

0
)

h f1 (z) , γb = E0 I0/R = 6π
(
1− ν2

0
)

h f2 (z) , z = a/h, (16)

f1 (z) = z2(0.6272− 0.17248z + 5.92134z2 − 10.7054z3 + 31.5685z4 − 67.47z5

+ 139.123z6 − 146.682z7 + 92.3552z8),
f2 (z) = z2(0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5

+ 47.1063z6 − 40.7556z7 + 19.6z8).
(17)

Obviously, for uncraled beam when Et = Eb = E0 or re = 1, Eqs. (15) yield

γ1 = γa ϕ1 (1, n) = γa , γ2 = 12γb ϕ3 (1, n) = γb. (18)

3. FREQUENCY RESPONSE CRACKED PIEZOELECTRIC FGM BEAM
SUBJECTED TO MOVING HARMONIC LOAD

First, seeking solutions of homogeneous equation (8) in the form: Z0 = deλx one gets
general solution for free vibration of the beam in the form

{Z0 (x, ω)} = [G0 (x, ω)] {C} , (19)
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where {C} = (C1, . . . , C6)
T is constant vector and G0 (x, ω) is matrix

[G0 (x, ω)] =

 α1ek1x α2ek2x α3ek3x α1e−k1x α2e−k2x α3e−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1ek1x β2ek2x β3ek3x −β1e−k1x −β2e−k2x −β3e−k3x

 ,

αj =
(

ω2 I∗11 + k2
j B∗11

)
/
(

ω2 I∗12 + k2
j B∗12

)
, β j = k j A∗33/

(
ω2 I∗11 + k2

j A∗33

)
, j = 1, 2, 3

(20)

and k j (j = 1, 2, 3) are wave numbers obtained from the roots λ1,4 = ±k1, λ2,5 = ±k2,
λ3,6 = ±k3 of the characteristic equation det

[
λ2A + λB + Ω

]
= 0.

Using expression (18) we can find a particular solution Zc (x, ω) in the form

{Zc (x, ω)} = [Gc (x, ω)]
{

Z′0 (e, ω)
}

, (21)

where G(x, ω) is 3×3-matrix of the form

[Gc (x, ω)] =



γa

3

∑
i=1

αiδi1coshkix γb

3

∑
i=1

αi (δi2 + δi3) coshkix 0

γa

3

∑
i=1

δi1coshkix γb

3

∑
i=1

(δi2 + δi3) coshkix 0

γa

3

∑
i=1

βiδi1sinhkix γb

3

∑
i=1

βi (δi2 + δi3) sinhk2x 0


, (22)

and
δ11 = (k3β3 − k2β2) /∆, δ12 = (α3k2β2 − α2k3β3) /∆, δ13 = (α2 − α3) /∆,
δ21 = (k1β1 − k3β3) /∆, δ22 = (α1k3β3 − α3k1β1) /∆, δ23 = (α3 − α1) /∆,
δ31 = (k2β2 − k1β1) /∆, δ32 = (α2k1β1 − α1k2β2) /∆, δ33 = (α1 − α2) /∆,

∆ = k1β1 (α2 − α3) + k2β2 (α3 − α1) + k3β3 (α1 − α2) ,

that satisfies the conditions

{Zc (0)} =
(
γaU′0 (e) , γbΘ′0 (e) , 0

)T ,
{

Z
′
c (0)

}
=
(
0, 0, γbΘ′0 (e)

)T . (23)

So, it is easily to verify that solution (18) for free vibration of integrated piezoelectric FGM
beam satisfying the conditions at crack (14) can be represented as

{Z (x, ω)} =
{
{Z0 (x, ω)} : for x < e,
{Z0 (x, ω)}+ {Zc (x− e, ω)} : for e ≤ x,

that is rewritten in the form

{Z (x, ω)} = {Z0 (x, ω)}+ [K (x− e)]
{

Z′0 (e, ω)
}
= [Φ (x, ω)] {C} , (24)

with the matrices introduced
[Φ (x, ω)] =

[
G0 (x, ω) + K (x− e)G′0 (x, ω)

]
,

[K (x)] =

{
[Gc (x)] : x > 0,
[0] : x ≤ 0,

[
K′ (x)

]
=

{ [
G′c (x)

]
: x > 0,

[0] : x ≤ 0.

