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Abstract. In this paper, the size-dependent nonlinear bending of microbeams subjected
to mechanical loading is studied using a finite element formulation. Based on the von
Kármán nonlinear relationship and the third-order shear deformation theory, a size-
dependent nonlinear beam element is derived by using the modified couple stress the-
ory (MCST) to capture the microstructural size effect. The element with explicit expres-
sions for the element vector of internal forces and tangent stiffness matrix is derived by
employing the transverse shear rotation as a variable. Nonlinear bending of microbeams
under different mechanical loading is predicted with the aid of Newton–Raphson itera-
tive method. Numerical investigation shows that the derived element is efficient, and it
is capable of giving accurate results by several elements. The obtained results reveal the
importance of the micro-size effect on the nonlinear behavior of the microbeams, and the
deflections are overestimated when the microstructural effect is ignored. The effects of the
material length scale parameter, boundary conditions and loading type on the bending
response of the microbeams are studied and highlighted.
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1. INTRODUCTION

Microbeams are used in many small-scale systems and devices such as micro/nano-
electro-mechanical systems (MEMS/NEMS) [1]. Due to complex loading, microbeams
in such application are often undergone large deformation. Understanding large defor-
mation of micro-scale structural elements is important for proper use and design of the
microdevices and microsystem, and this motivates investigations on nonlinear bending
behaviour of microstructure in general, and microbeams in particular. Regarding the
nonlinear bending of microbeams, many efforts have been made to predict response of
microbeams under different electronic and/or mechanical loading. In the early works,
the classical beam theories, which are unable to describe the influence of the size effects,
have been employed to model the microbeams [2–5]. In these works, the von Kármán
nonlinear assumption is adopted to account for the relatively large rotation, and the re-
sponse of the microbeams is assessed by various methods, e.g the shooting method [2],
the Galerkin method [3, 4].

To amend the shortcomings of the classical theories in modeling the size effects in
small-scale structures, various higher-order continuum theories such as the strain gradi-
ent elasticity theory (SGET) [5, 6], the modified couple stress theory (MCST) [7], which
contain the length scale parameters, have been proposed. Using these higher-order con-
tinuum theories, investigations on the influence of micro-size effect on mechanical behav-
ior of microbeams and microframes have been carried out in recent years. For instance,
Mohammadi and Mahzoon [8] derived the governing equations for postbuckling analy-
sis of Euler-Bernoulli microbeams, in which both SGET and MCST have been employed
to model the microsize effects. By introducing a material length scale parameter in a
new nonlinear beam model, Xia et al. [9] presented the size-dependent analyses of static
bending, post-critical, and vibration of microbeams. Asghari et al. [10] proposed a Tim-
oshenko microbeam model for nonlinear vibration and bending analyses of micro-scale
beams, in which the size effects are captured through the MCST and SGET. The SGET was
used in conjunction with Timoshenko beam theory by Ramezani [11] to study vibration
of microbeams with large amplitude, showing the importance of geometric nonlinear-
ity in enhancement of the beam frequencies. Buckling behavior of functionally graded
(FG) microbeams with different boundary conditions was investigated by Akgoz and
Civalek [12] in the framework of Euler–Bernoulli beam theory and the modified strain
gradient theory. Euler–Bernoulli beam theory was used in conjunction with MCST by
Wang et al. [13] to study nonlinear bending and thermal post-buckling of microbeams,
considering the effect of Poisson’s ratio. The shooting method was used in combination
with Newton iterative method in the work to determine the deflections and post-critical
paths of the microbeams. The MCST was employed with differential quadrature method
(DQM) by Ansari et al. [14] to study bending, stability and vibration of nonlinear FG
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microbeams. The parametric study focused on the dependence of frequencies and crit-
ical loads upon the thickness-to-material length scale ratio. Additionally, Dadgar-Rad
and Beheshti [15] explored the large deformation of microframes by a total Lagrange el-
ement, while Attia and Mohamed [16] considered thermal instability of FG microbeams
using the DQM. Their finding reveals the importance of microstructural effect on the
thermal stability and bending of the microbeams.

The size-dependent nonlinear bending of micro-scale beams is studied in the present
work by using a finite element formulation. Based on the third-order shear deformation
theory and MCST, a nonlinear beam element is derived and used to establish equilibrium
equation. The element based on von Kármán nonlinear assumption is formulated by us-
ing transverse shear rotation, not cross-sectional rotation, as a variable to ensure an qua-
dratic variation of moment along the beam length. Nonlinear response of microbeams
with various boundary conditions under different distributed loads is predicted with the
aid of the Newton–Raphson iterative method. The influence of the material length scale
parameter, the boundary conditions and the loading type on nonlinear behavior of the
microbeams is studied in detail and highlighted.

