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Abstract. The article proposes a new method of mathematical modeling evolutional
systems interacting with medium. A cutting process or tribo-space formed in the contact
area of two conjugate mechanical subsystems is considered as medium. The features of
the medium depend not only on state coordinates of systems but also on trajectories.
It is obtained that the parameters of the medium are performed as integral operators
of equations like Volterra equations of 2nd type. The problems of control of evolutional
systems are being analyzed.
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1. INTRODUCTION

Studying evolution of technical systems is traditional and corresponds to the pro-
blem of ensuring reliability. In particular, studying evolutional transformations of processes
on cutting machines affects the development of wearing of instruments changing cutting
products quality indexes [see e.g. 1-5]. All those indexes characterize the external display of
evolutional changes. The evolutional changes of dynamic characteristics of cutting process,
which influences the parameters of geometrical quality of goods and the state of cutting
process, perform a more important meaning. They affect the current characteristics of the
irreversible transformations, which are characterized by trajectories of changing the power
of irreversible transformations of the function of work being performed. In technical sys-
tems with the friction areas the evolutional changing of matrices of dynamic rigidity and
dissipation of tribo-space, being formed in the areas of conjugation of the contacted ele-
ments, takes place. The article is devoted to studying evolutional changes of the dynamic
environmental characteristics, which allow correcting the control. The important point
is that while implementing synergetic control conception the determination of variety of
trajectories in the space of state plays the major role. This variety should characterize
natural conditions of system functioning, however, the management in this case needs
only to tune trajectories to necessary ones for normal functioning [6]. The article proposes
a new method of modeling evolutional systems interacting with medium. A cutting pro-
cess or tribo-space formed in the contact area of two conjugate mechanical subsystems is
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considered as medium. The features of the medium depend not only on state coordinates
of systems but also on trajectories. It is obtained that the parameters of the medium
are performed as integral operators of equations like Volterra equations of 2nd type. The
problems of control of evolutional systems are being analyzed.

2. MATHEMATICAL MODEL OF EVOLUTIONAL SYSTEM

INTERACTING WITH THE CUTTING PROCESS

While creating dynamic models of controlled systems the hierarchy principle is used.
It’s based on separating motions onto "slow" ones of executive elements and "rapid" ones,
which are considered in variations towards the trajectories of "slow" motions [7, 8]. Let’s
consider a set of trajectories of "slow" motions of the executive elements, which are being
formed in the independent reading system X = {X1, X2, X3, X4}

T ∈ X. For example, in
conformity with turning processing components of vector X have following meanings: X1

- coordinate of the cross-moving support; X2 - coordinate of support moving towards the
cutting speed (it’s obvious that in the traditional version of the machine X2 ≡ 0); X3 -
coordinate of the support cross-moving; X4 - angle coordinate of the spindle position. If
while processing the frequency of spindle rotation is kept constant, dX4/dt = const. As
follows, the trajectories of executive machine motions are a set in the X space. One of the
most important of them is cutting forces F = {F1(t), F2(t), F3(t)}

T ∈ F, settled with their
own projections. The cutting forces work while some of their power leads to changing of
properties of the cutting process, causing the evolutional transformations of the dynamic
cutting system.

Cutting forces depend on elastic tool deformations towards the part. That is why
let’s add the vectors of elastic tool deformations Y (t) = {Y1(t), Y2(t), Y3(t)}

T ∈ Y towards
the part Z(t) = {Z1(t), Z2(t), Z3(t)}

T ∈ Z. As follows, in general case the cutting forces
are functions of all coordinates of X, Y and Z spaces. As already noticed, within this
article the trajectories of executive machine elements and geometry of the part in the X

space are considered to be already settled. Following by [9], let’s define the equation of
dynamics of the system, which should also contain the evolutionary changes of parameters
p = {p1, p2, · · ·, ps} of dynamical characteristic of the cutting process (in general case -
medium).

