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Abstract. The springback phenomenon is a significant concern in manufacturing pro-
cesses, particularly in metal component forming, as it directly affects dimensional control
and the shape of formed parts. Accurate prediction and analysis of springback are crucial
for achieving precise dimensional control and ensuring the desired final shape. Therefore,
this study focuses on analyzing the springback phenomenon using finite element method.
The primary objective is to develop a Matlab program for analyzing three-dimensional
springback problems. Throughout the research process, the understanding of the phe-
nomenon has been enhanced. The developed program has been successfully implemented
to model and simulate the forming process, considering various aspects of the problem.
The results of the solutions have been compared and evaluated, leading to important con-
clusions. The research also outlines future developments in this field. It is hoped that the
results and understanding of this research will contribute to the field of computational
mechanics and inspire further research.

Keywords: springback, finite element method, material nonlinearity, return-mapping,
elasto-plastic.

1. INTRODUCTION

Analyzing springback is crucial in manufacturing and engineering. It presents chal-
lenges to achieving dimensional accuracy and quality in fabricated components.
Manufacturers can adjust tooling design, process parameters, and material selection to

https://doi.org/10.15625/0866-7136/20588
https://orcid.org/0000-0002-3371-8890
mailto: tttruong@hcmut.edu.vn


Analysis of the springback phenomenon using finite element method 59

minimize springback effects. Additionally, springback analysis enables optimization of
manufacturing processes, leading to improved efficiency, reduced lead times, and en-
hanced competitiveness.

The elastic recovery of materials significantly affects the shape and dimensional ac-
curacy of drawpieces. While springback cannot be completely eliminated, there are meth-
ods to minimize it. One approach is designing the die to account for springback. Ad-
justing bending process parameters can also help reduce springback. Another method
involves overbending the material during die shaping [1]. The finite element method
(FEM) is commonly used to predict the final shape of drawpieces [2]. FEM simulates
sheet metal forming processes, providing insights into stress and deformation distribu-
tion, forming forces, and potential defects.

To reflect the nonlinear strain and stress during elastic-plastic deformation of the
sheet material, the crucial point in the computational modelling of springback is the
proper choice of finite element formulation, the element size and a number of integration
points through the sheet thickness. Suitable mesh density, especially in the region of con-
tact of the tools with the sheet is a balance between computational time and springback
prediction accuracy. Different studies have proposed varying numbers of integration
points, ranging from 5 to 51. For nonlinear analysis, five integration points yield accu-
rate results [3], while Xu et al. [4] concluded that usually seven integration points are
sufficient. However, Wagoner and Li found that up to 51 points are necessary for shell
type elements to analyze springback with a 1% computational error [5]. Consequently,
the choice of integration points remains an open issue in springback simulation, as noted
by Banabic [6].

To gain a better understanding of the springback phenomenon, this study focuses
on investigating the influence of of material properties on springback. Different materi-
als exhibit varying levels of elastic recovery, which affects the magnitude and extent of
springback. By examining the stress-strain behavior, elastic modulus, yield strength, and
other material properties.

This study has achieved its objectives by exploring nonlinear sources, the method
for solving nonlinear systems. The development of a program to analyze the spring-
back phenomenon in a three-dimensional problem has been successfully accomplished,
and the results have been compared and evaluated. The conclusions derived from this
research provide a direction for further development in the research.
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2. METHODOLOGY

2.1. Newton–Raphson method

For solving nonlinear equations, the Newton–Raphson method is briefly introduced
here. With the assumption of an initial estimation u0, then adding an increment ∆u, so
that the new estimate u0 + ∆u is close to the solution of P (u) = f . In order to find the
increment, the nonlinear equations are locally approximated by linear ones. This process
is repeated until the original nonlinear equations are satisfied.

Suppose an approximate solution at the i-th iteration is known and is designated by
ui. The solution at the next iteration can be approximated as follows [7]

P
(

ui+1
)
≈ P

(
ui
)
+ Ki

T

(
ui
)

∆ui = f, (1)

where Ki
T

(
ui
)

is the Jacobian matrix at the i-th iteration, ∆ui is the solution increment.
Rearrange the terms, the system of linearized equations can be obtained as

Ki
T

(
ui
)

∆ui = f − P
(

ui
)

. (2)

After solving for the displacement increment ∆ui, a new approximate solution is
obtained as follows

ui+1 = ui + ∆ui. (3)

In general, this solution does not satisfy the system of nonlinear equations exactly
and there are residuals defined as follows

Ri+1 = f − P
(

ui+1
)

. (4)

If the residual is smaller than a user-defined tolerance, the solution ui+1 can be ac-
cepted as the solution, and the solving process stops. Otherwise, the process is repeated
until this convergence criteria is met.