2. MATHEMATICAL FORMULATION

An isotropic microbeam, with length L, width b, and thickness h under mechanical
loading is considered. A Cartesian coordinate system (x, y, z) is introduced as well as the
x-axis directs along the beam axis; y- and z-axes are coincident with the principal axes
of the root cross-section. According to the third-order shear deformation theory [17], the
displacements of a point inside the microbeam are given by

u(x, z) = u0(x) + zθ(x)− 4z3

3h2 [θ(x) + w0,x(x)] ,

w(x, z) = w0(x),
(1)

in which u0(x) and w0(x) are displacements in the x and z directions of a point on x-
axis, respectively; θ(x) is the cross-sectional rotation. In Eq. (1) and hereafter, a subscript
comma indicates the partial derivative with respect to the followed variable, e.g. w0,x =

∂w0/∂x.

Since a beam element based on the cross-sectional rotation θ(x) and linear interpo-
lation for u0(x) and θ(x) is poor convergent due to not satisfy a quadratic variation of
moment along the length, Shi and Lam [18] proposed to use the following transverse
shear rotation as an independent variable

γ0(x) = θ(x) + w0,x(x). (2)
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Using the transverse shear rotation γ0, one can recast the displacements in Eq. (1) in
the following forms

u(x, z) = u0 − z (w0,x − γ0)−
4z3

3h2 γ0,

w(x, z) = w0.
(3)

It is noted that the x variable is dropped from the quantities in the above equation
and below for the sake of simplicity.

Based on the von Kármán nonlinear assumption, the normal and shear strains de-
duced from Eq. (3) are

εxx = u,x +
1
2

w2
,x = ε0 − z (w0,xx − γ0,x)−

4z3

3h2 γ0,x,

γxz = u,z + w,x = γ0

(
1− 4z2

h2

)
,

(4)

where ε0 = u0,x +
1
2

w2
0,x is the membrane strain.

Assuming Hook’s law for the material, the normal stress σxx and the shear stress τxz

are related to the associated strains according to{
σxx
τxz

}
=

[
E 0
0 G

]{
εxx
γxz

}
, (5)

where E and G =
E

2(1 + ν)
are the Young’s modulus and shear modulus, respectively.

Since the classical beam theory is not able to describe the microstructural size effect,
the MCST [7] is adopted in conjunction with the above third-order shear deformation
beam theory herein to evaluate the strain energy of the microbeam as

U =
1
2

∫
V

(σσσ : εεε +mmm : χχχ, )dV, (6)

where V is the microbeam volume; σσσ and εεε are, respectively, the stress and strain tensors;
mmm is the deviatoric part of the couple stress tensor and χχχ is the symmetric curvature
tensor. The expressions for theses tensors are as follows [7]

σσσ = α tr(εεε)III + 2Gεεε, εεε =
1
2
[∇uuu + (∇uuu)T],

χχχ =
1
2
[∇βββββββββ + (∇βββ)T], mmm = 2`2G χχχ,

(7)

with α and G are Láme’s constants (G, as mentioned above, is also the shear modulus); `
is the material length scale parameter; βββ and uuu are, respectively, the rotation vector and
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the displacement vector, that can be expressed as

βββ =
1
2

curl(uuu), uuu = {u, 0, w}T. (8)

The strain energy in Eq. (6) can now be written in the form

U =
1
2

L∫
0

∫
A

(σxxεxx + τxzγxz + 2mxyχxy + 2myzχyz)dAdx, (9)

where A = b× h is cross-section area, and

χxy = −1
2

w0,xx +
1
4

γ0,x −
z2

h2 γ0,x, mxy = 2G`2χxy,

χyz = −
2 z
h2 γ0, myz = 2G`2χyz.

(10)

From Eqs. (4), (5) and (10), one can recast (9) in the form

U =
1
2

L∫
0

{
EAε2

0 + EI
(

w2
0,xx −

8
5

w0,xxγ0,x +
68
105

γ2
0,x

)
+

8
15

GAγ2
0

+GA`2
(

w2
0,xx −

2
3

w0,xxγ0,x +
2

15
γ2

0,x +
4

3h2 γ2
0

)}
dx,

(11)

where I = bh3/12 is the moment of inertia of cross-section.

The work of external loads is given by

Wex =

L∫
0

w(x)q(x)dx +
nQ

∑
i=1

Qi(x)w(xi), (12)

where q(x) is the distributed load along the length of the microbeam; Qi(xi) are the con-
centrated loads at point xi; nQ is the number of the concentrated loads applied to the
beam.