m
d2Y (t)

dt2
+ h

dY (t)

dt
+ cY (t) = F (X,

dX

dt
, Y,

dY

dt
, Z,

dZ

dt
, p),

M
d2Z(t)

dt2
+ H

dZ(t)

dt
+ CZ(t) = F (X,

dX

dt
, Y,

dY

dt
, Z,

dZ

dt
, p),

p(i)(A) = pi,0 + pi

A
∫

0

wPi
(A − τ)N (τ)dτ, i = 1, 2...s,

A(t) =

t
∫

0

N (t)dt, N (t) = Vp |F2(t)| ,

(1)
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where m, M are diagonal matrixes sized 3x3; c = [cs,k], C = [Cs,k] - positively defined
symmetrical matrices of rigidity of subsystem of the instrument and part sized 3x3, non-
changeable at coordinates of support motions and non-changeable while changing the
position of the point of system equilibrium; h = [hs,k], H = [Hs,k] - positively defined
symmetrical matrices of dissipation of the subsystem instrument and part sized 3x3, also
non-changeable at coordinates of support motions and non-changeable while changing the
position of the point of system equilibrium; wPi

(A−τ) = exp[− 1
TPi

(A−τ)] - kernels of the

integral operators, while TPi
- constant works, which are estimated in kgm. These para-

meters characterize the evolutional trajectories heredity while working. So, the evolutional
heredity is displayed only within the integral operator kernel attenuation while working
motion is negative (taking into consideration only the pre-history of power on work done);
VP - cutting speed, which in our case is considered to be constant.

At the beginning let’s observe the system, which possesses features [9]:
- Cutting forces satisfy the hypothesis about their constant orientation in space.

This orientation is set by angular coefficients χ = (χ1, χ2, χ3).
- In variations concerning a stationary trajectory, which is assigned byX , the dy-

namic characteristic can be linearized while the reaction from the side of processing can
be replaced by matrixes of the dynamic rigidity and dissipation. Then instead of (1) we
have:

m
d2Y (t)

dt2
+ h

dY (t)

dt
+ cY (t) = F (t){χ1, χ2, χ3},

M
d2Z(t)

dt2
+ H

dZ(t)

dt
+ CZ(t) = F (t){χ1, χ2, χ3},

F (t) = F0 + F (E)(t) + α(A)(−Y1(t) − Z1(t)) + β(A)(−
dY1

dt
(t)−

dZ1

dt
(t)),

F (E)(t) = f

A
∫

0

wα(A − τ)N (τ)dτ, α(A) = α0 + γ

A
∫

0

wα(A − τ)N (τ)dτ,

β(A) = β0 + η

A
∫

0

wβ(A − τ)N (τ)dτ, A(t) =

t
∫

0

N (t)dt, N (t) = Vp |χ2F (t)| ,

(2)

where f , γ, η - balanced coefficients, which have, respectively, the dimension [s/kgm2], [s
/ kgm3] and [s2/kgm3]. These coefficients characterize the intensity of evolutional changes
of constant components of cutting force, rigidity and dissipation of processing. In this case
evolutional components of constant component of cutting force, rigidity coefficient and
dissipation are, respectively, measured in [kg], [kg/m] and [kgs/m].

In the system (2) initial conditions are determined by the values of elastic tool
deformations Y ∗ = {Y ∗

1 , Y ∗

2 , Y ∗

3 }
T concerning detail Z∗ = {Z∗

1 , Z∗

2 , Z∗

3}
T at initial stage of

process, when evolutional changes of parameters of dynamic rigidity and dissipation are
absent, i. e. α(A) = β(A) = 0. Thus,

Y (0) = {Y ∗

1 , Y ∗

2 , Y ∗

3 }
T ,

dY (0)

dt
={0, 0, 0}T , Z(0) = {Z∗

1 , Z∗

2 , Z∗

3}
T ,

dZ(0)

dt
={0, 0, 0}T . (3)
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In the given model the speed of cutting is considered to be constant. Thus, if system
has the point of equilibrium, which is asymptotical steady, the work is made only by the
force component, directed by cutting speed. The coordinates Y (0) = Y ∗ and Z(0) = Z∗,
which determine the initial conditions of system, are the results of systems

cY (0) = F (0){χ1, χ2, χ3}
T , CZ(0) = F (0){χ1, χ2, χ3}

T (4)