2.2. Return-mapping algorithm

The stress and plastic variables are determined using the return-mapping algorithm.
The algorithm is briefly demonstrated through the following steps:

Step 1. Compute the trial stress trσ = nσ + D · ∆ε.

Step 2. Compute the deviatoric stress trs = trσ − 1
3

tr(trσ)1.

Step 3. Compute norm
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Step 4. Define the yield function f =
∥∥trs

∥∥−√
2
3
[
σ0

Y + Hep
]
.

Step 5. Check for the yield status

IF f < 0: Compute the material properties
n+1σ = trσ,

Da lg = D =


λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 .

END IF

Step 6. Define the consistency parameter γ =
f

2µ +
2
3

H
and the unit deviatoric

vector N =
trs

∥trs∥ .

Step 7. Update stress n+1σ = trσ − 2µγN.

Step 8. Update effective plastic strain n+1ep = nep +
√
(2/3)γ.

Step 9. Compute the consistent tangent stiffness Da lg
ij = Dij − (c1 − c2) NiNj − c2 ×

Idev
ij , where

c1 =
4µ2

2µ +
2
3

H
, c2 =

4µ2γ

∥trs∥ ,

Idev =


2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0

0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2

 .

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Partially loaded elasto-plastic block

The first example is a 3-dimensional elasto-plastic block under partial compression
as shown in Fig. 1(a). The load’s magnitude for this example is p = 800 MPa. Due to
the symmetry of the problem, only one-quarter of the block as depicted in Fig. 1(b) is
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Figure 1. (a) The full model of a block under partial compression, and (b) The quarter model. 

Upon comparing the results obtained from the finite element Matlab program (present study) with 
those presented in the reference [8] (as shown in Table 1), it is evident that the relative error is small. 
This observation highlights the reliability of the elasto-plastic analysis program for 3D problems, as it 
generates reliable results. The distributions of the displacement field and the von Mises stress of the 
quarter of the block are shown in Fig. 2. 

Table 1. The von Mises stress and displacement components of the block 

Quantity Present study  Reference [8] Error (%) 
ux (m) 0.17 0.18 1.25 
uy (m) 0.17 0.18 1.25 
uz (m) 1.13 1.10 2.73 
von Mises stress (MPa) 518 500 2.80 

 

3.2. Axial torsion behavior of the square column 
This example analyses the springback phenomenon of a square column subjected to torsional 

loading with two loading processes: loading and unloading. The dimensions of the square column are A 
= 20 mm, B = 20 mm, C = 200 mm as shown in Fig. 3 (a). The square column, due to its solid model 
and being subjected to torsional forces on all four sides (see Fig. 3 (b)). The material model is bilinear 
and the material properties are given as Young’s modulus E = 190 GPa, Poisson’s ratio , tangent 
modulus Et = 6600 MPa, yield strength  MPa. The model is represented by FEM’s 
discretization with 2009 nodes and 1440 hexahedron elements. 
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Fig. 2. (a) The von Mises stress (unit: MPa), (b) The displacement ux (unit: mm),
(c) The displacement uy (unit: mm), (d) The displacement uz (unit: mm)
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sufficient to be modeled to save the computational time. The material model is assumed
to be perfect elasto-plastic model and the material properties are given as Young’s mod-
ulus E = 6900 MPa, Poisson’s ratio ν = 0.3, tangent modulus Et = 0 MPa, yield strength
σy = 500 MPa. The model is represented by FEM’s discretization with 1310 nodes and
1000 hexahedron elements.

Upon comparing the results obtained from the finite element Matlab program (present
study) with those presented in the reference [8] (as shown in Table 1), it is evident that
the relative error is small. This observation highlights the reliability of the elasto-plastic
analysis program for 3D problems, as it generates reliable results. The distributions of
the displacement field and the von Mises stress of the quarter of the block are shown in
Fig. 2.