The nonlinear equilibrium equation system for the microbeam can be obtained from
the principle of virtual work, which can be written as

δU − δWex = 0. (13)

Eq. (13) results in a system of nonlinear differential equations with three unknowns
u0, w0 and γ0. However, it is very difficult to solve the equations by an analytical method.
The finite element method, an effective tool for handling nonlinear problems, is adopted
herein instead of.
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3. SOLUTION METHOD

This section formulates a two-node beam element. The element vector of degrees of
freedom, (∆e), contains the displacements and shear rotation at the two nodes as

∆e = {uuu0, www0, γγγ0}T, (14)

in which

uuu0 = {u01 , u02}T, www0 = {w01 , w01x, w02 , w02x}T, γγγ0 = {γ01 , γ02}T, (15)

are the vectors of nodal displacements in x and z directions, and the nodal shear rotations,
respectively.

The interpolations for the displacement field are as follows [18]

u0 = h uuu0, w0 = hwwww0, γ0 = h γγγ0, (16)

where h is the matrix of linear functions, and hw is the matrix of cubic polynomials, and
they have the following forms [19]

h =

{
1− x

le
,

x
le

}
,

hw =

{
1− 3x2

l2
e

+
2x3

l3
e

, x− 2x2

le
+

x3

l2
e

,
3x2

l2
e
− 2x3

l3
e

, − x2

le
+

x3

l2
e

}
.

(17)

From Eq. (16), one can compute

u0,x = buuu0 , w0,x = bw www0 , γ0,x = b γγγ0 , w0,xx = cw www0, (18)

where

b = h,x, bw = hw,x, cw = hw,xx. (19)

The axial strain as given by Eq. (4) and the interpolating functions (17), (18), (19)
cannot be used directly to generate a finite element formulation due to the membrane
locking effect. In order to avoid this problem, the membrane strain ε0 in Eq. (4) is replaced
by an effective strain defined as [20]

εeff. =
1
le

le∫
0

ε0dx =
1
le

le∫
0

(
u0,x +

1
2

w2
0,x

)
dx. (20)

Using Eqs. (17), (18) and (19), one can write Eq. (20) in the form

εeff. = buuu0 +wwwT
0 B www0, (21)
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with

B =
1

2le

le∫
0

bwbT
wdx =

1
60l2

e


36 3le −36 3le

3le 4l2
e −3le −l2

e

−36 −3le 36 −3le

3le −l2
e −3le 4l2

e

 . (22)

With the interpolations, the strain energy in Eq. (11) can be written in a matrix
form as

U =
NE

∑U e =
1
2

NE

∑
{

EA le

(
buuu0 +wwwT

0 B www0

)2
+

8
15

GA(γγγT
0 H γγγ0)

+ EI
(
(wwwT

0 C www0)−
8
5
(c www0)(b γγγ0) +

68 le

105
(b γγγ0)

2
)

+GA`2
(
(wwwT

0 C www0)−
2
3
(c www0)(b γγγ0) +

2 le

15
(b γγγ0)

2 +
4

3h2 (γγγ
T
0 H γγγ0)

)}
,

(23)

where NE is the total number of elements, and

C =

le∫
0

(cT
wcw)dx =

2
l3
e


6 3le −6 3le

3le 2l2
e −3le l2

e
−6 −3le 6 −3le
3le l2

e −3le 2l2
e

 ,

H =

le∫
0

(hTh)dx =
le

6

[
2 1
1 2

]
, c =

le∫
0

cwdx = {0, −1, 0, 1}.

(24)

The work of external forces in Eq. (12) can be rewritten as

Wex =
NE

∑W e
ex =

NE

∑
( le∫

0

(hwwww0)q(x)dx +

ne
Q

∑
i=1

Qe
i (hw|x=x(Qe

i )
www0)

)
, (25)

where ne
Q is the number of concentrated loads acting on the considering beam element.

The internal force vector fe
in is obtained by differentiating the strain energy (23) with

respect to the nodal displacements as

fe
in

(8×1)
=

∂U e

∂∆∆∆e
= {fu

in, fw
in, fγ

in}
T, (26)

where

fu
in

(2×1)
=

∂U e

∂uuu0
= EA le

(
(bTb)uuu0 + bT(wwwT

0 B) www0

)
, (27)

fw
in

(4×1)
=

∂U e

∂www0
= 2EA le

(
buuu0 +wwwT

0 B www0

)
(B www0)

+ EI
[
C www0 −

4
5
(cTb)γγγ0

]
+ GA`2

[
C www0 −

1
3
(cTb)γγγ0

]
,

(28)
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fγ
in

(2×1)
=

∂U e

∂γγγ0
=

8
15

GAHγγγ0 + EI
[68 le

105
(bTb)γγγ0 −

4
5
(bTcw)www0

]
+ GA`2

[ 2
15

(bTb)γγγ− 1
3
(bTcw)www0 +

4
3h2 (h

Th)γγγ
]
.