Functions Y and Z characterize the displacement of a point of equilibrium, caused by
features of powered interaction at initial stage of a cutting process and evolutional transfor-
mations of system (2) due to the work, which is made at some power of irreversible trans-
formations, depending on trajectory. Beginning of evolutional transformations is at point
t = 0, where the finished work equals zero. That is why during analysis it is reasonable to
examine composition Y (A) = Y ∗ + Y (E)(A) and Z(A) = Z∗ + Z(E)(A). This composition

corresponded in time with the other one Y (t) = Y ∗ + Y (E)(t) and Z(t) = Z∗ + Z(E)(t).
As work, time, current forces and motions in (2) are interconnected, we may also observe
displacement functions Y (X3) = Y ∗ + Y (E)(X3) and Z(X3) = Z∗ + Z(E)(X3) of the point
of equilibrium by moving of instrument relatively to work piece. Here X3 - is the way,
which is made by the instrument towards the work piece during manufacturing products.

Function A(t) increases at all interval of integration, as subintegral expression is
non-negative at any moment of time. As in the resulted simplified model rigidity and dis-
sipation matrices have coefficients, which "slowly" change in course of evolutional trans-
formations, thus not only the point of equilibrium is evolutional. Dynamic properties of
system for "fast" movements also change. That’s why roots trajectories of characteristic
polynomial in complex plane should correspond to evolutional trajectories Y (E)(t) and

Z(E)(t). However, at high intensity of evolutional transformations the situation when evo-
lutional transformations themselves may influence the dynamic of system is possible. The
intensity of evolutional transformations in (2) is determined by coefficients γ and η.

Table 1. Tool subsystem parameters

m · 10
−3, kgs2/mm h, kgs/mm c · 10

3, kg/mm
2

4

0, 25 0 0

0 0, 25 0

0 0 0, 25

3

5

2

4

0, 6 0, 1 0, 08

0, 1 0, 5 0, 2

0, 08 0, 2 0, 7

3

5

2

4

1, 0 0, 3 0, 2

0, 3 1, 2 0, 4

0, 2 0, 4 1, 6

3

5

Table 2. Work-piece subsystem parameters

m · 10
−3, kgs2/mm h, kgs/mm c · 10

3, kg/mm
2

4

5, 0 0 0

0 5, 0 0

0 0 5, 0

3

5

2

4

5, 0 1, 0 0, 8

1, 0 4, 0 0, 6

0, 8 0, 6 2, 0

3

5

2

4

0, 2 0, 1 0, 08

0, 1 0, 2 0, 01

0, 08 0, 01 1, 0

3

5

Let’s give an example of the displacement of balanced point of system for shaft
turning, parameters of work-piece dynamic model are constant. It’s important to note,
that the displacement of balanced point corresponds to a change of work-piece’s diameter.
Besides we’ll consider dynamical characteristics of tool subsystem to be constant, as all
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processing conditions, except values of dynamic rigidity and dissipation of cutting process.
The main parameters are listed in Tables 1, 2, initial values of rigidity and dissipation
equal, respectively, α0 = 100kg/mm and β0 = 10kgs/mm. Cutting force at initial stage -
F0 = 100kg. Evolutional hereditary constants Tα and Tβ equal to, respectively, Tα = 50kgm
and Tβ = 20kgm. Force orientation coefficients: χ1 = 0, 50, χ2 = 0, 71, χ3 = 0, 50.
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10),( -×+ mmZY EE

kGmА,0 50

2,0

150 250

6,0

0,1

4,1

1

2

3

1 - 2,0=h , 1,0=g ;
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3 - 2,0=h , 0,1=g .

Fig. 1. Displacement of system point of equilibrium in direction, normal to work-
piece rotation axis, with it’s evolutional transformations

We see that depending on parameters of intensity of evolutional transformations
γ and η, displacement curves of a balanced point in the direction, normal to work-piece
rotation axis, change (see Fig. 1) and remind tool wear curves in some of their values.
This specifies again at relation of tool wear value with changes of dynamical characteristic
of cutting process. Let’s examine root trajectories of the characteristic polynomial (Fig.
2a), which correspond to deviation evolutional trajectories of a balanced point, shown in
Fig. 1.