(25)
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Thus, expression (24) is general solution for free vibration of cracked FGM piezoelec-
tric beam that would be determined seeking constant vector {C} = (C1, . . . , C6)

T from
specifically given boundary conditions. For example, in case of simply supported beam
with boundary conditions

U (0) = W (0) = M (0) = U (L) = W (L) = M (L) = 0,

where M (x) = B∗12∂xU (x)− B∗22∂xΘ (x), one gets

[G (ω)] {C} = 0, (26)

where

[G(ω)] = [BSS(ω)] =


α1 α2 α3 α1 α2 α3
β1 β2 β3 −β1 −β2 −β3
m1 m2 m3 −m1 −m2 −m3

φ11(L) φ12(L) φ13(L) φ14(L) φ15(L) φ16(L)
φ31(L) φ32(L) φ33(L) φ34(L) φ35(L) φ36(L)
M1(L) M2(L) M3(L) M4(L) M5(L) M6(L)

 ,

mj =
(

B∗12αj − B∗22
)

k j, j = 1, 2, 3, Mj (L) = B∗12φ′1j (L)− B∗22φ′2j (L) , j = 1, 2, . . . , 6,

φij (x) , φ′ij (x) , i = 1, 2, 3; j = 1, 2, . . . , 6 are elements of matrices [Φ (x, ω)] and
[
Φ′ (x, ω)

]
defined in (26). Therefore, frequency equation of the beam is

det [G (ω)] = 0, (27)

positive roots of which give rise desired natural frequencies ω1, ω2, ω3, . . . of simply sup-
ported FGM beam with piezoelectric layer and cracks. As a consequence, the natural
frequencies are dependent On crack parameters such as crack location e and depth a as
well as material properties and piezoelectric layer thickness. The effect of latter factors on
natural frequencies was studied in [39] and [37]. In this study, the natural frequencies are
computed as function of crack parameters (e, a): ωk = ωk (e, a) , k = 1, 2, . . ., that would
be employed as a database for crack detection from measured natural frequencies.

Now, we are going to find the solution of the inhomogeneous equation (8) that is
acknowledged as the frequency response of the integrated beam subjected to a mov-
ing force. Let’s consider the case of moving harmonic force P (t) = P0 exp {iΩmt} that
gives rise

Q (x, ω) = (P0/v) exp {−iΩx} , Ω = (ω−Ωm) /v. (28)

It is not difficult to find a particular solution Zq (x, ω) of Eq. (8)–(9)–(28) in the form

Zq (x, ω) =
{

U0
q (ω) , Θ0

q (ω) , W0
q (ω)

}T
exp {−iΩx} , (29)

where

U0
q (ω) = (iΩ) P0A∗33

(
Ω2B∗12 −ω2 I∗12

)
/v∆, Θ0

q (ω) = (iΩ) P0A∗33
(
ω2 I∗11 −Ω2B∗11

)
/v∆,
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W0
q (ω) = P0D/∆, ∆ =

(
ω2 I∗11 −Ω2A∗33

)
D + iΩA∗233

(
ω2 I∗11 −Ω2B∗11

)
,

D = ω4 (I∗11 I∗22 − I∗212
)
+ Ω4 (B∗11B∗22 − B∗212

)
+ A∗33

(
Ω2B∗11 −ω2 I∗11

)
+ ω2Ω2 (2I∗12B∗12 − I∗11B∗22 − I∗22B∗11) .

Therefore, general solution of Eq. (8) can be expressed as{
Z (x, ω)

}
= {U (x, ω) , Θ (x, ω) , W (x, ω)}T = [Φ (x, ω)] {C}+ Zq (x, ω) , (30)

where matrix Φ (x, ω) is defined in Eq. (25) and constant vector C is sought by given
boundary conditions. Namely, for simply supported beam one can find

{C} = − [G (ω)]−1 {P̂ (ω)
}

, (31)

with matrix G (ω) defined in Eq. (27) and vector P̂ (ω) =
{

P̂1 (ω) , . . . , P̂6 (ω)
}T where

P̂1 (ω) = U0
q (ω) , P̂2 (ω) = −iΩ

[
B∗12U0

q (ω)− B∗22Θ0
q (ω)

]
, P̂3 (ω) = W0

q (ω) ,

P̂4 (ω) = −iΩ
[

B∗11U0
q (ω)− B∗12Θ0

q (ω)
]

exp {−iΩL} ,

P̂5 (ω) = −iΩ
[

B∗12U0
q (ω)− B∗22Θ0

q (ω)
]

exp {−iΩL} , P̂6 (ω) = W0
q (ω) exp {−iΩL} .