(29)

The element vector of external forces, fe
ex, can also be written in a matrix form as

fe
ex

(8×1)
=

∂W e
ex

∂∆∆∆e
=

{
0,

le∫
0

q(x)hT
wdx +

ne
Q

∑ hT
w|x(Qe

i )
, 0

}T

. (30)

By assembling the derived element vectors fe
in and fe

ex over the total number of ele-
ments, one can construct equilibrium equation in the following form [21]

R(D, Fex) = Fex − Fin(D) = 0, (31)

with D is the global vector of degrees of freedom, Fex, Fin, and R are the global vectors of
the external force, internal force and the residual force.

The global tangent stiffness matrix is obtained by incremental change of the global
internal force as

Kt(D) =
∂Fin(D)

∂D
. (32)

This matrix is obtained by assembling the element tangent stiffness matrices over the
elements, which are defined as

ke
t

(8×8)
=

∂fe
in

∂∆∆∆e
=


kuu

t kuw
t 0

(kuw
t )T kww

t kwγ
t

0 (kwγ
t )T kγγ

t

 . (33)

The sub-matrices in the above equation have the following forms

kuu
t

(2×2)
=

∂fu
in

∂uuu0
= EAle(bTb), kuw

t
(2×4)

=
∂fu

in
∂www0

= 2EA lebT
w(www

T
0 B),

kww
t

(4×4)
=

∂fw
in

∂www0
= EA le

{
6(Bwww0)(wwwT

0 B) + 2(buuu0)B
}
+ (EI + GA`2)C,

kwγ
t

(4×2)
=

∂fw
in

∂γγγ0
= −

{
4
5

EI +
1
3

GA`2
}
(cTb),

kγγ
t

(2×2)
=

∂fγ
in

∂γγγ0
= GA

( 8
15

+
4`2

3h2

)
H +

{
68
105

EI +
2
15

GA`2
}

le(bTb).

(34)
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The global tangent stiffness is now used in the following linearized equilibrium
equation

Kt(D)δD = R(D, Fex) = Fex − Fin(D). (35)

The above nonlinear equation can be solved for the global vector of degrees of free-
dom D by the Newton–Raphson iterative method. The details of the method and its
implementation are given in [21, 22].

A convergence criterion is needed for the iterative procedure. In the present work,
an Euclidean norm based criterion is employed as

‖R‖ ≤ ε‖Fex‖, (36)

with ε is the tolerance, which is chosen by 10−4 herein.

4. NUMERICAL INVESTIGATION

Table 1. Material and geometric data for microbeams

Geometric data Material data

Length Width Thickness Young’s modulus Poisson’s ratio
L (µm) b (µm) h (µm) E (MPa) ν

250 50 3 169 0.06

Various silicon microbeams as depicted in Fig. 1 with the material data listed in Ta-
ble 1 [1] are employed in numerical investigation in this section. Three types of applied
loads, namely uniformly distributed loads, triangular distributed load, and concentrated
load as shown in Fig. 1 are considered. The essential boundary conditions of the mi-
crobeams in Fig. 1 are as follows:

(a) Clamped – clamped (CC):

u0(0) = w0(0) = w0,x(0) = γ0(0) = u0(L) = w0(L) = w0,x(L) = γ0(L) = 0. (37)

(b) Clamped–pinned (CP):

u0(0) = w0(0) = w0,x(0) = γ0(0) = u0(L) = w0(L) = 0. (38)

(c) Pinned–pinned (PP):

u0(0) = w0(0) = u0(L) = w0(L) = 0. (39)

(d) Simply supported (SS):

u0(0) = w0(0) = w0(L) = 0. (40)
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0(μN/μm)q

0(μN/μm)q

0(μN)Q

(CC) (CP) (PP)

a)Uniform distributed load

c)Concentrated load

b)Triangular distributed load

Fig. 1. Considered microbeam models and applied loads (q0 = 10 µN/µm, Q0 = 500 µN)

4.1. Formulation verification

The derived beam element is validated herein by comparing the obtained result with
available data. In Table 2, the maximum deflections of a macrobeam with CC and PP end
conditions under a uniform load q0 = 10 (lb/in) obtained by the present formulation are
compared with the results of Refs. [22, 23]. The deflections in Table 2 are determined by
the present formulation by setting `∗ = 0 (without the microstructural size effect). The
material and geometric data for the microbeam are as follows: E = 30 (Msi), ν = 0.25,
L = 100 (in), b = h = 1 (in). Good agreement between the maximum deflections of
the present work with the result of [22, 23] can be seen from Table 2, regardless of the
boundary conditions and the loading intensity q0. The error in Table 2 is defined as
follows

Er1 =
|Present result - Ref. [22]|

Ref. [22]
× 100%,

Er2 =
|Present result - Ref. [23]|

Ref. [23]
× 100%.

(41)

It is necessary to mention that the load step and the number of load increments used for
Table 2 are dq0 = 1 (lb/in) and nINC = 10, respectively.