Trajectories are calculated for the system characteristic polynomial (2) assuming,
that current parameters of system are frozen. This system has six pairs of complex-

conjugated roots p
(1)
i = −a

(1)
i + jb

(1
i ) and p

(2)
i = −a

(1
i ) − jb

(1)
i (i = 1, 2, · · ·, 6), which

are located at left complex half-plane, because the frozen system is steady at all observed
functioning segment. Evolutional displacement of balanced point corresponds with evo-
lutional trajectory of every root or its’ material and imaginary components. In Fig. 2b
an example of separate evolutional stages division by classes with indication of balanced
point is shown. Estimation of Y (E)(t) and Z(E)(t) may be absolutely exact, because an
observed system is determined and evolutional roots curves have no ambiguity sections.
But a question about the evolutional displacement estimation may arise based on au-
toregressive spectral analysis with the observation at vibrating succession. In this case
an informational space may be formed, which consisted of material and imaginary roots
components. Classification methods, which were earlier examined also, may be used, for
example at the base of Baies classification rule [10]. In this example we accept the hy-
pothesis about invariability of cutting forces orientation in space, which is correct only in
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low-frequency field and at wear small variations of cutting tool. While examining the sys-
tem (1) in variations, we should notice that during evolution redistribution between force
components, operated in different directions, is observed. Moreover in summarized rigidity
and dissipation matrixes, not only skew-symmetric components are formed, but also ma-
trixes themselves may become negatively determined. In this case the point of equilibrium
may become unstable. After this, in condition space some varieties are formed. In this case
system properties, including indexes of products geometrical quality, become dependent
on initial conditions and small indignations, which influence the system. It’s important to
note, that because of skew-symmetric rigidity and dissipation matrixes influence at per-
formed work and power during periodic tool movements relatively to workpiece, variable
components of cutting forces, which have difficult orientation in space, start working. The
work is made by force components, caused by skew-symmetric terms of rigidity matrix
and symmetric terms of dissipation matrix. In this case the work is examined along the
trajectory of periodical tool movements towards the workpiece.

(a)
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-
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Fig. 2. Evolutional roots trajectories of characteristic polynomial (a) and exam-
ple of division by classes with the value of evolutional displacement of point of
equilibrium (b)

Let’s illustrate this evolutional mode at a simple example. We’ll consider a part to
be not deformed, and turning process at constant external conditions (speed, delivery, al-
lowance). For simplification we won’t examine the influence of work and power at general

cutting forces, i.e. F (E) ≡ 0. In this way only dynamic rigidity and dissipation matrices
of process are evolutionary changed. Tool deformations in direction of X1 influence the
quasistatic positional forces in variations relatively to the balanced point X∗. These com-
ponents change summarized matrix of system rigidity. Concerning the dissipation matrix
of cutting process, in result of evolution, as we marked earlier, all its’ components are being
changed. Cutting speed and two force components F0 = {F0,1, F0,2, F0,3}

T are considered
to be constant. In that way, instead of (3) we have the following system:
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m
d2X(t)

dt2
+ h

dX(t)

dt
+ cX(t) = F

(

X,
dX(t)

dt

)

,

F

(

X,
dX(t)

dt

)

=

{

F1

(

X,
dX(t)

dt

)

, F2

(

X,
dX(t)

dt

)

, F3

(

X,
dX(t)

dt

)}T

,

Fi

(

X,
dX(t)

dt

)

= F0,i + αi(−X1(t)) + βi

(

−
dX1

dt

)

+ φi

(

−
dX2

dt

)

+ µi

(

−
dX3

dt

)

,

αi(A) = α0,i + αi

A
∫

0

wα,i(A − τ )N(τ )dτ, βi(A) = β0,i + βi

A
∫

0

wβ,i(A − τ )N(τ )dτ,

φi(A) = φ0,i + φi

A
∫

0

wφ,i(A − τ )N(τ )dτ, µi(A) = µ0,i + µi

A
∫

0

wφ,i(A − τ )N(τ )dτ,

A(t) =

t
∫

0

N(t)dt, Ni(t) = Vp |F2(t)| .