Table 1. The von Mises stress and displacement components of the block

Quantity Present study Reference [8] Error (%)

ux (m) 0.17 0.18 1.25
uy (m) 0.17 0.18 1.25
uz (m) 1.13 1.10 2.73

von Mises stress (MPa) 518 500 2.80

3.2. Axial torsion behavior of the square column

This example analyses the springback phenomenon of a square column subjected to
torsional loading with two loading processes: loading and unloading. The dimensions
of the square column are A = 20 mm, B = 20 mm, C = 200 mm as shown in Fig. 3(a). The
square column, due to its solid model and being subjected to torsional forces on all four
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Figure 3. (a) The square column, and (b) The model with boundary conditions 

The total displacement of the corner point G (see Fig. 3 (a)) is illustrated in Fig. 4, the obtained 
result is compared to ANSYS result and shows good agreement. In Figure 4, we can observe that the 
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Fig. 3. (a) The square column, and (b) The model with boundary conditions
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sides (see Fig. 3(b)). The material model is bilinear and the material properties are given
as Young’s modulus E = 190 GPa, Poisson’s ratio ν = 0.3, tangent modulus Et = 6600
MPa, yield strength σy = 430 MPa. The model is represented by FEM’s discretization
with 2009 nodes and 1440 hexahedron elements.

The total displacement of the corner point G (see Fig. 3(a)) is illustrated in Fig. 4, the
obtained result is compared to ANSYS result and shows good agreement. In Fig. 4, we
can observe that the displacement of point G increases linearly from the initial loading
step to the 8th step. This is because the material deforms elastically. Then, in the sub-
sequent steps (i.e., from 8th to 10th), the displacement of point G increases nonlinearly
indicating the material has undergone plastic deformation. From the 10th loading step
to the 20th step, the load gradually decreases to zero, while the displacement of point G
starts to decrease linearly as the material exhibits elastic recovery properties.
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Figure 5. (a) The initial and unloading configuration, (b) The full loading and unloading configuration 

Figure 6 demonstrates the springback behavior of metal under force. During torsion, the material 
surpasses its yield strength for permanent deformation. Upon unloading, the stress returns to zero along 
the elastic modulus slope. The permanent deformation is therefore less than what is designed into the 
part unless springback is taken into account. 

Fig. 4. The variation of displacement at the corner point G with respect to the computational step

When the model is unloaded after undergoing plastic deformation, it cannot back
to its initial state because of the plastic strain. Fig. 5(a) shows the configuration of the
initial state and unloading state, the difference between the two configurations comes
from the plastic strain. Fig. 5(b) shows the configuration of the fully loaded state and
unloading state, the difference between the two configurations comes from the nature of
the material elasticity which is known as “springback”, it mentions the elastic recovery
of material.

Fig. 6 demonstrates the springback behavior of metal under force. During torsion,
the material surpasses its yield strength for permanent deformation. Upon unloading,
the stress returns to zero along the elastic modulus slope. The permanent deformation is
therefore less than what is designed into the part unless springback is taken into account.
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(a) (b)

Fig. 5. (a) The initial and unloading configuration, (b) The full loading
and unloading configuration
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From Table 2, it is observed that when one wants to twist a square column an angle , the 
required angle to twist is approximate . It shows that calculating the springback phenomenon 
in the metal forming process is very important. 

Table 2. The springback value of angle   
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Full loading 10.650 

Unloading 6.090 

Springback 4.560 (42.82%) 

 

 
Figure 6. Pressure-angle curve during the forming process 
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characteristics are computed through the return-mapping algorithm. The springback phenomenon in 
three-dimensional problems with material nonlinearity was discussed via numerical examples. The 
development of a Matlab program to analyze the springback phenomenon in a three-dimensional 
problem has been successfully accomplished, and the results have been compared and evaluated. 
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From Table 2, it is observed that when one wants to twist a square column an an-
gle α, the required angle to twist is approximate 1.4282α. It shows that calculating the
springback phenomenon in the metal forming process is very important.

Table 2. The springback value of angle α

Angle (α)

Full loading 10.65°
Unloading 6.09°
Springback 4.56° (42.82%)
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4. CONCLUSIONS

This study has achieved its objectives by exploring the nonlinearity material behav-
ior. The method for solving nonlinear systems is based on the Newton–Raphson tech-
nique, and the plastic characteristics are computed through the return-mapping algo-
rithm. The springback phenomenon in three-dimensional problems with material non-
linearity was discussed via numerical examples. The development of a Matlab program
to analyze the springback phenomenon in a three-dimensional problem has been suc-
cessfully accomplished, and the results have been compared and evaluated.
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