To verify the beam element in modeling the nonlinear response of microbeams, the
accuracy and convergence of the derived beam element in evaluating the dimensionless
central deflections of a simply microbeam subjected to uniformly distributed load are
shown in Table 3. The data used to obtain the results in the table are E = 1.44 GPa,
ν = 0.38, h = 5 × 17.6 µm, b = 2h, L = 20h, q0 = 1 (N/m) as in Refs. [13, 24]. For
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comparison, the results obtained by the shooting method of Ref. [13] and the analytical
method of Ref. [24] are also given in Table 3. The Euler–Bernoulli beam theory is used in
Ref. [13], while both the Euler–Bernoulli and Timoshenko beam theories are employed in
Ref. [24]. Table 3 shows a good agreement between the result of the present work with
the cited references, especially with the Timoshenko beam model of Ref. [24]. Table 3 also
shows the fast convergence of the present beam element, and the nonlinear response of
the microbeam can be accurately predicted by using only four elements.

Table 2. Comparison of maximum deflections of macrobeam under uniformly distributed load

q0
PP CC

[22] [23] Present Er1 Er2 [22] [23] Present Er1 Er2

1 0.3685 0.3693 0.3703 0.4885 0.2708 0.1034 0.1035 0.1034 0.0000 0.0966
2 0.5454 0.5467 0.5491 0.6784 0.4390 0.2025 0.2025 0.2024 0.0494 0.0494
3 0.6640 0.6655 0.6690 0.7530 0.5259 0.2943 0.2943 0.2942 0.0340 0.0340
4 0.7555 0.7536 0.7616 0.8074 1.0616 0.3779 0.3777 0.3778 0.0265 0.0265
5 0.8312 0.8316 0.8382 0.8422 0.7937 0.4537 0.4534 0.4536 0.0220 0.0441
6 0.8964 0.8993 0.9041 0.8590 0.5337 0.5224 0.5220 0.5224 0.0000 0.0766
7 0.9540 0.9588 0.9623 0.8700 0.3650 0.5850 0.5845 0.5850 0.0000 0.0855
8 1.0058 1.0205 1.0147 0.8849 0.5683 0.6424 0.6418 0.6424 0.0000 0.0935
9 1.0531 1.0525 1.0626 0.9021 0.9596 0.6954 0.6946 0.6954 0.0000 0.1152
10 1.0967 1.1139 1.1067 0.9118 0.6464 0.7445 0.7436 0.7445 0.0000 0.1210

Table 3. Accuracy and convergence of the beam element in evaluating the dimensionless central
deflections of simply microbeam subjected to uniformly distributed load

`∗
Present Source

NE = 2 NE = 4 NE = 6 Ref. [13] Ref. [24]a Ref. [24]b

0 1.3107 1.3107 1.3107 1.2667 1.3021 1.3103
0.2 1.1162 1.1162 1.1162 1.0900 1.1092 1.1162
0.4 0.7724 0.7724 0.7724 0.7633 0.7679 0.7731
0.6 0.5105 0.5105 0.5105 0.5067 0.5076 0.5116
0.8 0.3462 0.3462 0.3462 0.3440 0.3442 0.3475
1 0.2449 0.2449 0.2449 0.2434 0.2435 0.2464

Note: a: Based on Euler-Bernoulli beam theory, b: Based on Timoshenko beam theory.

4.2. Numerical results

For the sake of discussion, the dimensionless parameters for the material length
scale parameter, mid-span bending moment and maximum deflection are introduced
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as [1, 22, 23]

`∗ =
`

h
, w∗ = 100

EI
L4 wmax

0 , M∗ = − EI
q0b2 w0,xx

(L
2

)
, (42)

where wmax
0 is the maximum deflection.

Table 4. The dimensionless maximum deflections of microbeams under
uniformly distributed load

B.C. q0
`∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CC 1 0.2419 0.2098 0.1714 0.1362 0.1077 0.0857 0.0690 0.0563 0.0466
2 0.4615 0.4062 0.3365 0.2698 0.2143 0.1709 0.1378 0.1126 0.0932
3 0.6512 0.5826 0.4911 0.3987 0.3189 0.2553 0.2062 0.1687 0.1397
4 0.8137 0.7385 0.6333 0.5215 0.4209 0.3386 0.2742 0.2245 0.1861
5 0.9545 0.8764 0.7632 0.6374 0.5195 0.4204 0.3415 0.2801 0.2324
6 1.0782 0.9993 0.8818 0.7463 0.6145 0.5004 0.4080 0.3353 0.2785
7 1.1886 1.1099 0.9904 0.8484 0.7057 0.5786 0.4736 0.3900 0.3243
8 1.2883 1.2104 1.0903 0.9441 0.7929 0.6546 0.5381 0.4443 0.3700
9 1.3794 1.3026 1.1827 1.0340 0.8764 0.7286 0.6016 0.4980 0.4153
10 1.4633 1.3877 1.2686 1.1185 0.9561 0.8003 0.6639 0.5511 0.4604