(5)

Operator kernels in (5) have the same structure as in (2). But performed work
corresponds to (2) only in the case, when system has asymptotically steady point of equi-
librium. In general case comparatively from (2) work and power are determined for forces,
which have different projections at axes X1, X2 and X3. Expressions for calculation of
work in general case are carefully analyzed in our monograph [9]. Matrix m in system

(5) is diagonal. Concerning elasticity c(R) and dissipation h(R) matrices, rigidity matrix,
taking into account reaction from the side of cutting process, equals:

c(R) =



















α1(A) = α0,1 + γ1

A
∫

0

wα,1(A − τ)N (τ)dτ 0 0

α2(A) = α0,2 + γ2

A
∫

0

wα,2(A − τ)N (τ)dτ 0 0

α3(A) = α0,3 + γ3

A
∫

0

wα,3(A − τ)N (τ)dτ 0 0



















(6)

And dissipation matrix of cutting process equals:

h(R) =





β1(A) φ1(A) µ1(A)
β2(A) β2(A) µ2(A)
β3(A) φ3(A) µ3(A)



 (7)

with

β1(A) = β0,1 + β1

A
∫

0

wβ,1(A − τ)N (τ)dτ, φ1(A) = φ0,1 + φ1

A
∫

0

wφ,1(A − τ)N (τ)dτ,

µ1(A) = µ0,1 + µ1

A
∫

0

wµ,1(A − τ)N (τ)dτ, β2(A) = β0,2 + β2

A
∫

0

wβ,2(A − τ)N (τ)dτ,
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µ2(A) = µ0,2 + µ2

A
∫

0

wµ,2(A − τ)N (τ)dτ, β3(A) = β0,3 + β3

A
∫

0

wβ,3(A − τ)N (τ)dτ,

φ3(A) = φ0,3 + φ3

A
∫

0

wφ,3(A − τ)N (τ)dτ, µ3(A) = µ0,3 + µ3

A
∫

0

wµ,3(A − τ)N (τ)dτ.

In such a way, during evolution we observe elements redistribution of rigidity matrix
and dissipation of cutting system. Besides in rigidity matrices, as a rule, those components,
which form force reactions from the cutting process side in directions X1 and X3, increase.
Coefficients of dissipation matrix vary as a result of next factors action:

- Essentially they depend on the value of delayed argument with forming of cut-
ting forces modifications. Delayed argument at constant cutting speed grows during the
volume increasing of plastic deformation in the cutting area, involved into the system re-
organization. That’s why dissipation matrixes at small variations of condition coordinates
relatively to the balanced point may be negative and as a rule they increase on module
during the evolutional modifications;

- Because of kinetic characteristic of a cutting process at fallen section of forces’
dependence on speed, an effect of negative friction in the field of tool front side contact
with shaving and in a field, which adjoin to rear surface of an instrument is observed. As
a rule this effect increases according to wear-in and wearing development, i.e. during the
evolution of system.

Let’s examine the sample of evolutional modification of a cutting system in suppo-
sition, that dissipation matrices are constant, i.e. βi = φi = µi = 0. We examine only case,
when the work, which is made while system vibrations around the point of equilibrium is
negligible small in comparison with the work which is made by the main component of a
cutting force as far as moving of tool towards the workpiece. This is fair in those cases
when balanced point is asymptotically steady or varieties, which are formed in the vicin-
ity of this point, have amplitudes, which are much smaller than the value of allowance on
processing. Then instead of (5) we should examine the next simplified evolutional cutting
system:

m
d2X(t)

dt2
+ hΣ

dX(t)

dt
+ cX(t) = F

(

X,
dX(t)

dt

)

,

F (X,
dX(t)

dt
) =

{

F1

(

X,
dX(t)

dt

)