Thus, mechanical frequency response (30) for simply supported beams gets the form{
Z (x, ω)

}
= Zq (x, ω)− [Φ (x, ω)] [G (ω)]−1 {P̂ (ω)

}
. (32)

Owning mechanical frequency response
{

Z (x, ω)
}

, the sensor output charge Q̂ (ω)

can be calculated by

Q̂ (ω) =
(
bh13/β

p
33

) ∫ L

0

[
U′ (x, ω)− hΘ′ (x, ω) /2

]
dx

=
bh13

β
p
33

{ [
U (L, ω)−U (0, ω)− γ1U′x (e, ω)

]
− (h/2)

[
Θ (L, ω)−Θ (0, ω)− γ2Θ′x (e, ω)

] }
,

(33)

where U (x, ω) , Θ (x, ω) are components of solution (30) acknowledged as mechanical
frequency response of cracked FGM piezoelectric beam subjected to moving load. As
consequence, the frequency domain charge generated in the piezoelectric layer is called
herein electrical frequency response of the beam. This is the basics for using the piezo-
electric layer as a distibuted sensor and its output charge as a diagnostic signal for crack
detection in FGM beam subjected to moving load.
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4. SENSITIVITY OF ELECTRICAL FREQUENCY RESPONSE TO CRACK -
NUMERICAL RESULTS

For sensitivity analysis of electrical frequency response, the sensor output charge
Q̂ (ω), by using so-called spectral damage index defined for the responses of intact and
cracked beams Q̂ (ω, e, a), Q̂0 (ω) as [40]

SDI (e, a) =
N

∑
k=1

Q̂ (ωk, e, a) Q̂0 (ω) /

[
N

∑
k=1

Q̂2 (ωk, e, a)
N

∑
k=1

Q̂02 (ωk)

]1/2

. (34)

The introduced above damage index lies between 0 and 1, which equals 1 only if
the two frequency-dependent functions are fully similar. Hence, its deviation of unique
represents a measure of effect of crack on the index and as usual it is acknowledged as
sensitivity of the frequency response to crack. Note, the sensitivity represented by the
spectral damage index depends also on the material and load parameters such as the
material distribution index n, frequency and speed of the moving load Ωm, v that are all
useful for us to control the success of crack detection.

Thus, the spectral damage index is numerically examined herein with the following
geometry and material constants:

Lb = Lp = L = 1 m; b = 0.1 m; hb = L/10;

Et = 390 MPa; ρt = 3960 kg/m3; µt = 0.25; Eb = 210 MPa; ρb = 7800 kg/m3; µb = 0.31;

Cp
11 = 69.0084 GPa; Cp

55 = 21.0526 GPa; ρp = 7750 kg/m3; h13 = −7.70394× 108 V/m.
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In the Figs. 2-5 there are depicted spectral damage index as function of crack location in 
dependnce upon crack depth and load frequency (Fig. 2), load speed (Fig. 3), material distribution index 
n (Fig. 4) and thickness of the piezoelectric layer (Fig. 5). 

 
       Fig.2. Spectral damage index versus crack location                Fig.3. Spectral damage index versus crack  
 in dependence on crack depth and moving load frequency       location in dependence on moving load speed (v) 

 
     Fig.4. Spectral damage index versus crack location             Fig.5. Spectral damage index versus crack location   
       in dependence on material distribution index (n)                  in dependence on thickness of sensor layer (hp) 

Observing graphs presented in the Figues one can make the following discussion: (1) Change in the 
spectral damage index due to crack position and depth is similar to the crack-induced change in fundametal 
frequency with an exception that magnitude of the change in spectral damage index is larger than that of 
natural fundamental frequency. In the other words, it can be acknowledged that spectral damage index is 
significantly more senstitive to crack than the natural frequencies; (2) The effect of moving load parameters 
such as their frequency and speed on the sensitivity of spectral damage index to crack is so slight that they 
may be difficult to employ for crack detection as it has done for homogeneous beams [40]; (3) Sensitivity 
of SDI to crack is first increasing with material distribution index (n) from 𝑛 = 0 to 𝑛 = 1.0, then the 
sensitivity decreases until 𝑛 = 5, from that it becomes again increasing. This means that dependence of 
the SDI sensitivity to crack on the FGM property is not monotonous, but it reaches maximum at the value 
𝑛 = 1.0; (4) Sensitivity of SDI to crack is increasing with piezoelectric layer thickness until the thickness 
reaches critical value ℎ' = 0.2ℎ!. Further increase of the thickness from the critical value leads to 
decrease of SDI sensitivity to crack. This discussion is useful for designing crack detection procedure in 
FGM beams using moving load and piezoelectric distributed sensor. 