CP 1 0.4371 0.3904 0.3285 0.2664 0.2129 0.1704 0.1376 0.1125 0.0932
2 0.7289 0.6739 0.5928 0.5002 0.4110 0.3343 0.2723 0.2237 0.1858
3 0.9370 0.8825 0.7984 0.6955 0.5876 0.4875 0.4020 0.3325 0.2772
4 1.1001 1.0474 0.9646 0.8593 0.7429 0.6282 0.5250 0.4379 0.3669
5 1.2356 1.1849 1.1042 0.9995 0.8798 0.7567 0.6409 0.5394 0.4545
6 1.3526 1.3036 1.2252 1.1221 1.0017 0.8739 0.7494 0.6366 0.5397
7 1.4560 1.4086 1.3323 1.2312 1.1113 0.9813 0.8509 0.7294 0.6224
8 1.5491 1.5030 1.4287 1.3296 1.2110 1.0801 0.9460 0.8178 0.7023
9 1.6341 1.5892 1.5166 1.4196 1.3025 1.1716 1.0352 0.9020 0.7795
10 1.7124 1.6686 1.5977 1.5025 1.3870 1.2567 1.1190 0.9821 0.8539

PP 1 0.7266 0.6897 0.6312 0.5573 0.4769 0.3996 0.3317 0.2755 0.2302
2 1.0275 0.9964 0.9452 0.8759 0.7923 0.7004 0.6077 0.5210 0.4446
3 1.2287 1.2015 1.1561 1.0933 1.0149 0.9245 0.8271 0.7289 0.6358
4 1.3847 1.3602 1.3189 1.2612 1.1881 1.1018 1.0057 0.9046 0.8038
5 1.5142 1.4917 1.4536 1.4000 1.3314 1.2492 1.1560 1.0554 0.9517
6 1.6258 1.6049 1.5694 1.5191 1.4542 1.3759 1.2859 1.1871 1.0831
7 1.7247 1.7051 1.6717 1.6241 1.5624 1.4875 1.4007 1.3042 1.2011
8 1.8138 1.7953 1.7637 1.7185 1.6596 1.5876 1.5038 1.4097 1.3081
9 1.8952 1.8777 1.8477 1.8045 1.7480 1.6787 1.5975 1.5059 1.4061
10 1.9704 1.9538 1.9251 1.8837 1.8293 1.7624 1.6837 1.5945 1.4965
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The dimensionless maximum deflections of the CC, CP, PP microbeam under a uni-
form distributed load are given in Table 4 for various values of scale parameter `∗. It is
evident from the table that the material length scale parameter has a significant impact on
the maximum nonlinear deflections of the microbeams. For all the considered boundary
conditions, the deflections are lower for the microbeams associated with higher scale pa-
rameter `∗, regardless of load level. Thus, the material length scale which has been taken
into consideration herein make the microbeam stiffer, and the deflection is overestimated
when ignore the microstructral size effect.

The results for the dimensionless maximum nonlinear deflections of the microbeams
under the triangular distributed load (Fig. 1(b)) and a concentrated load (Fig. 1(c)) are
given in Tables 5 and 6, respectively. As expected, the maximum nonlinear deflection
of the microbeam under the triangular distributed load is smaller than that compared to
the one under the uniformly distributed load, regardless of the scale parameter and the
loading level as well.

Table 5. The dimensionless maximum deflections of microbeams under
triangular distributed load

B.C. q0
`∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CC 1 0.1709 0.1477 0.1204 0.0955 0.0754 0.0600 0.0483 0.0394 0.0326
2 0.3332 0.2905 0.2385 0.1901 0.1505 0.1198 0.0965 0.0788 0.0653
3 0.4818 0.4248 0.3525 0.2830 0.2249 0.1794 0.1447 0.1182 0.0979
4 0.6156 0.5490 0.4611 0.3734 0.2982 0.2385 0.1926 0.1575 0.1304
5 0.7355 0.6630 0.5638 0.4609 0.3703 0.2971 0.2403 0.1966 0.1629
6 0.8434 0.7674 0.6602 0.5452 0.4409 0.3551 0.2877 0.2357 0.1954
7 0.9412 0.8633 0.7507 0.6261 0.5098 0.4123 0.3348 0.2745 0.2278
8 1.0305 0.9517 0.8356 0.7036 0.5770 0.4686 0.3815 0.3132 0.2601
9 1.1126 1.0336 0.9153 0.7776 0.6423 0.5241 0.4278 0.3517 0.2923
10 1.1886 1.1099 0.9904 0.8484 0.7057 0.5786 0.4736 0.3900 0.3243