, F2

(

X,
dX(t)

dt

)

, F3

(

X,
dX(t)

dt

)}T

,

Fi

(

X,
dX(t)

dt

)

= F0,i + αi(A)(−X1(t)), i = 1, 2, 3,

αi(A) = α0,i + αi

A
∫

0

wα,i(A − τ )N(τ )dτ, A(t) =

t
∫

0

N(t)dt, Ni(t) = Vp |F2(t)|,

(8)

where

hΣ =





(h1,1 + β0,1) (h2,1 + φ0,1) (h3,1 + µ0,1)
(h1,2 + β0,2) (h2,2 + φ0,2) (h3,2 + µ0,2)
(h1,3 + β0,3) (h2,3 + φ0,3) (h3,3 + µ0,3)
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- summarized dissipation matrix with the reaction from the side of cutting process.
Let’s examine an example for this case. Main parameters of system are listed in

Table 3. Summarized dissipation matrix is conditionally accepted to be symmetrical and
positively definite. Initial forces values, determined by technological regimes (tR = 2, 5mm,
SR = 0, 2mm/r, VR = 120, 0m/min) while steel turning 20X by cutting plates of T15K6 are
equal to F0,1 = 40, 0kg, F0,2 = 100, 0kg, F0,3 = 60, 0kg. Initial conditions of rigidity of cut-
ting process coefficients are equal to, respectively, α0,1 = 100kg/mm, α0,2 = 80, 0kg/mm,
α0,3 = 20, 0kg/mm.

Table 3. Parameters of subsystem of instrument with regard of cutting process feedback

m · 10
−3, kgs2/mm hΣ, kgs/mm c · 10

3, kg/mm
2

4

0, 25 0 0

0 0, 25 0

0 0 0, 25

3

5

2

4

1, 2 0, 2 0, 1

0, 2 1, 5 0, 2

0, 1 0, 2 1, 4

3

5

2

4

1, 0 0, 5 0, 2

0, 5 1, 2 0, 4

0, 2 0, 4 1, 6

3

5

As earlier let’s study the evolutional diagrams (Fig. 3) of displacement of the point

of equilibrium of the system X(t) = X∗+X (E)(t) and respective diagrams of displacement
of the roots of characteristic polynomial while the initial values of the system (8) are equal
X(0) = {0, 06mm 0, 12mm 0, 09mm}T , dX(0)/dt = {0 0 0}T .

0 200 400 600 kGmA,

05,0

10,0

15,0

20,0

mmX E ,)(

1

kGmA 590=

(a)

0,1

00,1

31 10, ×-sbi

0,1-

1, -sa
i

0,20,3

0,2-

0,2

)1(
3p

)1(
2p

)1(

1
p

)2(

1
p

)2(

1
p

)1(

1p

)2(
2p )2(

3p

A

B

(b)

Fig. 3. Evolutional trajectories of displacement of the point of equilibrium of the
system towards X1 (a) and roots of characteristic polynomial (b) for the system (8)

We can see that a couple of roots of characteristic polynomial after some evolution
become equal to each other (point "A" in Fig. 3b). After that the roots take different
directions on material axis and one of the roots crosses the imaginary axis. At the mo-
ment "frozen" system looses the steadiness of the point of equilibrium and X1 coordinate
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according to the law of unstable exponent leaves to eternity. So called instrument "un-
dermining" takes place. In that case the whole system endures the double bifurcation
transformations. Three laid on each other steady focuses at the initial stage of evolution
are being transformed in the point "A" in Fig. 3 into two steady focuses, corresponded
with vibrations of the relative knot, which asymptotically strives towards the point of
equilibrium. Then in the point one of the trajectories becomes unstable, but all other tra-
jectories strive towards it. The example proves that evolutional transformation while the
cutting process are not only the instrument wear and (or) changes of the current values of
diameter of the processed detail. These are only two external displays of the evolutional
system transformations. In our opinion changing of the topology of the phase space, which
appears while bifurcation transformations and related changes of the dynamic cutting
process characteristic is worth more attention.