5. Conclusions 
The main results obtained in this study can be summarized as follow: 

Fig. 2. Spectral damage index versus crack
location in dependence on crack depth

and moving load frequency
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In the Figs. 2-5 there are depicted spectral damage index as function of crack location in 
dependnce upon crack depth and load frequency (Fig. 2), load speed (Fig. 3), material distribution index 
n (Fig. 4) and thickness of the piezoelectric layer (Fig. 5). 

 
       Fig.2. Spectral damage index versus crack location                Fig.3. Spectral damage index versus crack  
 in dependence on crack depth and moving load frequency       location in dependence on moving load speed (v) 

 
     Fig.4. Spectral damage index versus crack location             Fig.5. Spectral damage index versus crack location   
       in dependence on material distribution index (n)                  in dependence on thickness of sensor layer (hp) 

Observing graphs presented in the Figues one can make the following discussion: (1) Change in the 
spectral damage index due to crack position and depth is similar to the crack-induced change in fundametal 
frequency with an exception that magnitude of the change in spectral damage index is larger than that of 
natural fundamental frequency. In the other words, it can be acknowledged that spectral damage index is 
significantly more senstitive to crack than the natural frequencies; (2) The effect of moving load parameters 
such as their frequency and speed on the sensitivity of spectral damage index to crack is so slight that they 
may be difficult to employ for crack detection as it has done for homogeneous beams [40]; (3) Sensitivity 
of SDI to crack is first increasing with material distribution index (n) from 𝑛 = 0 to 𝑛 = 1.0, then the 
sensitivity decreases until 𝑛 = 5, from that it becomes again increasing. This means that dependence of 
the SDI sensitivity to crack on the FGM property is not monotonous, but it reaches maximum at the value 
𝑛 = 1.0; (4) Sensitivity of SDI to crack is increasing with piezoelectric layer thickness until the thickness 
reaches critical value ℎ' = 0.2ℎ!. Further increase of the thickness from the critical value leads to 
decrease of SDI sensitivity to crack. This discussion is useful for designing crack detection procedure in 
FGM beams using moving load and piezoelectric distributed sensor. 

5. Conclusions 
The main results obtained in this study can be summarized as follow: 

Fig. 3. Spectral damage index versus crack
location in dependence on moving load

speed (v)
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In Figs. 2–5, there are depicted spectral damage index as function of crack location
in dependence on crack depth and load frequency (Fig. 2), load speed (Fig. 3), material
distribution index n (Fig. 4) and thickness of the piezoelectric layer (Fig. 5).
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In the Figs. 2-5 there are depicted spectral damage index as function of crack location in 
dependnce upon crack depth and load frequency (Fig. 2), load speed (Fig. 3), material distribution index 
n (Fig. 4) and thickness of the piezoelectric layer (Fig. 5). 
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Observing graphs presented in the Figues one can make the following discussion: (1) Change in the 
spectral damage index due to crack position and depth is similar to the crack-induced change in fundametal 
frequency with an exception that magnitude of the change in spectral damage index is larger than that of 
natural fundamental frequency. In the other words, it can be acknowledged that spectral damage index is 
significantly more senstitive to crack than the natural frequencies; (2) The effect of moving load parameters 
such as their frequency and speed on the sensitivity of spectral damage index to crack is so slight that they 
may be difficult to employ for crack detection as it has done for homogeneous beams [40]; (3) Sensitivity 
of SDI to crack is first increasing with material distribution index (n) from 𝑛 = 0 to 𝑛 = 1.0, then the 
sensitivity decreases until 𝑛 = 5, from that it becomes again increasing. This means that dependence of 
the SDI sensitivity to crack on the FGM property is not monotonous, but it reaches maximum at the value 
𝑛 = 1.0; (4) Sensitivity of SDI to crack is increasing with piezoelectric layer thickness until the thickness 
reaches critical value ℎ' = 0.2ℎ!. Further increase of the thickness from the critical value leads to 
decrease of SDI sensitivity to crack. This discussion is useful for designing crack detection procedure in 
FGM beams using moving load and piezoelectric distributed sensor. 