CP 1 0.3077 0.2703 0.2236 0.1790 0.1421 0.1133 0.0913 0.0746 0.0618
2 0.5472 0.4950 0.4228 0.3471 0.2796 0.2247 0.1813 0.1488 0.1234
3 0.7299 0.6740 0.5918 0.4986 0.4092 0.3325 0.2689 0.2224 0.1846
4 0.8766 0.8204 0.7350 0.6331 0.5294 0.4357 0.3535 0.2948 0.2454
5 0.9996 0.9442 0.8584 0.7526 0.6400 0.5336 0.4345 0.3660 0.3055
6 1.1061 1.0518 0.9668 0.8595 0.7416 0.6261 0.5116 0.4357 0.3648
7 1.2004 1.1473 1.0635 0.9561 0.8353 0.7132 0.5849 0.5036 0.4232
8 1.2854 1.2334 1.1509 1.0441 0.9218 0.7953 0.6545 0.5697 0.4807
9 1.3630 1.3120 1.2309 1.1250 1.0022 0.8727 0.7206 0.6340 0.5371
10 1.4346 1.3846 1.3047 1.2000 1.0772 0.9457 0.7835 0.6963 0.5923
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B.C. q0
`∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PP 1 0.5604 0.5212 0.4624 0.3935 0.3255 0.2659 0.2172 0.1786 0.1485
2 0.8315 0.7958 0.7384 0.6640 0.5796 0.4942 0.4157 0.3481 0.2924
3 1.0140 0.9816 0.9287 0.8578 0.7730 0.6807 0.5885 0.5032 0.4284
4 1.1554 1.1254 1.0763 1.0094 0.9274 0.8348 0.7376 0.6425 0.5550
5 1.2726 1.2445 1.1983 1.1349 1.0563 0.9655 0.8673 0.7674 0.6718
6 1.3737 1.3472 1.3033 1.2429 1.1674 1.0790 0.9815 0.8798 0.7792
7 1.4632 1.4379 1.3960 1.3382 1.2654 1.1796 1.0836 0.9815 0.8783
8 1.5439 1.5196 1.4794 1.4237 1.3534 1.2701 1.1759 1.0744 0.9698
9 1.6177 1.5942 1.5554 1.5016 1.4336 1.3525 1.2603 1.1598 1.0548
10 1.6858 1.6631 1.6255 1.5734 1.5073 1.4284 1.3380 1.2388 1.1341

Table 6. The dimensionless maximum deflections of microbeams under
concentrated load

B.C. Q0
`∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CC 50 0.0983 0.0848 0.0689 0.0546 0.0431 0.0343 0.0276 0.0225 0.0187
100 0.1948 0.1686 0.1374 0.1091 0.0862 0.0685 0.0552 0.0451 0.0373
150 0.2881 0.2505 0.2051 0.1632 0.1291 0.1028 0.0828 0.0676 0.0559
200 0.3772 0.3299 0.2716 0.2168 0.1718 0.1369 0.1103 0.0901 0.0746
250 0.4615 0.4062 0.3365 0.2698 0.2143 0.1709 0.1378 0.1126 0.0932
300 0.5409 0.4793 0.3998 0.3221 0.2564 0.2048 0.1652 0.1350 0.1118
350 0.6156 0.5490 0.4611 0.3734 0.2982 0.2385 0.1926 0.1575 0.1304
400 0.6857 0.6153 0.5205 0.4238 0.3396 0.2721 0.2199 0.1798 0.1490
450 0.7516 0.6784 0.5779 0.4732 0.3805 0.3054 0.2471 0.2022 0.1676
500 0.8137 0.7385 0.6333 0.5215 0.4209 0.3386 0.2742 0.2245 0.1861

CP 50 0.1695 0.1470 0.1200 0.0954 0.0754 0.0600 0.0483 0.0394 0.0326
100 0.3239 0.2849 0.2358 0.1890 0.1501 0.1197 0.0965 0.0788 0.0653
150 0.4579 0.4091 0.3445 0.2795 0.2234 0.1788 0.1444 0.1181 0.0978
200 0.5734 0.5195 0.4447 0.3657 0.2949 0.2372 0.1920 0.1572 0.1303
250 0.6740 0.6176 0.5366 0.4473 0.3642 0.2945 0.2392 0.1961 0.1627
300 0.7630 0.7054 0.6207 0.5242 0.4310 0.3507 0.2858 0.2348 0.1950
350 0.8427 0.7848 0.6981 0.5964 0.4952 0.4056 0.3318 0.2732 0.2272
400 0.9150 0.8572 0.7694 0.6643 0.5568 0.4591 0.3771 0.3112 0.2591
450 0.9813 0.9238 0.8357 0.7282 0.6157 0.5111 0.4217 0.3489 0.2909
500 1.0427 0.9856 0.8974 0.7885 0.6721 0.5617 0.4655 0.3862 0.3225
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B.C. Q0
`∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PP 50 0.3430 0.3078 0.2603 0.2120 0.1698 0.1361 0.1100 0.0899 0.0745
100 0.5626 0.5229 0.4634 0.3941 0.3258 0.2660 0.2172 0.1787 0.1485
150 0.7168 0.6783 0.6181 0.5430 0.4625 0.3860 0.3197 0.2650 0.2213
200 0.8371 0.8003 0.7418 0.6662 0.5809 0.4950 0.4160 0.3483 0.2925
250 0.9369 0.9017 0.8452 0.7708 0.6843 0.5933 0.5059 0.4279 0.3617
300 1.0228 0.9890 0.9344 0.8618 0.7756 0.6823 0.5895 0.5037 0.4287
350 1.0988 1.0662 1.0133 0.9426 0.8574 0.7633 0.6671 0.5755 0.4934
400 1.1673 1.1356 1.0843 1.0153 0.9315 0.8375 0.7393 0.6435 0.5556
450 1.2297 1.1989 1.1490 1.0816 0.9993 0.9059 0.8067 0.7080 0.6153
500 1.2874 1.2573 1.2086 1.1427 1.0619 0.9694 0.8698 0.7690 0.6727