One more sample of the evolutional transformations of the linearized system. Let’s
consider the evolutional transformations to have only the dissipation matrixes as αi ≡ 0,
but βi 6= 0, φi 6= 0, µi 6= 0. As follows, let the described above system has the evolutional
transformations coefficients’ matrix correspond to Table 4.

Table 4. Values of coefficients of evolutional transformations of the cutting process
dissipation matrix

i βi, s/m2 φi, s/m2 µi, s/m2

i = 1 -0,02 0,001 0,01

i = 2 0,01 0,002 0,005

i = 3 -0,02 0,002 0,005

kGmA,

mmX E ,)(

1

100 200 300

А В
02,0

02,0-

04,0-

06,0-

0

Fig. 4. Evolutional diagram of displacement of the point of equilibrium by chang-
ing the dissipation matrixes
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Let’s study the sample of changing the evolutional trajectory of the point of equilib-
rium, calculated for the case (Fig. 4). As it was shown earlier, the elements of the matrix
of dynamic dissipation of the cutting process around the point of equilibrium can have
negative values. The reasons of the effect are of two kinds. Firstly, the negative values of
some coefficients can be caused by lagging argument in the functions of force transforma-
tions while varying the coordinates, which affect the forces. Secondly, the negative values
while the cutting speed is settled can be caused by kinetic characteristic of the friction
speed in the contact area of shaving and the front surface of the instrument and in the
contact area of the rear side and the detail. Both these factors increase the affecting while
the wear grows during the evolutional transformations of the cutting system.

One noticeable point is that super low-frequency periodical displacements of the
point of equilibrium, which go out slowly and the current values of size do set on some
permanent level. So, the evolutional transformations themselves, which are modeled as the
integral operators in this case, cause the behavior of the system if the system is considered
to be frozen, i.e. the dynamics of the evolutional transformations affects the permanent
trajectory, which can be stable or non-stable. In the highlighted sample the permanent
mode is set before the work of (250 − 260)kgm (point "A" in Fig. 4) is done. Further
these vibrations arise and starting from the point "A" the frozen dynamic cutting system
looses the steadiness of the point of equilibrium. At the same time the couple of complex-
conjugated roots of the characteristic polynomial of the frozen system leave for the right
complex semi-surface (not shown in Fig. 4). It’s significant, that even small variations βi,
φi, µi can lead to serious dynamic reconstruction of the system. And as the last time the
topology of the phase space of the cutting system changes.

While the couple of roots of characteristic polynomial leave for the right complex
semi-surface, linearized models become unacceptable. While the amplitude of periodical
motions increases within the system the extra-relations, which limit the development of
periodical movements are being formed. That is why it’s necessary to note the non-linear
dynamic models. Here let’s study the case when non-linear characteristic of the cutting
process is performed as suggested by Rayleigh:

F (D)(t) = β1v − β2v
3, (9)

where v = dY1

dt + dZ1

dt . So, let’s take only the case, when the variations of displacements of
the instrument towards the part only at X1 coordinate cause the changes of the major force
component, which is separated into its’ own projections by matrix of angle coefficients in
space.

That’s why let’s have a look at system (2) again. Total displacements in X1 direction
are determined as Y1 + Z1. But despite of (2) let’s estimate the dynamic characteristic of
the cutting process on vibration speeds of the instrument towards the part in non-linear
view. Also will consider the initial values of displacements Y1 and Z1 equal to zero, so that
the system state coordinates we’ll consider in the variations towards the static set of the
cutting instrument in the independent counting system of the metal cutting machine. So
the evolutional equation of dynamics can be performed as
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m
d2Y (t)

dt2
+ h

dY (t)

dt
+ cY (t) = F (t){χ1, χ2, χ3},

M
d2Z(t)

dt2
+ H

dZ(t)

dt
+ CZ(t) = F (t){χ1, χ2, χ3},

F (t)=F0+α(A)(−Y1(t)−Z1(t))+β1(A)

(

dY1

dt
(t)+

dZ1

dt
(t)

)

−β2(A)

(

dY1

dt
(t)+

dZ1

dt
(t)