5. Conclusions 
The main results obtained in this study can be summarized as follow: 

Fig. 4. Spectral damage index versus crack
location in dependence on material

distribution index (n)
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dependnce upon crack depth and load frequency (Fig. 2), load speed (Fig. 3), material distribution index 
n (Fig. 4) and thickness of the piezoelectric layer (Fig. 5). 
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Observing graphs presented in the Figues one can make the following discussion: (1) Change in the 
spectral damage index due to crack position and depth is similar to the crack-induced change in fundametal 
frequency with an exception that magnitude of the change in spectral damage index is larger than that of 
natural fundamental frequency. In the other words, it can be acknowledged that spectral damage index is 
significantly more senstitive to crack than the natural frequencies; (2) The effect of moving load parameters 
such as their frequency and speed on the sensitivity of spectral damage index to crack is so slight that they 
may be difficult to employ for crack detection as it has done for homogeneous beams [40]; (3) Sensitivity 
of SDI to crack is first increasing with material distribution index (n) from 𝑛 = 0 to 𝑛 = 1.0, then the 
sensitivity decreases until 𝑛 = 5, from that it becomes again increasing. This means that dependence of 
the SDI sensitivity to crack on the FGM property is not monotonous, but it reaches maximum at the value 
𝑛 = 1.0; (4) Sensitivity of SDI to crack is increasing with piezoelectric layer thickness until the thickness 
reaches critical value ℎ' = 0.2ℎ!. Further increase of the thickness from the critical value leads to 
decrease of SDI sensitivity to crack. This discussion is useful for designing crack detection procedure in 
FGM beams using moving load and piezoelectric distributed sensor. 

5. Conclusions 
The main results obtained in this study can be summarized as follow: 

Fig. 5. Spectral damage index versus crack
location in dependence on thickness of

sensor layer (hp)

Observing graphs presented in the figures one can make the following discussion:
(i) Change in the spectral damage index due to crack position and depth is similar to the
crack-induced change in fundamental frequency with an exception that magnitude of the
change in spectral damage index is larger than that of natural fundamental frequency. In
the other words, it can be acknowledged that spectral damage index is significantly more
sensitive to crack than the natural frequencies; (ii) The effect of moving load parameters
such as their frequency and speed on the sensitivity of spectral damage index to crack
is so slight that they may be difficult to employ for crack detection as it has done for
homogeneous beams [40]; (iii) Sensitivity of SDI to crack is first increasing with material
distribution index (n) from n = 0 to n = 1.0, then the sensitivity decreases until n = 5,
from that it becomes again increasing. This means that dependence of the SDI sensitivity
to crack on the FGM property is not monotonous, but it reaches maximum at the value
n = 1.0; (iv) Sensitivity of SDI to crack is increasing with piezoelectric layer thickness
until the thickness reaches critical value hp = 0.2hb. Further increase of the thickness
from the critical value leads to decrease of SDI sensitivity to crack. This discussion is
useful for designing crack detection procedure in FGM beams using moving load and
piezoelectric distributed sensor.

5. CONCLUSIONS

The main results obtained in this study can be summarized as follow:
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- A frequency domain model of cracked functionally graded beams bonded with a
piezoelectric layer and subjected to a harmonic moving force has been established and it
could be usefully employed for both analysis and identification of the composite struc-
tures.

- There has been introduced a novel damage index called spectral damage index for
cracked functionally graded beams with piezoelectric layer. The index is easily calculated
from the output charge produced in the piezoelectric layer acknowledged as an electrical
frequency response to the moving load.

- Sensitivity of the electrical frequency response to crack has been examined in de-
pendence On load parameters, FGM properties, and thickness of the piezoelectric layer
used as a distributed sensor for measuring the frequency response of FGM beam sub-
jected to moving load.

- The completed above theoretical development and numerical analysis provide use-
ful information and instruction for solving the crack detection problem that is the subject
of the next study for the authors.
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[28] Ş. D. Akbaş. Free vibration characteristics of edge cracked functionally graded beams by
using finite element method. International Journal of Engineering Trends and Technology, 4, (10),
(2013), pp. 4590–4597.

[29] K. Aydin. Free vibration of functionally graded beams with arbitrary number of
surface cracks. European Journal of Mechanics - A/Solids, 42, (2013), pp. 112–124.
https://doi.org/10.1016/j.euromechsol.2013.05.002.

[30] N. T. Khiem, H. T. Tran, and D. Nam. Modal analysis of cracked continuous Timoshenko
beam made of functionally graded material. Mechanics Based Design of Structures and Ma-
chines, 48, (2019), pp. 459–479. https://doi.org/10.1080/15397734.2019.1639518.