In order to show the effects of the boundary conditions on nonlinear response of the
microbeams under the mechanical loading, the load-dimensionless maximum deflection
curves of the CC, CP and PP microbeams are shown in Figs. 2–4 for the uniformly dis-
tributed load, triangular distributed load, and concentrated load, respectively. One can
see from the figures that the boundary conditions play an important role on the nonlin-
ear response of the microbeam. Not only the deflection amplitude by the degree of the
nonlinearity also are governed by the boundary conditions. At a given load, both the
nonlinear deflection and the nonlinear degree of the SS microbeam is the largest, while
the opposite is for the CC microbeam, regardless of the loading type. This tendency is
the most clear for the microbeam under the concentrated load (Fig. 4).
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Fig. 4. Load-dimensionless maximum de-
flection curves of microbeams under

concentrated load with `∗ = 0.35

To illustrate the influence of the material
length scale parameter on the nonlinear bend-
ing of the microbeams in more detail, the di-
mensionless maximum deflection-load curves
of the PP and CP microbeams under the uni-
formed distributed load and concentrated load
are respectively shown in Figs. 5 and 6 for
various values of the scale parameter `∗. Re-
gardless of the loading level and loading type,
the nonlinear deflection of the microbeams is
sharply decreased by the increase of the mate-
rial length scale parameter. This due to the fact
the the size effect, which has been taken into
account herein, enhances the strain energy, and
also the bending and shear stiffness of the mi-
crobeams, as can be evident from Eqs. (11) and
(34). Thus, the microstructral effect has impor-
tant influence on predicting nonlinear response of the microbeams, and the deflections
are considerably overestimated when ignore the micro-size effect.
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Fig. 5. Load-dimensionless maximum deflec-
tion curves of PP microbeams under uni-
formly distributed load with various values

of `∗
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Finally, the applied load versus the moment at mid-span section of CC microbeam
according to various scale parameters are shown in Figs. 7 and 8 for two cases of applied
load, the uniformly distributed load and the triangular distributed load, respectively.
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The effect of the microstructural effect on the moment is similar to that of the maximum
deflection, and the moment at is decreased with the increasing of the scale parameter.
The figures also show the significant influence of the loading type on the moment, and the
moment obtained from the uniformly distributed load is higher than that of the triangular
distributed load, regardless of the material length scale parameter.
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Fig. 7. Applied load versus mid-span mo-
ment of CC microbeams under uniformly dis-

tributed load with various values of `∗.
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Fig. 8. Applied load versus mid-span mo-
ment of CC microbeams under triangular dis-

tributed load with various values of `∗.

5. CONCLUSION

The size-dependent nonlinear bending of microbeams under mechanical loading
was studied in the present work on the basis of the third-order shear deformation theory.
The influence of microstructural size effect on the nonlinear response was captured us-
ing the MCST. Based on the von Kármán nonlinear assumption, a nonlinear finite beam
element was derived by using the shear rotation as a variable. Using the derived beam
element, the discretized nonlinear equilibrium equation has been constructed and then
solved by the Newton-Raphson iterative method. The dimensionless maximum deflec-
tions of microbeams subjected to various types of distributed and concentrated loads
have been computed for different material length scale parameters. The effects of the
microstructural parameter and the boundary conditions on the nonlinear response of the
microbeam were investigated in detail. The numerical result reveals that the beam ele-
ment derived herein is capable to predict accurately nonlinear response of microbeams
by small number of elements. It was also shown that the microstructural parameter has
an important role in the nonlinear response of the microbeams, and the deflections are
considerably overestimated by ignoring the micro-size effect. It is worth noting that the
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beam element formulated in the present work can be used to analyze microbeams sub-
jected to other types of loading as well. In addition, the extension of the present work in
nonlinear analysis of microframes is straightforward.
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