)

3,

α(A) = α0 + α1

A
∫

0

wα(A − τ )N(τ )dτ, β1(A) = β0,1 + β1

A
∫

0

wβ(A − τ )N(τ )dτ,

β2(A) = β0,2 + β2

A
∫

0

wβ(A − τ )N(τ )dτ, A(t) =

t
∫

0

N(t)dt, N(t) = Vp |χ2F (t)| ,

(10)

where β0,2 - non-linear dissipation coefficient, measured as kgs3/m3, β2 - non-linear co-
efficient of the evolutional transformations, measured as s3/m4. Initial values (10) are
settled:

Y (0) =
(

0 0 0
)T

,
dY (0)

dt
=

(

0 0 0
)T

, Z(0) =
(

0 0 0
)T

,
dZ(0)

dt
=

(

0 0 0
)T

. (11)

Let’s analyze the time and phase trajectories of system motion from the point
(11). It’s suitable to estimate them as the projection for two phase surfaces Y, dY/dt
and Z, dZ/dt, as well as in the coordinates system, where the time value is on the ab-
scise axis (see Fig. 5). So, the phase surface, located to the left of abscise axis, belongs
to Y, dY/dt, but to the right of the axis - to Z, dZ/dt (see Fig. 5b). System parameters
correspond with the sample mentioned earlier.

(a) (b)

Fig. 5. Sample of evolutional diagram of instrument and detail (a) displacement
for system (10) and its’ phase trajectories (b) for α(A) = 0

We can see, that while α(A) = 0 after the transformation process the stationary
state is being settled with the coordinates Z1 = Z∗

1 = 0, 44mm = const and Y1 = Y ∗

1 =
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0, 11mm = const (see Fig. 5a). But with the system moving because of increasing β1(A)
the roots of characteristic polynomial of the "frozen" system also move in point "A"
on Fig. 5a crossing the imaginable axis. And around the Z1 = Z∗

1 = 0, 44mm = const
points and Y1 = Y ∗

1 = 0, 11mm = const dissipation matrix of the "frozen" system become
negatively defined. That is why the points of equilibrium loose their steadiness and the
steady limit cycle, parameters of which do change during the evolution, is being formed
around the points. So, the "A" points in Fig. 5a are the points of bifurcation of Andronov-
Khopf. This is the bifurcation of appearing orbital asymptotically steady limit cycle from
asymptotically steady point of equilibrium. If in this case to take into consideration the
non-linearity in positioning relation inside the force system function, than with raising
amplitude of the periodical motions the dynamic displacing of the Y ∗

1 and Z∗

1 points will
be noted. So, the varieties, formed in the space of "fast" motions (in our case these are
the parameters of the limit cycle), affect the form generating trajectories of the "slow"
motions, as follows - on current values of diameter of the being processed roller.

3. CONCLUSION

The above data let make following conclusions.
1. While the cutting system is on its dynamic reconstruction takes place, which

is caused by evolutional transformations of parameters of dynamic characteristics of the
processing. The evolutional trajectories of parameters of dynamical characteristic corre-
spond to the trajectories of the roots of characteristic polynomial in the complex surface.
Studying the trajectories of the roots within the cutting process is suitable to be worked
out on the basis of autoregressive spectral analysis of the fibro-acoustic emission signal.
The root trajectories characterize in their turn the information stock, which had not been
used earlier, helps to diagnose and manage the cutting process online.

2. The evolution of parameters of dynamic characteristics of the cutting process
causes changing of parameters of varieties, which are formed around the stationary trajec-
tories, which are settled by trajectories of "slow" motions of executive machine elements.
In some points of evolutional trajectories the changes of topology of phase space of "fast"
motion subsystem are noticed, i.e. bifurcations, which change principally the dynamic
mode of the cutting process. Finally, the displacing of the trajectories from the form gen-
erating motions of the instrument towards the detail is noticed. They define the values
of the geometrical quality of the details. That is why studying of the trajectories of the
roots of characteristic polynomial allows to estimate the current values of the geometrical
quality of the details directly while processing.
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