[31] Z. Yu and F. Chu. Identification of crack in functionally graded material beams using the
p-version of finite element method. Journal of Sound and Vibration, 325, (2009), pp. 69–84.
https://doi.org/10.1016/j.jsv.2009.03.010.

[32] A. Banerjee, B. Panigrahi, and G. Pohit. Crack modelling and detection in Timo-
shenko FGM beam under transverse vibration using frequency contour and response
surface model with GA. Nondestructive Testing and Evaluation, 31, (2015), pp. 142–164.
https://doi.org/10.1080/10589759.2015.1071812.

[33] N. T. Khiem and N. N. Huyen. A method for crack identification in functionally
graded Timoshenko beam. Nondestructive Testing and Evaluation, 32, (2016), pp. 319–341.
https://doi.org/10.1080/10589759.2016.1226304.

[34] M. K. Khorramabadi and A. R. Nezamabadi. Stability of functionally graded beams with
piezoelectric layers based on the first order shear deformation theory. International Journal of
Electrical and Computer Engineering, 4, (11), (2010), pp. 1641–1644.

https://doi.org/10.1155/2015/713501
https://doi.org/10.3390/app10134648
https://doi.org/10.1016/j.jsv.2008.04.056
https://doi.org/10.1016/j.matdes.2008.05.015
https://doi.org/10.1080/15397734.2013.763713
https://doi.org/10.1016/j.compstruc.2014.10.001
https://doi.org/10.1080/15397734.2016.1145060
https://doi.org/10.1016/j.compstruct.2007.03.006
https://doi.org/10.1016/j.euromechsol.2013.05.002
https://doi.org/10.1080/15397734.2019.1639518
https://doi.org/10.1016/j.jsv.2009.03.010
https://doi.org/10.1080/10589759.2015.1071812
https://doi.org/10.1080/10589759.2016.1226304


Frequency response sensitivity to crack for piezoelectric FGM beam subjected to moving load 205

[35] Y. S. Li, W. J. Feng, and Z. Y. Cai. Bending and free vibration of functionally graded piezoelec-
tric beam based on modified strain gradient theory. Composite Structures, 115, (2014), pp. 41–
50. https://doi.org/10.1016/j.compstruct.2014.04.005.

[36] K. Bendine, F. B. Boukhoulda, M. Nouari, and Z. Satla. Active vibration control of
functionally graded beams with piezoelectric layers based on higher order shear defor-
mation theory. Earthquake Engineering and Engineering Vibration, 15, (2016), pp. 611–620.
https://doi.org/10.1007/s11803-016-0352-y.

[37] N. T. Khiem, T. T. Hai, and L. Q. Huong. Effect of piezoelectric patch on natural frequencies of
Timoshenko beam made of functionally graded material. Materials Research Express, 7, (2020).
https://doi.org/10.1088/2053-1591/ab8df5.

[38] N. T. Khiem, D. T. Huan, and T. T. Hieu. Vibration of cracked FGM beam with piezoelectric
layer under moving load. Journal of Vibration Engineering & Technologies, 11, (2022), pp. 755–
769. https://doi.org/10.1007/s42417-022-00607-8.

[39] N. T. Khiem, N. N. Huyen, and N. T. Long. Vibration of cracked Timoshenko beam made of
functionally graded material. In Conference Proceedings of the Society for Experimental Mechanics
Series, Springer International Publishing, (2017), pp. 133–143. https://doi.org/10.1007/978-3-
319-54735-0 15.

[40] T. T. Hai, P. T. Hang, and N. T. Khiem. A novel criterion for crack identification in beam-
like structures using distributed piezoelectric sensor and controlled moving load. Journal of
Sound and Vibration, 572, (2024). https://doi.org/10.1016/j.jsv.2023.118155.

https://doi.org/10.1016/j.compstruct.2014.04.005
https://doi.org/10.1007/s11803-016-0352-y
https://doi.org/10.1088/2053-1591/ab8df5
https://doi.org/10.1007/s42417-022-00607-8
https://doi.org/10.1007/978-3-319-54735-0_15
https://doi.org/10.1007/978-3-319-54735-0_15
https://doi.org/10.1016/j.jsv.2023.118155

	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. FREQUENCY RESPONSE CRACKED PIEZOELECTRIC FGM BEAM SUBJECTED TO MOVING HARMONIC LOAD
	4. SENSITIVITY OF ELECTRICAL FREQUENCY RESPONSE TO CRACK - NUMERICAL RESULTS
	5. CONCLUSIONS
	DECLARATION OF COMPETING INTEREST
	FUNDING
	REFERENCES

